STAT 830 Convergence of RVs

Richard Lockhart

Simon Fraser University

STAT 830 — Fall 2011

Purposes of These Notes

- Distinguish convergence in distribution from other modes of convergence.
- Describe which modes of convergence imply which others.

- Think about a sequence X_n and a possible limit X:
 - \triangleright X_n converges in distribution to X depends only on marginal distributions of individual X_n and X.
 - Convergence in probability and pth mean depends only on sequence of bivariate joint distributions of (X_n, X) .
 - Convergence almost surely depends on joint distribution of all the variables: X_1, X_2, \ldots, X_n
- All depend on scaling!
- In an iid sequence \bar{X}_n converges in all senses to $\mu=\mathrm{E}(X_1)$ (for pth mean add the hypothesis that $E(|X_1|^p) < \infty$. Y.
- In addition $\sqrt{n}(\bar{X}_n \mu)$ converges in distribution to a normal random variable if $Var(X_1) < \infty$.
- But not in any of the other senses of convergence.

Relation between modes of convergence

- If X_n converges to X almost surely then X_n converges to X in probability.
- If X_n converges to X in probability then X_n converges to X in distribution.
- If X_n converges to X in pth mean for some p > 0 then X_n converges to X in probability.
- If X_n converges to X in probability and the sequence is *uniformly pth* power integrable then X_n converges to X in pth mean.
- **Def'n**: Uniformly *p*th power integrable means

$$\lim_{M\to\infty}\sup\{\mathrm{E}(|X_n|^p1(|X_n|>M))=0.$$

• Most easily checked by: $\exists \delta > 0$ such that

$$\sup\{\mathrm{E}(|X_n|^{p+\delta})<\infty.$$

