Two Way MANOVA
The SAS commands for a two way analysis of variance with 3 response variables.
data mas; infile 'mas'; input row column y1 y2 y3; proc print; proc glm; class row column; model y1-y3 = row | column; manova h=_all_ / printh printe; run;The OUTPUT
OBS ROW COLUMN Y1 Y2 Y3 1 1 1 18.2 16.5 0.2 2 1 1 18.7 19.5 0.3 3 1 1 19.5 19.8 0.2 4 1 2 19.2 19.5 0.2 5 1 2 18.4 19.8 0.2 6 1 2 20.7 19.4 0.2 7 2 1 21.3 23.3 0.3 8 2 1 19.6 22.3 0.5 9 2 1 20.2 19.0 0.4 10 2 2 18.9 22.0 0.3 11 2 2 20.7 21.1 0.2 12 2 2 21.6 20.3 0.2 13 3 1 20.7 16.7 0.3 14 3 1 21.0 19.3 0.4 15 3 1 17.2 15.9 0.3 16 3 2 20.2 19.0 0.2 17 3 2 18.4 17.9 0.3 18 3 2 20.9 19.9 0.2 General Linear Models Procedure Dependent Variable: Y1 Source DF Sum of Squares Mean Square F Value Pr > F Model 5 5.47777778 1.09555556 0.62 0.6856 Error 12 21.10666667 1.75888889 Corrected Total 17 26.58444444 R-Square C.V. Root MSE Y1 Mean 0.206052 6.716984 1.32623108 19.74444444 Source DF Type I SS Mean Square F Value Pr > F ROW 2 4.81444444 2.40722222 1.37 0.2915 COLUMN 1 0.37555556 0.37555556 0.21 0.6523 ROW*COLUMN 2 0.28777778 0.14388889 0.08 0.9220 Source DF Type III SS Mean Square F Value Pr > F ROW 2 4.81444444 2.40722222 1.37 0.2915 COLUMN 1 0.37555556 0.37555556 0.21 0.6523 ROW*COLUMN 2 0.28777778 0.14388889 0.08 0.9220 General Linear Models Procedure Dependent Variable: Y2 Source DF Sum of Squares Mean Square F Value Pr > F Model 5 38.33111111 7.66622222 3.45 0.0365 Error 12 26.64666667 2.22055556 Corrected Total 17 64.97777778 R-Square C.V. Root MSE Y2 Mean 0.589911 7.637458 1.49015286 19.51111111 Source DF Type I SS Mean Square F Value Pr > F ROW 2 32.68777778 16.34388889 7.36 0.0082 COLUMN 1 2.42000000 2.42000000 1.09 0.3171 ROW*COLUMN 2 3.22333333 1.61166667 0.73 0.5040 Source DF Type III SS Mean Square F Value Pr > F ROW 2 32.68777778 16.34388889 7.36 0.0082 COLUMN 1 2.42000000 2.42000000 1.09 0.3171 ROW*COLUMN 2 3.22333333 1.61166667 0.73 0.5040 General Linear Models Procedure Dependent Variable: Y3 Source DF Sum of Squares Mean Square F Value Pr > F Model 5 0.08944444 0.01788889 4.60 0.0142 Error 12 0.04666667 0.00388889 Corrected Total 17 0.13611111 R-Square C.V. Root MSE Y3 Mean 0.657143 22.90811 0.06236096 0.27222222 Source DF Type I SS Mean Square F Value Pr > F ROW 2 0.03111111 0.01555556 4.00 0.0467 COLUMN 1 0.04500000 0.04500000 11.57 0.0053 ROW*COLUMN 2 0.01333333 0.00666667 1.71 0.2214 Source DF Type III SS Mean Square F Value Pr > F ROW 2 0.03111111 0.01555556 4.00 0.0467 COLUMN 1 0.04500000 0.04500000 11.57 0.0053 ROW*COLUMN 2 0.01333333 0.00666667 1.71 0.2214 E = Error SS&CP Matrix Y1 Y2 Y3 Y1 21.106666667 8.7833333333 -0.336666667 Y2 8.7833333333 26.646666667 0.1733333333 Y3 -0.336666667 0.1733333333 0.0466666667 Partial Correlation Coefficients from the Error SS&CP Matrix / Prob > |r| DF = 12 Y1 Y2 Y3 Y1 1.000000 0.370363 -0.339224 0.0001 0.1924 0.2354 Y2 0.370363 1.000000 0.155438 0.1924 0.0001 0.5957 Y3 -0.339224 0.155438 1.000000 0.2354 0.5957 0.0001 H = Type III SS&CP Matrix for ROW Y1 Y2 Y3 Y1 4.8144444444 8.6894444444 0.3788888889 Y2 8.6894444444 32.687777778 0.5355555556 Y3 0.3788888889 0.5355555556 0.0311111111 Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for ROW E = Error SS&CP Matrix Characteristic Percent Characteristic Vector V'EV=1 Root Y1 Y2 Y3 1.4168928493 60.38 0.08675028 0.10844970 3.01899089 0.9296485423 39.62 0.17077050 -0.19102215 3.79949398 0.0000000000 0.00 0.17564640 -0.01621960 -1.85991340 Manova Test Criteria and F Approximations for the Hypothesis of no Overall ROW Effect H = Type III SS&CP Matrix for ROW E = Error SS&CP Matrix S=2 M=0 N=4 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.21441955 3.8652 6 20 0.0101 Pillai's Trace 1.06801654 4.2019 6 22 0.0058 Hotelling-Lawley Trace 2.34654139 3.5198 6 18 0.0175 Roy's Greatest Root 1.41689285 5.1953 3 11 0.0177 NOTE: F Statistic for Roy's Greatest Root is an upper bound. NOTE: F Statistic for Wilks' Lambda is exact. H = Type III SS&CP Matrix for COLUMN Y1 Y2 Y3 Y1 0.3755555556 0.9533333333 -0.13 Y2 0.9533333333 2.42 -0.33 Y3 -0.13 -0.33 0.045 Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for COLUMN E = Error SS&CP Matrix Characteristic Percent Characteristic Vector V'EV=1 Root Y1 Y2 Y3 1.3996816546 100.00 0.10400705 -0.11631325 5.02460032 0.0000000000 0.00 0.18866959 0.06194770 0.99932858 0.0000000000 0.00 -0.14534839 0.17648679 0.87434110 Manova Test Criteria and Exact F Statistics for the Hypothesis of no Overall COLUMN Effect H = Type III SS&CP Matrix for COLUMN E = Error SS&CP Matrix S=1 M=0.5 N=4 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.41672194 4.6656 3 10 0.0275 Pillai's Trace 0.58327806 4.6656 3 10 0.0275 Hotelling-Lawley Trace 1.39968165 4.6656 3 10 0.0275 Roy's Greatest Root 1.39968165 4.6656 3 10 0.0275 H = Type III SS&CP Matrix for ROW*COLUMN Y1 Y2 Y3 Y1 0.2877777778 0.435 0.06 Y2 0.435 3.2233333333 0.1366666667 Y3 0.06 0.1366666667 0.0133333333 Characteristic Roots and Vectors of: E Inverse * H, where H = Type III SS&CP Matrix for ROW*COLUMN E = Error SS&CP Matrix Characteristic Percent Characteristic Vector V'EV=1 Root Y1 Y2 Y3 0.3839204951 79.53 0.11759006 -0.00082192 4.84330698 0.0987901789 20.47 -0.13435865 0.21946605 -1.57116127 0.0000000000 0.00 0.18883899 0.01865076 -1.04094579 Manova Test Criteria and F Approximations for the Hypothesis of no Overall ROW*COLUMN Effect H = Type III SS&CP Matrix for ROW*COLUMN E = Error SS&CP Matrix S=2 M=0 N=4 Statistic Value F Num DF Den DF Pr > F Wilks' Lambda 0.65761860 0.7771 6 20 0.5973 Pillai's Trace 0.36732328 0.8249 6 22 0.5629 Hotelling-Lawley Trace 0.48271067 0.7241 6 18 0.6359 Roy's Greatest Root 0.38392050 1.4077 3 11 0.2926 NOTE: F Statistic for Roy's Greatest Root is an upper bound. NOTE: F Statistic for Wilks' Lambda is exact.
Some Comments on the Output