Linear Algebra Review

Notation:

• Vectors $x \in \mathbb{R}^n$ are column vectors

$$x = \left[\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right]$$

- ullet An m imes n matrix A has m rows, n columns and entries A_{ij} .
- Matrix and vector addition defined componentwise:

$$(A+B)_{ij} = A_{ij} + B_{ij};$$
 $(x+y)_i = x_i + y_i$

ullet If A is $m \times n$ and B is $n \times r$ then AB is the $m \times r$ matrix

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

- The matrix I or sometimes $I_{n\times n}$ which is an $n\times n$ matrix with $I_{ii}=1$ for all i and $I_{ij}=0$ for any pair $i\neq j$ is called the $n\times n$ identity matrix.
- The **span** of a set of vectors $\{x_1, \ldots, x_p\}$ is the set of all vectors x of the form $x = \sum c_i x_i$. It is a vector space. The **column space** of a matrix, A, is the span of the set of columns of A. The **row space** is the span of the set of rows.
- A set of vectors $\{x_1, \ldots, x_p\}$ is **linearly independent** if $\sum c_i x_i = 0$ implies $c_i = 0$ for all i. The **dimension** of a vector space is the cardinality of the largest possible set of linearly independent vectors.

Defn: The **transpose**, A^T , of an $m \times n$ matrix A is the $n \times m$ matrix whose entries are given by

$$(A^T)_{ij} = A_{ji}$$

so that A^T is $n \times m$. We have

$$(A+B)^T = A^T + B^T$$

and

$$(AB)^T = B^T A^T.$$

Defn: rank of matrix A, rank(A): # of linearly independent columns of A. We have

$$rank(A) = dim(column space of A)$$

= $dim(row space of A)$
= $rank(A^T)$

If A is $m \times n$ then $rank(A) \leq min(m, n)$.

Matrix inverses

For now: all matrices square $n \times n$.

If there is a matrix B such that $BA = I_{n \times n}$ then we call B the inverse of A. If B exists it is unique and AB = I and we write $B = A^{-1}$. The matrix A has an inverse if and only if $\operatorname{rank}(A) = n$.

Inverses have the following properties:

$$(AB)^{-1} = B^{-1}A^{-1}$$

(if one side exists then so does the other) and

$$(A^T)^{-1} = (A^{-1})^T$$

Determinants

Again A is $n \times n$. The determinant if a function on the set of $n \times n$ matrices such that:

- 1. $\det(I) = 1$.
- 2. If A' is the matrix A with two columns interchanged then

$$\det(A') = -\det(A).$$

(So: two equal columns implies det(A) = 0.)

3. det(A) is a linear function of each column of A. If $A = (a_1, \ldots, a_n)$ with a_i denoting the ith column of the matrix then

$$\det(a_1, \dots, a_i + b_i, \dots, a_n)$$

$$= \det(a_1, \dots, a_i, \dots, a_n)$$

$$+ \det(a_1, \dots, b_i, \dots, a_n)$$

Here are some properties of the determinant:

- 1. $\det(A^T) = \det(A)$.
- 2. det(AB) = det(A)det(B).
- 3. $\det(A^{-1}) = 1/\det(A)$.
- 4. A is invertible if and only if $det(A) \neq 0$ if and only if rank(A) = n.
- 5. Determinants can be computed (slowly) by expansion by minors.

Special Kinds of Matrices

- 1. A is symmetric if $A^T = A$.
- 2. A is orthogonal if $A^T = A^{-1}$ (or $AA^T = A^TA = I$).
- 3. A is idempotent if $AA \equiv A^2 = A$.
- 4. A is diagonal if $i \neq j$ implies $A_{ij} = 0$.

Inner Products, orthogonal, orthonormal vectors

Defn: Two vectors x and y are **orthogonal** if $x^Ty = \sum x_iy_i = 0$.

Defn: The inner product or dot product of x and y is

$$\langle x, y \rangle = x^T y = \sum x_i y_i$$

Defn: x and y are **orthogonal** if $x^Ty = 0$.

Defn: The **norm** (or length) of x is $||x|| = (x^T x)^{1/2} = (\sum x_i^2)^{1/2}$

A is orthogonal if each column of A has length 1 and is orthogonal to each other column of A.

Quadratic Forms

Suppose A is an $n \times n$ matrix. The function

$$g(x) = x^T A x$$

is called a quadratic form. Now

$$g(x) = \sum_{ij} A_{ij} x_i x_j$$
$$= \sum_{i} A_{ii} x_i^2 + \sum_{i < j} (A_{ij} + A_{ji}) x_i x_j$$

so that g(x) depends only on the total $A_{ij}+A_{ji}$. In fact

$$x^T A x = x^T A^T x = x^T \left(\frac{A + A^T}{2}\right) x$$

Thus we will assume that A is symmetric.

Eigenvalues and eigenvectors

If A is $n \times n$ and $v \neq 0 \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$ such that

$$Av = \lambda v$$

then λ is **eigenvalue** (or characteristic or latent value) of A; v is corresponding **eigenvector**. Since $Av - \lambda v = (A - \lambda I)v = 0$ matrix $A - \lambda I$ is singular.

Therefore $det(A - \lambda I) = 0$.

Conversely: if $A - \lambda I$ singular then there is $v \neq 0$ such that $(A - \lambda I)v = 0$.

Fact: $det(A - \lambda I)$ is polynomial in λ of degree n.

Each root is an eigenvalue.

General A the roots could be multiple roots or complex valued.

Diagonalization

Matrix A is **diagonalized** by a non-singular matrix P if $P^{-1}AP \equiv D$ is diagonal.

If so then AP = PD so each column of P is eigenvector of A with the ith column having eigenvalue D_{ii} .

Thus to be diagonalizable A must have n linearly independent eigenvectors.

Symmetric Matrices

If A is symmetric then

- 1. Every eigenvalue of A is real (not complex).
- 2. A is diagonalizable; columns of P may be taken unit length, mutually orthogonal: A is diagonalizable by an orthogonal matrix P; in symbols $P^TAP = D$.
- 3. Diagonal entries in D = eigenvalues of A.
- 4. If $\lambda_1 \neq \lambda_2$ are two eigenvalues of A and v_1 and v_2 are corresponding eigenvectors then

$$v_1^T A v_2 = v_1^T \lambda_2 v_2 = \lambda_2 v_1^T v_2$$

and

$$(v_1^T A v_2) = (v_1^T A v_2)^T = v_2^T A^T v_1$$

= $v_2^T A v_1 = v_2^T \lambda_1 v_1 = \lambda_1 v_2^T v_1$

Since $(\lambda_1 - \lambda_2)v_1^Tv_2 = 0$ and $\lambda_1 \neq \lambda_2$ we see $v_1^Tv_2 = 0$. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Positive Definite Matrices

Defn: A symmetric matrix A is non-negative definite if $x^TAx \ge 0$ for all x. It is positive definite if in addition $x^TAx = 0$ implies x = 0.

A is non-negative definite iff all its eigenvalues are non-negative.

A is positive definite iff all eigenvalues positive.

A non-negative definite matrix has a symmetric non-negative definite square root. If

$$PDP^T = A$$

for \boldsymbol{P} orthogonal and \boldsymbol{D} diagonal then

$$A^{1/2} = PD^{1/2}P^T$$

is symmetric, non-negative definite and

$$\mathbf{A}^{1/2}\mathbf{A}^{1/2} = \mathbf{A}$$

Here $\mathbf{D}^{1/2}$ is diagonal with

$$(D^{1/2})_{ii} = (D_{ii})^{1/2}.$$

Many other square roots possible. If $AA^T = M$ and P is orthogonal and $A^* = AP$ then $A^*(A^*)^T = M$.

Orthogonal Projections

Suppose S vector subspace of \mathbb{R}^n , a_1, \ldots, a_m basis for S. Given any $x \in \mathbb{R}^n$ there is a unique $y \in S$ which is closest to x; y minimizes

$$(x-y)^T(x-y)$$

over $y \in S$. Any y in S is of the form

$$y = c_1 a_1 + \dots + c_m a_m = Ac$$

A, $n \times m$, columns a_1, \ldots, a_m ; c column with ith entry c_i . Define

$$Q = A(A^T A)^{-1} A^T$$

(A has rank m so A^TA is invertible.) Then

$$(x - Ac)^{T}(x - Ac)$$

$$= (x - Qx + Qx - Ac)^{T}(x - Qx + Qx - Ac)$$

$$= (x - Qx)^{T}(x - Qx) + (Qx - Ac)^{T}(x - Qx)$$

$$+ (x - Qx)^{T}(Qx - Ac)$$

$$+ (Qx - Ac)^{T}(Qx - Ac)$$

Note that x - Qx = (I - Q)x and that

$$QAc = A(A^TA)^{-1}A^TAc = Ac$$

so that

$$Qx - Ac = Q(x - Ac)$$

Then

$$(Qx - Ac)^{T}(x - Qx) = (x - Ac)^{T}Q^{T}(I - Q)x$$

Since $Q^T = Q$ we see that

$$Q^{T}(I - Q) = Q(I - Q)$$

$$= Q - Q^{2}$$

$$= Q - A(A^{T}A)^{-1}A^{T}A(A^{T}A)^{-1}A^{T}$$

$$= Q - Q = 0$$

This shows that

$$(x - Ac)^{T}(x - Ac) = (x - Qx)^{T}(x - Qx) + (Qx - Ac)^{T}(Qx - Ac)$$

Choose Ac to minimize: minimize second term.

Achieved by making Qx = Ac.

Since
$$Qx = A(A^TA)^{-1}A^Tx$$
 can take
$$c = (A^TA)^{-1}A^Tx.$$

Summary: closest point y in S is

$$y = Qx = A(A^T A)^{-1} A^T x$$

call y the orthogonal projection of x onto S.

Notice that the matrix Q is idempotent:

$$Q^2 = Q$$

We call Qx the orthogonal projection of x on S because Qx is perpendicular to the residual x - Qx = (I - Q)x.

Partitioned Matrices

Suppose A_{11} $p \times r$ matrix, $A_{1,2}$ $p \times s$, $A_{2,1}$ $q \times r$ and $A_{2,2}$ $q \times s$. Make $(p+q) \times (r+s)$ matrix by putting A_{ij} in 2 by 2 matrix:

$$A = \left[\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right]$$

For instance if

$$A_{11} = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

$$A_{12} = \left[\begin{array}{c} 2 \\ 3 \end{array} \right]$$

$$A_{21} = \left[\begin{array}{cc} 4 & 5 \end{array} \right]$$

and

$$A_{22} = [6]$$

then

$$A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ \hline 4 & 5 & 6 \end{bmatrix}$$

Lines indicate partitioning.

We can work with partitioned matrices just like ordinary matrices always making sure that in products we never change the order of multiplication of things.

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \end{bmatrix}$$

and

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$

$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

Note partitioning of A and B must match.

Addition: dimensions of A_{ij} and B_{ij} must be the same.

Multiplication formula A_{12} must have as many columns as B_{21} has rows, etc.

In general: need $A_{ij}B_{jk}$ to make sense for each i, j, k.

Works with more than a 2 by 2 partitioning.

Defn: block diagonal matrix: partitioned matrix A for which $A_{ij} = 0$ if $i \neq j$. If

$$A = \left[\begin{array}{cc} A_{11} & 0 \\ 0 & A_{22} \end{array} \right]$$

then A is invertible iff each A_{ii} is invertible and then

$$A^{-1} = \left[\begin{array}{cc} A_{11}^{-1} & 0\\ 0 & A_{22}^{-1} \end{array} \right]$$

Moreover $det(A) = det(A_{11})det(A_{22})$. Similar formulas work for larger matrices.

Partitioned inverses. Suppose A, C are symmetric positive definite. Look for inverse of

$$\left[egin{array}{cc} \mathbf{A} & \mathbf{B} \ \mathbf{B}^T & \mathbf{C} \end{array}
ight]$$

of form

$$\left[egin{array}{ccc} \mathbf{E} & \mathbf{F} \ \mathbf{F}^T & \mathbf{G} \end{array}
ight]$$

Multiply to get equations

$$AE + BF^{T} = I$$

$$AF + BG = 0$$

$$B^{T}E + CF^{T} = 0$$

$$B^{T}F + CG = I$$

Solve to get

$$\mathbf{F}^{T} = -\mathbf{C}^{-1}\mathbf{B}^{T}\mathbf{E}$$

$$\mathbf{A}\mathbf{E} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{T}\mathbf{E} = \mathbf{I}$$

$$\mathbf{E} = (\mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{T})^{-1}$$

$$\mathbf{G} = (\mathbf{C} - \mathbf{B}^{T}\mathbf{A}^{-1}\mathbf{B})^{-1}$$