Factor Analysis example
The data for this example are in Table 9.12 in Johnson and Wichern. They consist of 3 measurements on the sales performance of 50 salespeople for a large firm and 4 test scores.
The data begin:
I used SAS to carry out Factor Analysis of these variables several different ways.
SAS code for first run, requesting principal components factor analysis, no rotation, all output printed and allowing SAS to select m the number of factors:
data sales; infile "T9-12.DAT"; input growth profit new create mech abst math; proc factor method=prin rotate=none all; run;The (edited) output is
Initial Factor Method: Principal Components Inverse Correlation Matrix GROWTH PROFIT NEW CREATE MECH ABST MATH GROWTH 35.1412 -8.2675 15.7402 -13.9069 -1.5588 -13.8694 -23.7101 PROFIT -8.2675 31.6239 -2.7059 1.4128 -8.1820 6.5890 -19.5028 NEW 15.7402 -2.7059 21.6934 -13.2468 -0.1384 -10.4680 -19.0616 CREATE -13.9069 1.4128 -13.2468 10.5387 -0.1251 7.6430 14.2502 MECH -1.5588 -8.1820 -0.1384 -0.1251 4.5610 -0.8843 7.2216 ABST -13.8694 6.5890 -10.4680 7.6430 -0.8843 8.6865 7.9984 MATH -23.7101 -19.5028 -19.0616 14.2502 7.2216 7.9984 43.0948 Partial Correlations Controlling all other Variables GROWTH PROFIT NEW CREATE MECH ABST MATH GROWTH 1.00000 0.24800 -0.57008 0.72265 0.12312 0.79383 0.60927 PROFIT 0.24800 1.00000 0.10331 -0.07739 0.68127 -0.39755 0.52829 NEW -0.57008 0.10331 1.00000 0.87610 0.01392 0.76257 0.62342 CREATE 0.72265 -0.07739 0.87610 1.00000 0.01805 -0.79882 -0.66868 MECH 0.12312 0.68127 0.01392 0.01805 1.00000 0.14049 -0.51510 ABST 0.79383 -0.39755 0.76257 -0.79882 0.14049 1.00000 -0.41340 MATH 0.60927 0.52829 0.62342 -0.66868 -0.51510 -0.41340 1.00000 Kaiser's Measure of Sampling Adequacy: Over-all MSA = 0.61609232 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.662688 0.782579 0.629694 0.409556 0.749798 0.417191 0.631877 Prior Communality Estimates: ONE Eigenvalues of the Correlation Matrix: Total = 7 Average = 1 1 2 3 4 5 6 7 Eigenvalue 5.0346 0.9335 0.4979 0.4212 0.0810 0.0203 0.0113 Difference 4.1011 0.4356 0.0767 0.3402 0.0607 0.0090 Proportion 0.7192 0.1334 0.0711 0.0602 0.0116 0.0029 0.0016 Cumulative 0.7192 0.8526 0.9237 0.9839 0.9955 0.9984 1.0000 1 factors will be retained by the MINEIGEN criterion. Eigenvectors GROWTH 0.43367 PROFIT 0.42021 NEW 0.42105 CREATE 0.29429 MECH 0.34909 ABST 0.28917 MATH 0.40740 Factor Pattern FACTOR1 GROWTH 0.97307 PROFIT 0.94287 NEW 0.94475 CREATE 0.66032 MECH 0.78329 ABST 0.64883 MATH 0.91413 Variance explained by each factor FACTOR1 5.034598 Final Communality Estimates: Total = 5.034598 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.946864 0.889006 0.892553 0.436018 0.613542 0.420981 0.835633 Scoring Coefficients Estimated by Regression Squared Multiple Correlations of the Variables with each Factor FACTOR1 1.000000 Standardized Scoring Coefficients FACTOR1 GROWTH 0.19328 PROFIT 0.18728 NEW 0.18765 CREATE 0.13116 MECH 0.15558 ABST 0.12887 MATH 0.18157 Residual Correlations With Uniqueness on the Diagonal GROWTH PROFIT NEW CREATE MECH ABST MATH GROWTH 0.05314 0.00860 -0.03531 -0.07050 -0.05412 0.04305 0.03780 PROFIT 0.00860 0.11099 -0.04825 -0.08109 0.00737 -0.14638 0.08239 NEW -0.03531 -0.04825 0.10745 0.07653 -0.10254 0.02811 -0.01106 CREATE -0.07050 -0.08109 0.07653 0.56398 0.07352 -0.28153 -0.19098 MECH -0.05412 0.00737 -0.10254 0.07352 0.38646 -0.12227 -0.14147 ABST 0.04305 -0.14638 0.02811 -0.28153 -0.12227 0.57902 -0.02674 MATH 0.03780 0.08239 -0.01106 -0.19098 -0.14147 -0.02674 0.16437 Root Mean Square Off-diagonal Residuals: Over-all = 0.10322669 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.045646 0.078788 0.058961 0.151951 0.094753 0.140826 0.104516 Partial Correlations Controlling Factors GROWTH PROFIT NEW CREATE MECH ABST MATH GROWTH 1.00000 0.11194 -0.46725 -0.40724 -0.37768 0.24544 0.40447 PROFIT 0.11194 1.00000 -0.44187 -0.32409 0.03558 -0.57739 0.60998 NEW -0.46725 -0.44187 1.00000 0.31088 -0.50322 0.11268 -0.08320 CREATE -0.40724 -0.32409 0.31088 1.00000 0.15747 -0.49265 -0.62725 MECH -0.37768 0.03558 -0.50322 0.15747 1.00000 -0.25848 -0.56133 ABST 0.24544 -0.57739 0.11268 -0.49265 -0.25848 1.00000 -0.08669 MATH 0.40447 0.60998 -0.08320 -0.62725 -0.56133 -0.08669 1.00000 Root Mean Square Off-diagonal Partials: Over-all = 0.38975152 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.356644 0.412217 0.361262 0.414017 0.366023 0.347216 0.458011The procedure selects only one factor on which all the variables are fairly highly loaded. The factor is the first principal component of the correlation matrix.
Now I try insisting on two factors, using varimax rotation and then plotting the factor loadings before and after rotation.
proc factor m=prin nfactor=2 rotate=v preplot plot all;The output
2 factors will be retained by the NFACTOR criterion. Initial Factor Method: Principal Components Factor Pattern FACTOR1 FACTOR2 GROWTH 0.97307 -0.10798 PROFIT 0.94287 0.02830 NEW 0.94475 0.00889 CREATE 0.66032 0.64581 MECH 0.78329 0.28497 ABST 0.64883 -0.62066 MATH 0.91413 -0.19359 Variance explained by each factor FACTOR1 FACTOR2 5.034598 0.933516 Final Communality Estimates: Total = 5.968114 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.958522 0.889807 0.892632 0.853094 0.694751 0.806195 0.873111 Residual Correlations With Uniqueness on the Diagonal GROWTH PROFIT NEW CREATE MECH ABST MATH GROWTH 0.04148 0.01165 -0.03435 -0.00077 -0.02335 -0.02397 0.01690 PROFIT 0.01165 0.11019 -0.04851 -0.09936 -0.00070 -0.12881 0.08787 NEW -0.03435 -0.04851 0.10737 0.07079 -0.10508 0.03362 -0.00934 CREATE -0.00077 -0.09936 0.07079 0.14691 -0.11052 0.11930 -0.06595 MECH -0.02335 -0.00070 -0.10508 -0.11052 0.30525 0.05460 -0.08631 ABST -0.02397 -0.12881 0.03362 0.11930 0.05460 0.19380 -0.14690 MATH 0.01690 0.08787 -0.00934 -0.06595 -0.08631 -0.14690 0.12689 Root Mean Square Off-diagonal Residuals: Over-all = 0.07538345 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.021296 0.078182 0.058881 0.087256 0.075533 0.097545 0.083137 Root Mean Square Off-diagonal Partials: Over-all = 0.50908239 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.277921 0.601054 0.443291 0.567641 0.386234 0.623235 0.565089 Plot of Factor Pattern for FACTOR1 and FACTOR2 FACTOR1 1 A B G .9 .8 E .7 F D .6 .5 .4 .3 .2 F .1 A C -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0T O -.1 R 2 -.2 GROWTH=A PROFIT=B NEW=B CREATE=D MECH=E ABST=F MATH=G Rotation Method: Varimax Orthogonal Transformation Matrix 1 2 1 0.73145 0.68189 2 -0.68189 0.73145 Rotated Factor Pattern FACTOR1 FACTOR2 GROWTH 0.78538 0.58455 PROFIT 0.67037 0.66364 NEW 0.68498 0.65072 CREATE 0.04261 0.92265 MECH 0.37862 0.74256 ABST 0.89781 -0.01155 MATH 0.80065 0.48174 Variance explained by each factor FACTOR1 FACTOR2 3.127683 2.840431 Final Communality Estimates: Total = 5.968114 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.958522 0.889807 0.892632 0.853094 0.694751 0.806195 0.873111 Scoring Coefficients Estimated by Regression Squared Multiple Correlations of the Variables with each Factor FACTOR1 FACTOR2 1.000000 1.000000 Standardized Scoring Coefficients FACTOR1 FACTOR2 GROWTH 0.22024 0.04719 PROFIT 0.11632 0.14988 NEW 0.13076 0.13492 CREATE -0.37581 0.59546 MECH -0.09436 0.32938 ABST 0.54763 -0.39843 MATH 0.27422 -0.02788 Plot of Factor Pattern for FACTOR1 and FACTOR2 FACTOR1 1 F9 .8 G A .7 C B .6 .5 .4 E .3 .2 F .1 A D C -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0T O -.1 R 2 GROWTH=A PROFIT=B NEW=C CREATE=D MECH=E ABST=F MATH=GWith principal components factor analysis fitting a second factor does not change the first factor (before rotation). Creativity and abstract reasoning are loaded on the second factor with opposite signs which would appear to represent a difference between people on a dimension of creativity as opposed to abstract reasoning.
After rotation everything except creativity is loaded on factor 1, though Mechanical reasoning has a rather smaller loading. Abstraction is not loaded on factor 2.
Now I tried iterated principal factor analysis with varimax rotation. The option heywood permits iteration to continue if the estimated uniqueness of a variable drops below 0.
proc factor m=prinit nfactor=2 rotate=v preplot plot all heywood; run;
Initial Factor Method: Iterated Principal Factor Analysis Prior Communality Estimates: ONE 2 factors will be retained by the NFACTOR criterion. Iter Change Communalities 1 0.305249 0.95852 0.88981 0.89263 0.85309 0.69475 0.80620 0.87311 2 0.122396 0.96840 0.87423 0.87908 0.80520 0.60002 0.68380 0.85064 3 0.090342 0.98057 0.87429 0.88013 0.79735 0.57498 0.59346 0.85545 4 0.063814 0.98875 0.87617 0.88190 0.80757 0.56804 0.52964 0.86690 5 0.040187 0.99332 0.87790 0.88272 0.82483 0.56497 0.48946 0.87810 6 0.022953 0.99547 0.87917 0.88280 0.84403 0.56254 0.46650 0.88668 7 0.019141 0.99628 0.88000 0.88249 0.86317 0.56024 0.45397 0.89244 8 0.018399 0.99646 0.88051 0.88204 0.88157 0.55808 0.44705 0.89597 9 0.017475 0.99640 0.88084 0.88156 0.89905 0.55609 0.44302 0.89798 10 0.016551 0.99629 0.88107 0.88109 0.91560 0.55429 0.44044 0.89906 11 0.015686 0.99618 0.88126 0.88065 0.93128 0.55265 0.43862 0.89958 12 0.014897 0.99611 0.88142 0.88023 0.94618 0.55115 0.43722 0.89977 13 0.014181 0.99605 0.88158 0.87984 0.96036 0.54978 0.43605 0.89978 14 0.013532 0.99601 0.88172 0.87946 0.97389 0.54852 0.43503 0.89970 15 0.012944 0.99599 0.88186 0.87910 0.98684 0.54736 0.43411 0.89956 16 0.012408 0.99597 0.88200 0.87875 0.99925 0.54628 0.43327 0.89939 17 0.001004 0.99596 0.88213 0.87842 1.00000 0.54528 0.43250 0.89922 18 0.000295 0.99600 0.88224 0.87833 1.00000 0.54499 0.43220 0.89918 Convergence criterion satisfied. Eigenvalues of the Reduced Correlation Matrix: Total = 5.63350769 Average = 0.80478681 1 2 3 4 5 6 7 Eigenvalue 4.8786 0.7663 0.2047 0.0838 0.0051 -0.1182 -0.1868 Difference 4.1123 0.5616 0.1209 0.0787 0.1233 0.0686 Proportion 0.8660 0.1360 0.0363 0.0149 0.0009 -0.0210 -0.0332 Cumulative 0.8660 1.0020 1.0384 1.0532 1.0541 1.0332 1.0000 Eigenvectors 1 2 GROWTH 0.44687 -0.16852 PROFIT 0.42379 -0.08882 NEW 0.42404 0.03803 CREATE 0.30550 0.85228 MECH 0.32820 0.15943 ABST 0.26439 -0.34496 MATH 0.41224 -0.30243 Factor Pattern FACTOR1 FACTOR2 GROWTH 0.98704 -0.14753 PROFIT 0.93605 -0.07775 NEW 0.93660 0.03329 CREATE 0.67478 0.74609 MECH 0.72492 0.13956 ABST 0.58396 -0.30198 MATH 0.91054 -0.26475 Variance explained by each factor FACTOR1 FACTOR2 4.878597 0.766328 Final Communality Estimates: Total = 5.644925 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.996003 0.882237 0.878330 1.011982 0.544987 0.432204 0.899183 Residual Correlations With Uniqueness on the Diagonal GROWTH 0.00400 -0.00931 -0.03554 0.01607 0.01314 0.05347 -0.01049 PROFIT -0.00931 0.11776 -0.03159 -0.03212 0.07820 -0.10471 0.07140 NEW -0.03554 -0.03159 0.12167 0.04352 -0.04614 0.10420 0.00857 CREATE 0.01607 -0.03212 0.04352 -0.01198 -0.00255 -0.02184 -0.00425 MECH 0.01314 0.07820 -0.04614 -0.00255 0.45501 0.00477 -0.04857 ABST 0.05347 -0.10471 0.10420 -0.02184 0.00477 0.56780 -0.04530 MATH -0.01049 0.07140 0.00857 -0.00425 -0.04857 -0.04530 0.10082 Root Mean Square Off-diagonal Residuals: Over-all = 0.04822817 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.028135 0.063630 0.053566 0.024783 0.042435 0.067370 0.040229 Partial Correlations Controlling Factors GROWTH PROFIT NEW CREATE MECH ABST MATH GROWTH 1.00000 -0.42908 -1.61171 0.00000 0.30811 1.12224 -0.52229 PROFIT -0.42908 1.00000 -0.26395 0.00000 0.33781 -0.40493 0.65524 NEW -1.61171 -0.26395 1.00000 0.00000 -0.19609 0.39645 0.07734 CREATE 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 MECH 0.30811 0.33781 -0.19609 0.00000 1.00000 0.00938 -0.22677 ABST 1.12224 -0.40493 0.39645 0.00000 0.00938 1.00000 -0.18934 MATH -0.52229 0.65524 0.07734 0.00000 -0.22677 -0.18934 1.00000 Root Mean Square Off-diagonal Partials: Over-all = 0.51059853 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.857210 0.400252 0.691481 0.000000 0.223239 0.519055 0.364095 Plot of Factor Pattern for FACTOR1 and FACTOR2 FACTOR1 A 1 B C G .9 .8 .7 E D F .6 .5 .4 .3 .2 F .1 A C -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0T O -.1 R 2 GROWTH=A PROFIT=B NEW=C CREATE=D MECH=E ABST=F MATH=G Rotation Method: Varimax Orthogonal Transformation Matrix 1 2 1 0.84716 0.53133 2 -0.53133 0.84716 Rotated Factor Pattern FACTOR1 FACTOR2 GROWTH 0.91457 0.39946 PROFIT 0.83430 0.43149 NEW 0.77577 0.52585 CREATE 0.17523 0.99059 MECH 0.53997 0.50340 ABST 0.65516 0.05445 MATH 0.91205 0.25951 Variance explained by each factor FACTOR1 FACTOR2 3.717650 1.927275 Final Communality Estimates: Total = 5.644925 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.996003 0.882237 0.878330 1.011982 0.544987 0.432204 0.899183 Scoring Coefficients Estimated by Regression Squared Multiple Correlations of the Variables with each Factor FACTOR1 FACTOR2 1.298471 1.311894 Standardized Scoring Coefficients FACTOR1 FACTOR2 GROWTH 3.46196 -2.72182 PROFIT -0.91749 1.49807 NEW 2.32759 -2.18108 CREATE -2.03309 2.57935 MECH 0.08882 -0.22785 ABST -1.46013 1.47280 MATH -1.80143 1.46081 Rotation Method: Varimax Plot of Factor Pattern for FACTOR1 and FACTOR2 FACTOR1 1 .9 G A B .8 C .7 F .6 E .5 .4 .3 .2 D F .1 A C -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0T O -.1 R 2 GROWTH=A PROFIT=B NEW=C CREATE=D MECH=E ABST=F MATH=GThe rotated factor loadings seem rather similar here. There seems to be a distinct latent variable which fully explains creativity and is at play in determining other variables a bit. There also seems to be a variable on which every variable except creativity is highly loaded. I am not really sure how to interpret this variable.
Now I tried maximum likelihood.
proc factor m=ml nfactor=2 rotate=v preplot plot all heywood; run;The output is
Initial Factor Method: Maximum Likelihood Prior Communality Estimates: SMC GROWTH PROFIT NEW CREATE MECH ABST MATH 0.971543 0.968378 0.953903 0.905112 0.780748 0.884878 0.976795 Preliminary Eigenvalues: Total = 148.339548 Average = 21.191364 1 2 3 4 5 6 7 Eigenvalue 130.3121 9.4410 6.5497 2.5446 0.7601 -0.5331 -0.7349 Difference 120.8711 2.8913 4.0051 1.7845 1.2932 0.2018 Proportion 0.8785 0.0636 0.0442 0.0172 0.0051 -0.0036 -0.0050 Cumulative 0.8785 0.9421 0.9863 1.0034 1.0085 1.0050 1.0000 2 factors will be retained by the NFACTOR criterion. Iter Criterion Ridge Change Communalities 1 4.18397 0.000 0.09489 0.96827 0.95946 0.92988 1.00000 0.73649 0.79560 0.96985 2 2.64993 0.000 0.37880 0.94441 0.91603 0.87751 1.00000 0.54254 0.41681 0.96161 3 2.63510 0.000 0.01113 0.93584 0.92687 0.87771 1.00000 0.53141 0.41206 0.96421 4 2.63204 0.000 0.01336 0.93342 0.92724 0.87616 1.00000 0.53049 0.39870 0.96884 5 2.63142 0.000 0.00620 0.93205 0.92916 0.87683 1.00000 0.52684 0.39250 0.96942 6 2.63130 0.000 0.00210 0.93149 0.92913 0.87648 1.00000 0.52659 0.39040 0.97035 7 2.63128 0.000 0.00125 0.93123 0.92951 0.87666 1.00000 0.52576 0.38915 0.97042 8 2.63127 0.000 0.00035 0.93112 0.92948 0.87658 1.00000 0.52575 0.38880 0.97061 Convergence criterion satisfied. Significance tests based on 50 observations: Test of H0: No common factors. vs HA: At least one common factor. Chi-square = 499.661 df = 21 Prob>chi**2 = 0.0001 Test of H0: 2 Factors are sufficient. vs HA: More factors are needed. Chi-square = 117.092 df = 8 Prob>chi**2 = 0.0001 Chi-square without Bartlett's correction = 128.93234776 Akaike's Information Criterion = 112.93234776 Schwarz's Bayesian Criterion = 97.636163717 Tucker and Lewis's Reliability Coefficient = 0.4017366379 Squared Canonical Correlations FACTOR1 FACTOR2 1.000000 0.980050 Eigenvectors 1 2 GROWTH 0.57204 0.78496 PROFIT 0.03116 0.20891 NEW 0.41606 -0.17154 CREATE 0.70619 -0.54400 MECH 0.00000 -0.06982 ABST 0.00000 -0.03499 MATH 0.00000 0.09345 Eigenvalues of the Weighted Reduced Correlation Matrix: Total = 49.1264918 Average = 8.18774864 1 2 3 4 5 6 7 Eigenvalue . 49.1265 1.1504 0.7153 -0.2018 -0.7704 -0.8935 Difference . 47.9761 0.4351 0.9171 0.5686 0.1231 Proportion . 1.0000 0.0234 0.0146 -0.0041 -0.0157 -0.0182 Cumulative . 1.0000 1.0234 1.0380 1.0339 1.0182 1.0000 Factor Pattern FACTOR1 FACTOR2 GROWTH 0.57204 0.77709 PROFIT 0.54151 0.79768 NEW 0.70036 0.62138 CREATE 1.00000 -0.00000 MECH 0.59074 0.42024 ABST 0.14691 0.60579 MATH 0.41264 0.89462 Variance explained by each factor FACTOR1 FACTOR2 Weighted 19.448504 49.126492 Unweighted 2.651787 2.970211 Final Communality Estimates and Variable Weights Total Communality: Weighted = 68.574996 Unweighted = 5.621998 GROWTH PROFIT NEW CREATE Communality 0.931096 0.929532 0.876616 1.000000 Weight 14.518860 14.180085 8.102194 . MECH ABST MATH Communality 0.525572 0.388566 0.970616 Weight 2.108574 1.636117 34.029166 Residual Correlations With Uniqueness on the Diagonal GROWTH PROFIT NEW CREATE MECH ABST MATH GROWTH 0.06890 -0.00356 0.00050 0.00000 0.04359 0.11962 -0.00393 PROFIT -0.00356 0.07047 -0.03239 0.00000 0.09080 -0.09740 0.00722 NEW 0.00050 -0.03239 0.12338 0.00000 -0.03739 0.16178 0.00768 CREATE 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 MECH 0.04359 0.09080 -0.03739 0.00000 0.47443 0.04459 -0.04516 ABST 0.11962 -0.09740 0.16178 0.00000 0.04459 0.61143 -0.03620 MATH -0.00393 0.00722 0.00768 0.00000 -0.04516 -0.03620 0.02938 Root Mean Square Off-diagonal Residuals: Over-all = 0.05691855 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.052019 0.056043 0.069134 0.000000 0.050941 0.094219 0.024073 Root Mean Square Off-diagonal Partials: Over-all = 0.27892670 GROWTH PROFIT NEW CREATE MECH ABST MATH 0.260769 0.320222 0.290900 0.000000 0.283366 0.405477 0.211487 Plot of Factor Pattern for FACTOR1 and FACTOR2 FACTOR1 D .9 .8 .7 C .6 E A .5 .4 G .3 .2 F F .1 A C -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0T O -.1 R 2 GROWTH=A PROFIT=A NEW=C CREATE=D MECH=E ABST=F MATH=G Rotation Method: Varimax Orthogonal Transformation Matrix 1 2 1 0.14646 0.98922 2 0.98922 -0.14646 Rotated Factor Pattern FACTOR1 FACTOR2 GROWTH 0.85249 0.45205 PROFIT 0.86839 0.41884 NEW 0.71725 0.60180 CREATE 0.14646 0.98922 MECH 0.50223 0.52282 ABST 0.62078 0.05660 MATH 0.94541 0.27716 Variance explained by each factor FACTOR1 FACTOR2 Weighted 56.990420 11.584576 Unweighted 3.548142 2.073856 Final Communality Estimates and Variable Weights Total Communality: Weighted = 68.574996 Unweighted = 5.621998 GROWTH PROFIT NEW CREATE Communality 0.931096 0.929532 0.876616 1.000000 Weight 14.518860 14.180085 8.102194 . MECH ABST MATH Communality 0.525572 0.388566 0.970616 Weight 2.108574 1.636117 34.029166 Scoring Coefficients Estimated by Regression Squared Multiple Correlations of the Variables with each Factor FACTOR1 FACTOR2 0.980478 0.999572 Standardized Scoring Coefficients FACTOR1 FACTOR2 GROWTH 0.22265 -0.03297 PROFIT 0.22322 -0.03305 NEW 0.09935 -0.01471 CREATE -0.43247 1.07493 MECH 0.01749 -0.00259 ABST 0.01956 -0.00290 MATH 0.60078 -0.08895 Plot of Factor Pattern for FACTOR1 and FACTOR2 FACTOR1 1 G .9 BA .8 .7 C .6F .5 E .4 .3 .2 D F .1 A C -1 -.9-.8-.7-.6-.5-.4-.3-.2-.1 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0T O -.1 R 2 GROWTH=A PROFIT=B NEW=C CREATE=D MECH=E ABST=F MATH=GThe pattern is the same as for the other methods. Notice however, that this procedure factors S not R. This explains the totally different eigenvalues and so on.
Finally I ran proc glm regressing the sales figures on the psychological test scores.
proc glm ; model growth profit new = create mech abst math; manova h=_all_ /printh printe; run;The output is:
General Linear Models Procedure Dependent Variable: GROWTH Sum of Mean Source DF Squares Square F Value Pr > F Model 4 2520.49121 630.12280 241.32 0.0001 Error 45 117.50399 2.61120 Corrected Total 49 2637.99520 R-Square C.V. Root MSE GROWTH Mean 0.955457 1.634952 1.61592 98.8360 Source DF Type III SS Mean Square F Value Pr > F CREATE 1 61.431768 61.431768 23.53 0.0001 MECH 1 25.570007 25.570007 9.79 0.0031 ABST 1 92.585812 92.585812 35.46 0.0001 MATH 1 548.009560 548.009560 209.87 0.0001 T for H0: Pr > |T| Std Error of Parameter Estimate Parameter=0 Estimate INTERCEPT 68.95355221 51.00 0.0001 1.35196005 CREATE 0.35938316 4.85 0.0001 0.07409369 MECH 0.30033781 3.13 0.0031 0.09597644 ABST 0.79574727 5.95 0.0001 0.13363585 MATH 0.44315482 14.49 0.0001 0.03059014 Dependent Variable: PROFIT Sum of Mean Source DF Squares Square F Value Pr > F Model 4 4852.96681 1213.24170 321.87 0.0001 Error 45 169.61899 3.76931 Corrected Total 49 5022.58580 R-Square C.V. Root MSE PROFIT Mean 0.966229 1.820892 1.94147 106.622 Source DF Type III SS Mean Square F Value Pr > F CREATE 1 6.79727 6.79727 1.80 0.1860 MECH 1 213.27427 213.27427 56.58 0.0001 ABST 1 48.81780 48.81780 12.95 0.0008 MATH 1 1764.23024 1764.23024 468.05 0.0001 T for H0: Pr > |T| Std Error of Parameter Estimate Parameter=0 Estimate INTERCEPT 75.41979427 46.43 0.0001 1.62433197 CREATE 0.11954420 1.34 0.1860 0.08902094 MECH 0.86738881 7.52 0.0001 0.11531228 ABST -0.57781927 -3.60 0.0008 0.16055873 MATH 0.79513166 21.63 0.0001 0.03675297 Dependent Variable: NEW Sum of Mean Source DF Squares Square F Value Pr > F Model 4 1013.57078 253.39270 153.11 0.0001 Error 45 74.47422 1.65498 Corrected Total 49 1088.04500 R-Square C.V. Root MSE NEW Mean 0.931552 1.251300 1.28646 102.810 Source DF Type III SS Mean Square F Value Pr > F CREATE 1 153.408261 153.408261 92.69 0.0001 MECH 1 1.846673 1.846673 1.12 0.2965 ABST 1 63.380815 63.380815 38.30 0.0001 MATH 1 150.951693 150.951693 91.21 0.0001 T for H0: Pr > |T| Std Error of Parameter Estimate Parameter=0 Estimate INTERCEPT 83.70817574 77.77 0.0001 1.07631783 CREATE 0.56791793 9.63 0.0001 0.05898722 MECH -0.08071229 -1.06 0.2965 0.07640844 ABST 0.65838791 6.19 0.0001 0.10638972 MATH 0.23258431 9.55 0.0001 0.02435332 Multivariate Analysis of Variance E = Error SS&CP Matrix GROWTH PROFIT NEW GROWTH 117.50398618 32.670138508 -52.8579666 PROFIT 32.670138508 169.61898601 -5.37650348 NEW -52.8579666 -5.37650348 74.474217358 Partial Correlation Coefficients from the Error SS&CP Matrix / Prob > |r| DF = 45 GROWTH PROFIT NEW GROWTH 1.000000 0.231413 -0.565043 0.0001 0.1218 0.0001 PROFIT 0.231413 1.000000 -0.047837 0.1218 0.0001 0.7522 NEW -0.565043 -0.047837 1.000000 0.0001 0.7522 0.0001 H = Type III SS&CP Matrix for CREATE GROWTH PROFIT NEW GROWTH 61.431768316 20.434489514 97.078013797 PROFIT 20.434489514 6.7972707468 32.291755705 NEW 97.078013797 32.291755705 153.40826125 Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for CREATE E = Error SS&CP Matrix Characteristic Percent Characteristic Vector V'EV=1 Root GROWTH PROFIT NEW 5.55606041 100.00 0.09060203 -0.00667035 0.13437927 0.00000000 0.00 -0.02427392 0.07898107 -0.00126443 0.00000000 0.00 0.06725495 0.00372078 -0.04334269 Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall CREATE Effect H = Type III SS&CP Matrix for CREATE E = Error SS&CP Matrix S=1 M=0.5 N=20.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.15253063 79.6369 3 43 0.0001 Pillai's Trace 0.84746937 79.6369 3 43 0.0001 Hotelling-Lawley Trace 5.55606041 79.6369 3 43 0.0001 Roy's Greatest Root 5.55606041 79.6369 3 43 0.0001 H = Type III SS&CP Matrix for MECH GROWTH PROFIT NEW GROWTH 25.570006621 73.847304527 -6.871641257 PROFIT 73.847304527 213.27426569 -19.84560239 NEW -6.871641257 -19.84560239 1.8466734979 Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall MECH Effect S=1 M=0.5 N=20.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.43419910 18.6776 3 43 0.0001 Pillai's Trace 0.56580090 18.6776 3 43 0.0001 Hotelling-Lawley Trace 1.30309091 18.6776 3 43 0.0001 Roy's Greatest Root 1.30309091 18.6776 3 43 0.0001 H = Type III SS&CP Matrix for ABST GROWTH PROFIT NEW GROWTH 92.585811859 -67.22972077 76.603944 PROFIT -67.22972077 48.817796856 -55.62474057 NEW 76.603944 -55.62474057 63.380815252 Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall ABST Effect S=1 M=0.5 N=20.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.17661640 66.8218 3 43 0.0001 Pillai's Trace 0.82338360 66.8218 3 43 0.0001 Hotelling-Lawley Trace 4.66198821 66.8218 3 43 0.0001 Roy's Greatest Root 4.66198821 66.8218 3 43 0.0001 H = Type III SS&CP Matrix for MATH GROWTH PROFIT NEW GROWTH 548.00955988 983.26753203 287.61601248 PROFIT 983.26753203 1764.230244 516.05575425 NEW 287.61601248 516.05575425 150.95169261 Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall MATH Effect S=1 M=0.5 N=20.5 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.04524661 302.4492 3 43 0.0001 Pillai's Trace 0.95475339 302.4492 3 43 0.0001 Hotelling-Lawley Trace 21.10110519 302.4492 3 43 0.0001 Roy's Greatest Root 21.10110519 302.4492 3 43 0.0001
All the variables are very significant predictors of the sales indices. The Type 3 Sums of Squares, which adjust for all other variables in the model are the relevant ones and show that from a multivariate point of view no variables can be deleted. However, in the univariate regression for PROFIT we can probability drop Creativity while for predicting NEW sales Mechanical reasoning appears unimportant. All 4 must be retained for prediction of sales growth.
So far as I can see this data set is relatively well understood from this
regression output, though the correlation structure is of some interest
too.