STAT 830 Confidence Sets

Richard Lockhart

Simon Fraser University

STAT 890 = 830 — Fall 2011

Purposes of These Notes

- Discuss exact and approximate confidence intervals.
- Discuss role of pivotals in finding confidence intervals.

Confidence Intervals

• **Def'n**: A level β confidence set for a parameter $\phi(\theta)$ is a random subset C, of the set of possible values of ϕ such that for each θ

$$P_{\theta}(\phi(\theta) \in C) \geq \beta$$

- Confidence sets are very closely connected with hypothesis tests:
- First from confidence sets to hypothesis tests.
- Suppose C is a level $\beta = 1 \alpha$ confidence set for ϕ .
- To test $\phi = \phi_0$: reject if $\phi \notin C$.
- This test has level α .

From tests to confidence sets

- Conversely, suppose that for each ϕ_0 we have available a level α test of $\phi = \phi_0$ whose rejection region is say R_{ϕ_0} .
- Define $C = \{\phi_0 : \phi = \phi_0 \text{ is not rejected}\}$; get level 1α confidence set for ϕ .
- **Example**: Usual t test gives rise in this way to the usual t confidence intervals

$$\bar{X} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$
.

Confidence sets from Pivots

- **Def'n**: A **pivot** (pivotal quantity) is a function $g(\theta, X)$ whose distribution is the same for all θ .
- Note θ in pivot is same θ as being used to calculate distribution of $g(\theta, X)$.
- Using pivots to generate confidence sets:
- Pick a set A in space of possible values for g.
- Let $\beta = P_{\theta}(g(\theta, X) \in A)$; since g is pivotal β is the same for all θ .
- Given data X solve the relation

$$g(\theta, X) \in A$$

to get

$$\theta \in C(X,A)$$
.

Example: Normal variance interval

- Note $(n-1)s^2/\sigma^2 \sim \chi^2_{n-1}$ is pivot in $N(\mu, \sigma^2)$ model.
- Given $\beta = 1 \alpha$ consider the two points

$$\chi^2_{n-1,1-\alpha/2}$$
 and $\chi^2_{n-1,\alpha/2}$.

Then

$$P(\chi_{n-1,1-\alpha/2}^2 \le (n-1)s^2/\sigma^2 \le \chi_{n-1,\alpha/2}^2) = \beta$$

for all μ, σ .

Solve this relation:

$$P(\frac{(n-1)^{1/2}s}{\chi_{n-1,\alpha/2}} \le \sigma \le \frac{(n-1)^{1/2}s}{\chi_{n-1,1-\alpha/2}}) = \beta$$

so interval

$$\left[\frac{(n-1)^{1/2}s}{\chi_{n-1,\alpha/2}}, \frac{(n-1)^{1/2}s}{\chi_{n-1,1-\alpha/2}}\right]$$

is a level $1 - \alpha$ confidence interval.

Other intervals

• In the same model we also have

$$P(\chi_{n-1,1-\alpha}^2 \le (n-1)s^2/\sigma^2) = \beta$$

which can be solved to get

$$P(\sigma \leq \frac{(n-1)^{1/2}s}{\chi_{n-1,1-\alpha}}) = \beta$$

• This gives a level $1-\alpha$ interval

$$(0,(n-1)^{1/2}s/\chi_{n-1,1-\alpha}).$$

- Right hand end of interval usually called confidence upper bound.
- In general the interval from

$$(n-1)^{1/2} s/\chi_{n-1,\alpha_1}$$
 to $(n-1)^{1/2} s/\chi_{n-1,1-\alpha_2}$

has level $\beta = 1 - \alpha_1 - \alpha_2$.

- ullet For fixed eta can minimize length of interval numerically rarely us
- See homework for an example.

STAT 890 = 830 — Fall 2011