Stationarity

Goal: find assumptions on a discrete time process which will permit us to make reasonable estimates of the parameters.

Intuition: need some notion of replication.

Defn: Stochastic process X_t ; $t = 0, \pm 1, \ldots$ is stationary if joint distribution of X_t, \cdots, X_{t+k} is same as joint distribution of X_0, \cdots, X_k for all t and all k. (Often we call this strictly stationary.)

Defn: Stochastic process X_t ; $t = 0, \pm 1,...$ is weakly (or second order) stationary if

$$\mathsf{E}(X_t) \equiv \mu$$

for all t (that is the mean does not depend on t) and

$$Cov(X_t, X_{t+h}) = Cov(X_0, X_h) \equiv C_X(h)$$

is a function of h only (and does not depend on t).

Remark:

- 1. X finite variance, strictly stationary implies X weakly stationary.
- 2. X second order stationary and Gaussian implies X strictly stationary.

Defn: X is *Gaussian* if for each t_1, \ldots, t_k the vector $(X_{t_1}, \ldots, X_{t_k})'$ has a Multivariate Normal Distribution

Defn: The process X has a **stationary** covariance if:

$$Cov(X_t, X_s) = Cov(X_{t+1}, X_{s+1})$$

= $Cov(X_{t+2}, X_{s+2}) \cdots$

If so then for all t and h we find

$$Cov(X_t, X_{t+h}) = Cov(X_0, X_h)$$

 $\equiv C_X(h)$

Call C_X autocovariance function of X.

Notice: Σ has

C(0) down the diagonal

C(1) down the first sub and super diagonals

C(2) down the next sub and super diagonals and so on.

Such a matrix is called a Toeplitz matrix.