Two Way MANOVA
The SAS commands for a two way analysis of variance with 3 response variables.
data mas;
infile 'mas';
input row column y1 y2 y3;
proc print;
proc glm;
class row column;
model y1-y3 = row | column;
manova h=_all_ / printh printe;
run;
The OUTPUT
OBS ROW COLUMN Y1 Y2 Y3
1 1 1 18.2 16.5 0.2
2 1 1 18.7 19.5 0.3
3 1 1 19.5 19.8 0.2
4 1 2 19.2 19.5 0.2
5 1 2 18.4 19.8 0.2
6 1 2 20.7 19.4 0.2
7 2 1 21.3 23.3 0.3
8 2 1 19.6 22.3 0.5
9 2 1 20.2 19.0 0.4
10 2 2 18.9 22.0 0.3
11 2 2 20.7 21.1 0.2
12 2 2 21.6 20.3 0.2
13 3 1 20.7 16.7 0.3
14 3 1 21.0 19.3 0.4
15 3 1 17.2 15.9 0.3
16 3 2 20.2 19.0 0.2
17 3 2 18.4 17.9 0.3
18 3 2 20.9 19.9 0.2
General Linear Models Procedure
Dependent Variable: Y1
Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 5.47777778 1.09555556 0.62 0.6856
Error 12 21.10666667 1.75888889
Corrected Total 17 26.58444444
R-Square C.V. Root MSE Y1 Mean
0.206052 6.716984 1.32623108 19.74444444
Source DF Type I SS Mean Square F Value Pr > F
ROW 2 4.81444444 2.40722222 1.37 0.2915
COLUMN 1 0.37555556 0.37555556 0.21 0.6523
ROW*COLUMN 2 0.28777778 0.14388889 0.08 0.9220
Source DF Type III SS Mean Square F Value Pr > F
ROW 2 4.81444444 2.40722222 1.37 0.2915
COLUMN 1 0.37555556 0.37555556 0.21 0.6523
ROW*COLUMN 2 0.28777778 0.14388889 0.08 0.9220
General Linear Models Procedure
Dependent Variable: Y2
Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 38.33111111 7.66622222 3.45 0.0365
Error 12 26.64666667 2.22055556
Corrected Total 17 64.97777778
R-Square C.V. Root MSE Y2 Mean
0.589911 7.637458 1.49015286 19.51111111
Source DF Type I SS Mean Square F Value Pr > F
ROW 2 32.68777778 16.34388889 7.36 0.0082
COLUMN 1 2.42000000 2.42000000 1.09 0.3171
ROW*COLUMN 2 3.22333333 1.61166667 0.73 0.5040
Source DF Type III SS Mean Square F Value Pr > F
ROW 2 32.68777778 16.34388889 7.36 0.0082
COLUMN 1 2.42000000 2.42000000 1.09 0.3171
ROW*COLUMN 2 3.22333333 1.61166667 0.73 0.5040
General Linear Models Procedure
Dependent Variable: Y3
Source DF Sum of Squares Mean Square F Value Pr > F
Model 5 0.08944444 0.01788889 4.60 0.0142
Error 12 0.04666667 0.00388889
Corrected Total 17 0.13611111
R-Square C.V. Root MSE Y3 Mean
0.657143 22.90811 0.06236096 0.27222222
Source DF Type I SS Mean Square F Value Pr > F
ROW 2 0.03111111 0.01555556 4.00 0.0467
COLUMN 1 0.04500000 0.04500000 11.57 0.0053
ROW*COLUMN 2 0.01333333 0.00666667 1.71 0.2214
Source DF Type III SS Mean Square F Value Pr > F
ROW 2 0.03111111 0.01555556 4.00 0.0467
COLUMN 1 0.04500000 0.04500000 11.57 0.0053
ROW*COLUMN 2 0.01333333 0.00666667 1.71 0.2214
E = Error SS&CP Matrix
Y1 Y2 Y3
Y1 21.106666667 8.7833333333 -0.336666667
Y2 8.7833333333 26.646666667 0.1733333333
Y3 -0.336666667 0.1733333333 0.0466666667
Partial Correlation Coefficients from the Error SS&CP Matrix / Prob > |r|
DF = 12 Y1 Y2 Y3
Y1 1.000000 0.370363 -0.339224
0.0001 0.1924 0.2354
Y2 0.370363 1.000000 0.155438
0.1924 0.0001 0.5957
Y3 -0.339224 0.155438 1.000000
0.2354 0.5957 0.0001
H = Type III SS&CP Matrix for ROW
Y1 Y2 Y3
Y1 4.8144444444 8.6894444444 0.3788888889
Y2 8.6894444444 32.687777778 0.5355555556
Y3 0.3788888889 0.5355555556 0.0311111111
Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SS&CP Matrix for ROW E = Error SS&CP Matrix
Characteristic Percent Characteristic Vector V'EV=1
Root
Y1 Y2 Y3
1.4168928493 60.38 0.08675028 0.10844970 3.01899089
0.9296485423 39.62 0.17077050 -0.19102215 3.79949398
0.0000000000 0.00 0.17564640 -0.01621960 -1.85991340
Manova Test Criteria and F Approximations for the Hypothesis of
no Overall ROW Effect
H = Type III SS&CP Matrix for ROW E = Error SS&CP Matrix
S=2 M=0 N=4
Statistic Value F Num DF Den DF Pr > F
Wilks' Lambda 0.21441955 3.8652 6 20 0.0101
Pillai's Trace 1.06801654 4.2019 6 22 0.0058
Hotelling-Lawley Trace 2.34654139 3.5198 6 18 0.0175
Roy's Greatest Root 1.41689285 5.1953 3 11 0.0177
NOTE: F Statistic for Roy's Greatest Root is an upper bound.
NOTE: F Statistic for Wilks' Lambda is exact.
H = Type III SS&CP Matrix for COLUMN
Y1 Y2 Y3
Y1 0.3755555556 0.9533333333 -0.13
Y2 0.9533333333 2.42 -0.33
Y3 -0.13 -0.33 0.045
Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SS&CP Matrix for COLUMN E = Error SS&CP Matrix
Characteristic Percent Characteristic Vector V'EV=1
Root
Y1 Y2 Y3
1.3996816546 100.00 0.10400705 -0.11631325 5.02460032
0.0000000000 0.00 0.18866959 0.06194770 0.99932858
0.0000000000 0.00 -0.14534839 0.17648679 0.87434110
Manova Test Criteria and Exact F Statistics for the
Hypothesis of no Overall COLUMN Effect
H = Type III SS&CP Matrix for COLUMN E = Error SS&CP Matrix
S=1 M=0.5 N=4
Statistic Value F Num DF Den DF Pr > F
Wilks' Lambda 0.41672194 4.6656 3 10 0.0275
Pillai's Trace 0.58327806 4.6656 3 10 0.0275
Hotelling-Lawley Trace 1.39968165 4.6656 3 10 0.0275
Roy's Greatest Root 1.39968165 4.6656 3 10 0.0275
H = Type III SS&CP Matrix for ROW*COLUMN
Y1 Y2 Y3
Y1 0.2877777778 0.435 0.06
Y2 0.435 3.2233333333 0.1366666667
Y3 0.06 0.1366666667 0.0133333333
Characteristic Roots and Vectors of: E Inverse * H, where
H = Type III SS&CP Matrix for ROW*COLUMN E = Error SS&CP Matrix
Characteristic Percent Characteristic Vector V'EV=1
Root
Y1 Y2 Y3
0.3839204951 79.53 0.11759006 -0.00082192 4.84330698
0.0987901789 20.47 -0.13435865 0.21946605 -1.57116127
0.0000000000 0.00 0.18883899 0.01865076 -1.04094579
Manova Test Criteria and F Approximations for
the Hypothesis of no Overall ROW*COLUMN Effect
H = Type III SS&CP Matrix for ROW*COLUMN E = Error SS&CP Matrix
S=2 M=0 N=4
Statistic Value F Num DF Den DF Pr > F
Wilks' Lambda 0.65761860 0.7771 6 20 0.5973
Pillai's Trace 0.36732328 0.8249 6 22 0.5629
Hotelling-Lawley Trace 0.48271067 0.7241 6 18 0.6359
Roy's Greatest Root 0.38392050 1.4077 3 11 0.2926
NOTE: F Statistic for Roy's Greatest Root is an upper bound.
NOTE: F Statistic for Wilks' Lambda is exact.
Some Comments on the Output