STAT 802: Multivariate Analysis

Course outline:

- Multivariate Distributions.
- The Multivariate Normal Distribution.
- The 1 sample problem.
- Paired comparisons.
- Repeated measures: 1 sample.
- One way MANOVA.
- Two way MANOVA.
- Profile Analysis.

- Multivariate Multiple Regression.
- Discriminant Analysis.
- Clustering.
- Principal Components.
- Factor analysis.
- Canonical Correlations.

Basic structure of typical multivariate data set:

Case by variables: data in matrix. Each row is a case, each column is a variable.

Example: Fisher's iris data: 5 rows of 150 by 5 matrix:

Case		Sepal	Sepal	Petal	Petal
#	Variety	Length	Width	Length	Width
1	Setosa	5.1	3.5	1.4	0.2
2	Setosa	4.9	3.0	1.4	0.2
:	:	÷	:	ŧ	:
51	Versicolor	7.0	3.2	4.7	1.4
:	:	:	:	:	:

Usual model: rows of data matrix are independent random variables.

Vector valued random variable: function X: $\Omega \mapsto \mathbb{R}^p$ such that, writing $X = (X_1, \dots, X_p)^T$,

$$P(X_1 \le x_1, \dots, X_p \le x_p)$$

defined for any const's (x_1, \ldots, x_p) .

Cumulative Distribution Function (CDF) of \mathbf{X} : function $F_{\mathbf{X}}$ on \mathbb{R}^p defined by

$$F_{\mathbf{X}}(x_1,\ldots,x_p) = P(X_1 \le x_1,\ldots,X_p \le x_p)$$
.

Defn: Distribution of rv X is **absolutely continuous** if there is a function f such that

$$P(\mathbf{X} \in A) = \int_{A} f(x)dx \tag{1}$$

for any (Borel) set A. This is a p dimensional integral in general. Equivalently

$$F(x_1, \dots, x_p) = \int_{-\infty}^{x_1} \dots \int_{-\infty}^{x_p} f(y_1, \dots, y_p) dy_p, \dots, dy_1.$$

Defn: Any f satisfying (??) is a **density** of X.

For most x F is differentiable at x and

$$\frac{\partial^p F(x)}{\partial x_1 \cdots \partial x_p} = f(x) \, .$$

Building Multivariate Models

Basic tactic: specify density of

$$\mathbf{X} = (X_1, \dots, X_p)^T.$$

Tools: marginal densities, conditional densities, independence, transformation.

Marginalization: Simplest multivariate problem

$$\mathbf{X} = (X_1, \dots, X_p), \qquad Y = X_1$$

(or in general Y is any X_j).

Theorem 1 If **X** has density $f(x_1,...,x_p)$ and q < p then $\mathbf{Y} = (X_1,...,X_q)$ has density

$$f_{\mathbf{Y}}(x_1, \dots, x_q) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_p) dx_{q+1} \dots dx_p$$

 $f_{X_1,...,X_q}$ is the **marginal** density of $X_1,...,X_q$ and $f_{\mathbf{X}}$ the **joint** density of \mathbf{X} but they are both just densities. "Marginal" just to distinguish from the joint density of \mathbf{X} .

Independence, conditional distributions

Def'n: Events A and B are independent if

$$P(AB) = P(A)P(B).$$

(Notation: AB is the event that both A and B happen, also written $A \cap B$.)

Def'n: A_i , i = 1, ..., p are independent if

$$P(A_{i_1} \cdots A_{i_r}) = \prod_{j=1}^r P(A_{i_j})$$

for any $1 \leq i_1 < \cdots < i_r \leq p$.

Def'n: X and Y are independent if

$$P(X \in A; Y \in B) = P(X \in A)P(Y \in B)$$

for all A and B.

Def'n: Rvs X_1, \ldots, X_p independent:

$$P(\mathbf{X}_1 \in A_1, \cdots, \mathbf{X}_p \in A_p) = \prod P(\mathbf{X}_i \in A_i)$$

for any A_1, \ldots, A_p .

Theorem:

1. If X and Y are independent with joint density $f_{X,Y}(x,y)$ then X and Y have densities f_X and f_Y , and

$$f_{\mathbf{X},\mathbf{Y}}(x,y) = f_{\mathbf{X}}(x)f_{\mathbf{Y}}(y)$$
.

2. If ${\bf X}$ and ${\bf Y}$ independent with marginal densities $f_{\bf X}$ and $f_{\bf Y}$ then $({\bf X},{\bf Y})$ has joint density

$$f_{\mathbf{X},\mathbf{Y}}(x,y) = f_{\mathbf{X}}(x)f_{\mathbf{Y}}(y)$$
.

3. If (\mathbf{X}, \mathbf{Y}) has density f(x, y) and there exist g(x) and h(y) st f(x, y) = g(x)h(y) for (almost) **all** (x, y) then \mathbf{X} and \mathbf{Y} are independent with densities given by

$$f_{\mathbf{X}}(x) = g(x) / \int_{-\infty}^{\infty} g(u) du$$

$$f_{\mathbf{Y}}(y) = h(y) / \int_{-\infty}^{\infty} h(u) du$$
.

Theorem: If X_1, \ldots, X_p are independent and $Y_i = g_i(X_i)$ then Y_1, \ldots, Y_p are independent. Moreover, (X_1, \ldots, X_q) and (X_{q+1}, \ldots, X_p) are independent.

Conditional densities

Conditional density of Y given X = x:

$$f_{\mathbf{Y}|\mathbf{X}}(y|x) = f_{\mathbf{X},\mathbf{Y}}(x,y)/f_{\mathbf{X}}(x);$$

in words "conditional = joint/marginal".

Change of Variables

Suppose $Y = g(X) \in \mathbb{R}^p$ with $X \in \mathbb{R}^p$ having density f_X . Assume g is a one to one ("injective") map, i.e., $g(x_1) = g(x_2)$ if and only if $x_1 = x_2$. Find f_Y :

Step 1: Solve for x in terms of y: $x = g^{-1}(y)$.

Step 2: Use basic equation:

$$f_{\mathbf{Y}}(y)dy = f_{\mathbf{X}}(x)dx$$

and rewrite it in the form

$$f_{\mathbf{Y}}(y) = f_{\mathbf{X}}(g^{-1}(y)) \frac{dx}{dy}$$

Interpretation of derivative $\frac{dx}{dy}$ when p > 1:

$$\frac{dx}{dy} = \left| \det \left(\frac{\partial x_i}{\partial y_j} \right) \right|$$

which is the so called Jacobian.

Equivalent formula inverts the matrix:

$$f_{\mathbf{Y}}(y) = \frac{f_{\mathbf{X}}(g^{-1}(y))}{\left|\frac{dy}{dx}\right|}.$$

This notation means

$$\left| \frac{dy}{dx} \right| = \left| \det \left[\begin{array}{ccc} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_p} \\ \vdots & & & \\ \frac{\partial y_p}{\partial x_1} & \frac{\partial y_p}{\partial x_2} & \cdots & \frac{\partial y_p}{\partial x_p} \end{array} \right] \right|$$

but with x replaced by the corresponding value of y, that is, replace x by $g^{-1}(y)$.

Example: The density

$$f_{\mathbf{X}}(x_1, x_2) = \frac{1}{2\pi} \exp\left\{-\frac{x_1^2 + x_2^2}{2}\right\}$$

is the **standard bivariate normal density**. Let $\mathbf{Y} = (Y_1, Y_2)$ where $Y_1 = \sqrt{X_1^2 + X_2^2}$ and $0 \le Y_2 < 2\pi$ is angle from the positive x axis to the ray from the origin to the point (X_1, X_2) . I.e., \mathbf{Y} is \mathbf{X} in polar co-ordinates.

Solve for x in terms of y:

$$X_1 = Y_1 \cos(Y_2)$$

$$X_2 = Y_1 \sin(Y_2)$$

so that

$$g(x_1, x_2) = (g_1(x_1, x_2), g_2(x_1, x_2))$$

$$= (\sqrt{x_1^2 + x_2^2}, \operatorname{argument}(x_1, x_2))$$

$$g^{-1}(y_1, y_2) = (g_1^{-1}(y_1, y_2), g_2^{-1}(y_1, y_2))$$

$$= (y_1 \cos(y_2), y_1 \sin(y_2))$$

$$\left| \frac{dx}{dy} \right| = \left| \det \begin{pmatrix} \cos(y_2) & -y_1 \sin(y_2) \\ \sin(y_2) & y_1 \cos(y_2) \end{pmatrix} \right|$$

$$= y_1.$$

It follows that

$$f_{\mathbf{Y}}(y_1, y_2) = \frac{1}{2\pi} \exp\left\{-\frac{y_1^2}{2}\right\} y_1 \times 1(0 \le y_1 < \infty) 1(0 \le y_2 < 2\pi).$$

Next: marginal densities of Y_1 , Y_2 ?

Factor $f_{\mathbf{Y}}$ as $f_{\mathbf{Y}}(y_1, y_2) = h_1(y_1)h_2(y_2)$ where

$$h_1(y_1) = y_1 e^{-y_1^2/2} 1(0 \le y_1 < \infty)$$

and

$$h_2(y_2) = 1(0 \le y_2 < 2\pi)/(2\pi)$$
.

Then

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} h_1(y_1)h_2(y_2) dy_2$$
$$= h_1(y_1) \int_{-\infty}^{\infty} h_2(y_2) dy_2$$

so marginal density of Y_1 is a multiple of h_1 . Multiplier makes $\int f_{Y_1} = 1$ but in this case

$$\int_{-\infty}^{\infty} h_2(y_2) \, dy_2 = \int_{0}^{2\pi} (2\pi)^{-1} dy_2 = 1$$

so that

$$f_{Y_1}(y_1) = y_1 e^{-y_1^2/2} 1(0 \le y_1 < \infty).$$

(Special Weibull or Rayleigh distribution.)

Similarly

$$f_{Y_2}(y_2) = 1(0 \le y_2 < 2\pi)/(2\pi)$$

which is the **Uniform** $(0,2\pi)$ density. Exercise: $W=Y_1^2/2$ has standard exponential distribution. Recall: by definition $U=Y_1^2$ has a χ^2 distribution on 2 degrees of freedom. Exercise: find χ_2^2 density.

Remark: easy to check $\int_0^\infty y e^{-y^2/2} dy = 1$.

Thus: have proved original bivariate normal density integrates to 1.

Put
$$I = \int_{-\infty}^{\infty} e^{-x^2/2} dx$$
. Get
$$I^2 = \int_{-\infty}^{\infty} e^{-x^2/2} dx \int_{-\infty}^{\infty} e^{-y^2/2} dy$$
$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x^2+y^2)/2} dy dx$$
$$= 2\pi.$$

So
$$I = \sqrt{2\pi}$$
.