STAT 830 Distribution Theory

Richard Lockhart

Simon Fraser University

STAT 830 — Fall 2011

What I assume you already know

- The change of variables for integration
- How to find densities for transformations in \mathbb{R} .
- How to compute probabilities by doing multiple integrals.
- Material on slides 4-6, 9-13.

- Basic Problem: Start with assumptions about f or CDF of random vector $X = (X_1, \dots, X_p)$.
- Define $Y = g(X_1, ..., X_p)$ to be some function of X (usually some statistic of interest).
- How can we compute the distribution or CDF or density of Y?

Univariate Techniques

Method 1: compute the CDF by integration and differentiate to find f_Y . Example: $U \sim \text{Uniform}[0,1]$ and $Y = -\log U$.

$$F_{Y}(y) = P(Y \le y) = P(-\log U \le y)$$

$$= P(\log U \ge -y) = P(U \ge e^{-y})$$

$$= \begin{cases} 1 - e^{-y} & y > 0 \\ 0 & y \le 0. \end{cases}$$

so Y has standard exponential distribution.

Chi-square

• Example: $Z \sim N(0,1)$, i.e.

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$

and $Y = Z^2$.

Then

$$F_Y(y) = P(Z^2 \le y)$$

$$= \begin{cases} 0 & y < 0 \\ P(-\sqrt{y} \le Z \le \sqrt{y}) & y \ge 0. \end{cases}$$

Now differentiate

$$P(-\sqrt{y} \le Z \le \sqrt{y}) = F_Z(\sqrt{y}) - F_Z(-\sqrt{y})$$

to get

$$f_Y(y) = \begin{cases} 0 & y < 0\\ \frac{d}{dy} \left[F_Z(\sqrt{y}) - F_Z(-\sqrt{y}) \right] & y > 0\\ \text{undefined} & y = 0 \end{cases}$$

More

Then

$$\frac{d}{dy}F_{Z}(\sqrt{y}) = f_{Z}(\sqrt{y})\frac{d}{dy}\sqrt{y}$$

$$= \frac{1}{\sqrt{2\pi}}\exp\left(-\left(\sqrt{y}\right)^{2}/2\right)\frac{1}{2}y^{-1/2}$$

$$= \frac{1}{2\sqrt{2\pi y}}e^{-y/2}.$$

• (Similar formula for other derivative.) Thus

$$f_Y(y) = \left\{ egin{array}{ll} rac{1}{\sqrt{2\pi y}} \mathrm{e}^{-y/2} & y > 0 \\ 0 & y < 0 \\ \mathrm{undefined} & y = 0 \,. \end{array}
ight.$$

Indicators

• We will find indicator notation useful:

$$1(y>0) = \begin{cases} 1 & y>0 \\ 0 & y \leq 0 \end{cases}$$

which we use to write

$$f_Y(y) = \frac{1}{\sqrt{2\pi y}} e^{-y/2} 1(y > 0)$$

(changing definition unimportantly at y = 0).

Fundamental Theorem of Calculus

- **Notice**: I never evaluated F_Y before differentiating it.
- In fact F_Y and F_Z are integrals I can't do but I can differentiate then anyway.
- Remember fundamental theorem of calculus:

$$\frac{d}{dx}\int_{a}^{x}f(y)\,dy=f(x)$$

at any x where f is continuous.

• Summary: for Y = g(X) with X and Y each real valued

$$P(Y \le y) = P(g(X) \le y)$$

= $P(X \in g^{-1}(-\infty, y]).$

• Take d/dy to compute the density

$$f_Y(y) = \frac{d}{dy} \int_{\{x:g(x) \le y\}} f_X(x) dx.$$

Often can differentiate without doing integral.

8 / 23

Method 2: Change of variables

- Assume g is one to one.
- I do: g is increasing and differentiable.
- Interpretation of density (based on density = F'):

$$f_Y(y) = \lim_{\delta y \to 0} \frac{P(y \le Y \le y + \delta y)}{\delta y}$$
$$= \lim_{\delta y \to 0} \frac{F_Y(y + \delta y) - F_Y(y)}{\delta y}$$

and

$$f_X(x) = \lim_{\delta x \to 0} \frac{P(x \le X \le x + \delta x)}{\delta x}$$
.

- Now assume y = g(x). Define δy by $y + \delta y = g(x + \delta x)$.
- Then

$$P(y \le Y \le g(x + \delta x)) = P(x \le X \le x + \delta x).$$

Change of Variables Continued

Get

$$\frac{P(y \le Y \le y + \delta y))}{\delta y} = \frac{P(x \le X \le x + \delta x)/\delta x}{\{g(x + \delta x) - y\}/\delta x}.$$

• Take limit to get

$$f_Y(y) = f_X(x)/g'(x) \text{ or } f_Y(g(x))g'(x) = f_X(x).$$

Alternative view

- Each probability is integral of a density.
- First is integral of f_Y from y = g(x) to $y = g(x + \delta x)$.
- The interval is narrow so f_Y is nearly constant and

$$P(y \le Y \le g(x + \delta x)) \approx f_Y(y)(g(x + \delta x) - g(x)).$$

• Since g has a derivative $g(x + \delta x) - g(x) \approx \delta x g'(x)$ so we get

$$P(y \le Y \le g(x + \delta x)) \approx f_Y(y)g'(x)\delta x$$
.

• Same idea applied to $P(x \le X \le x + \delta x)$ gives

$$P(x \le X \le x + \delta x) \approx f_X(x)\delta x$$

so that

$$f_Y(y)g'(x)\delta x \approx f_X(x)\delta x$$

or, cancelling the δx in the limit

$$f_Y(y)g'(x) = f_X(x).$$

Intution continued

• If you remember y = g(x) then you get

$$f_X(x) = f_Y(g(x))g'(x).$$

• Or solve y = g(x) to get x in terms of y, that is, $x = g^{-1}(y)$ and then

$$f_Y(y) = f_X(g^{-1}(y))/g'(g^{-1}(y)).$$

- This is just the change of variables formula for doing integrals.
- **Remark**: For g decreasing g' < 0 but Then the interval $(g(x), g(x + \delta x))$ is really $(g(x + \delta x), g(x))$ so that $g(x) - g(x + \delta x) \approx -g'(x)\delta x$.
- In both cases this amounts to the formula

$$f_X(x) = f_Y(g(x))|g'(x)|.$$

Mnemonic:

$$f_Y(y)dy = f_X(x)dx$$
.

STAT 830 Distribution Theory

12 / 23

cf Ex 2.46 p 41

• $X \sim \text{Weibull}(\text{shape } \alpha, \text{ scale } \beta)$ or

$$f_X(x) = \frac{\alpha}{\beta} \left(\frac{x}{\beta}\right)^{\alpha-1} \exp\left\{-(x/\beta)^{\alpha}\right\} 1(x>0).$$

- Let $Y = \log X$ or $g(x) = \log(x)$.
- Solve $y = \log x$: $x = \exp(y)$ or $g^{-1}(y) = e^{y}$.
- Then g'(x) = 1/x and $1/g'(g^{-1}(y)) = 1/(1/e^y) = e^y$.
- Hence

$$f_Y(y) = \frac{\alpha}{\beta} \left(\frac{e^y}{\beta}\right)^{\alpha-1} \exp\left\{-(e^y/\beta)^{\alpha}\right\} 1(e^y > 0)e^y.$$

• For any y, $e^y > 0$ so indicator = 1. So

$$f_Y(y) = \frac{\alpha}{\beta^{\alpha}} \exp \left\{ \alpha y - e^{\alpha y} / \beta^{\alpha} \right\} .$$

Example Continued

• Define $\phi = \log \beta$ and $\theta = 1/\alpha$; then,

$$f_Y(y) = rac{1}{ heta} \exp\left\{rac{y-\phi}{ heta} - \exp\left\{rac{y-\phi}{ heta}
ight\}
ight\} \,.$$

- Extreme Value density with location parameter ϕ and scale parameter θ .
- Note: several distributions are called Extreme Value.

Simplest multivariate problem:

$$X = (X_1, \ldots, X_p), \qquad Y = X_1$$

(or in general Y is any X_j).

Theorem

If X has density $f(x_1, ..., x_p)$ and q < p then $Y = (X_1, ..., X_q)$ has density

$$f_Y(x_1,\ldots,x_q)=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}f(x_1,\ldots,x_p)\,dx_{q+1}\ldots dx_p.$$

 $f_{X_1,...,X_q}$ is the **marginal** density of $X_1,...,X_q$ and f_X the **joint** density of X but they are both just densities.

"Marginal" just to distinguish from the joint density of X.

Example

• The function $f(x_1, x_2) = Kx_1x_21(x_1 > 0, x_2 > 0, x_1 + x_2 < 1)$ is a density provided

$$P(X \in R^2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2) dx_1 dx_2 = 1.$$

The integral is

$$K \int_0^1 \int_0^{1-x_1} x_1 x_2 \, dx_1 \, dx_2 = K \int_0^1 x_1 (1-x_1)^2 \, dx_1/2$$
$$= K(1/2 - 2/3 + 1/4)/2 = K/24$$

so K = 24.

• The marginal density of X_1 is Beta(2, 3):

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} 24x_1x_21(x_1 > 0, x_2 > 0, x_1 + x_2 < 1) dx_2$$

$$= 24 \int_{0}^{1-x_1} x_1x_21(0 < x_1 < 1) dx_2$$

$$= 12x_1(1-x_1)^21(0 < x_1 < 1).$$

General Problem

- General problem has $Y = (Y_1, \dots, Y_q)$ with $Y_i = g_i(X_1, \dots, X_p)$.
- Case 1: q > p. Y won't have density for "smooth" g. Y will have a singular or discrete distribution.
- Problem rarely of real interest. (But, e.g., residuals have singular distribution.)
- Case 2: q = p. Use multivariate change of variables formula.
- Case 3: q < p. Pad out Y-add on p q more variables (carefully chosen) say Y_{q+1}, \ldots, Y_p . Find functions g_{q+1}, \ldots, g_p . Define for $q < i \le p, Y_i = g_i(X_1, ..., X_p)$ and $Z = (Y_1, ..., Y_p)$.
- Choose g_i so that we can use change of variables on $g = (g_1, \ldots, g_p)$ to compute f_{Z} . Find f_{Y} by integration:

$$f_Y(y_1,\ldots,y_q)=\int_{-\infty}^{\infty}\cdots\int_{-\infty}^{\infty}f_Z(y_1,\ldots,y_q,z_{q+1},\ldots,z_p)dz_{q+1}\ldots dz_{p+1}$$

Multivariate Change of Variables

- Suppose $Y = g(X) \in R^p$ with $X \in R^p$ having density f_X .
- Assume g is a one to one ("injective") map, i.e., $g(x_1) = g(x_2)$ if and only if $x_1 = x_2$.
- Find f_Y :
- noindent Step 1: Solve for x in terms of y: $x = g^{-1}(y)$.
- Step 2: Use basic equation:

$$f_Y(y)dy = f_X(x)dx$$

and rewrite it in the form

$$f_Y(y) = f_X(g^{-1}(y)) \frac{dx}{dy}.$$

• Interpretation of derivative $\frac{dx}{dy}$ when p > 1:

$$\frac{dx}{dy} = \left| \det \left(\frac{\partial x_i}{\partial y_j} \right) \right|$$

which is the so called Jacobian.

Multivariate Change of Variables

• Equivalent formula inverts the matrix:

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{\left|\frac{dy}{dx}\right|}$$

This notation means

$$\left| \frac{dy}{dx} \right| = \left| \det \left[\begin{array}{ccc} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_p} \\ & \vdots & & \\ \frac{\partial y_p}{\partial x_1} & \frac{\partial y_p}{\partial x_2} & \cdots & \frac{\partial y_p}{\partial x_p} \end{array} \right] \right|$$

but with x replaced by the corresponding value of y, that is, replace x by $g^{-1}(y)$.

• The standard bivariate normal density is

$$f_X(x_1, x_2) = \frac{1}{2\pi} \exp\left\{-\frac{x_1^2 + x_2^2}{2}\right\}.$$

- Let $Y=(Y_1,Y_2)$ where $Y_1=\sqrt{X_1^2+X_2^2}$ and $0\leq Y_2<2\pi$ is angle from positive x axis to ray from origin to point (X_1,X_2) .
- I.e., Y is X in polar co-ordinates.
- Solve for x in terms of y:

$$X_1 = Y_1 \cos(Y_2)$$
 $X_2 = Y_1 \sin(Y_2)$

Example

This makes

$$g(x_1, x_2) = (g_1(x_1, x_2), g_2(x_1, x_2))$$

$$= (\sqrt{x_1^2 + x_2^2}, \operatorname{argument}(x_1, x_2))$$

$$g^{-1}(y_1, y_2) = (g_1^{-1}(y_1, y_2), g_2^{-1}(y_1, y_2))$$

$$= (y_1 \cos(y_2), y_1 \sin(y_2))$$

$$\left| \frac{dx}{dy} \right| = \left| \det \begin{pmatrix} \cos(y_2) & -y_1 \sin(y_2) \\ \sin(y_2) & y_1 \cos(y_2) \end{pmatrix} \right|$$

$$= y_1.$$

It follows that

$$f_Y(y_1,y_2) = \frac{1}{2\pi} \exp\left\{-\frac{y_1^2}{2}\right\} y_1 1 (0 \le y_1 < \infty) 1 (0 \le y_2 < 2\pi).$$

Marginal densities of Y_1 , Y_2 ?

• Factor f_Y as $f_Y(y_1, y_2) = h_1(y_1)h_2(y_2)$ where

$$h_1(y_1) = y_1 e^{-y_1^2/2} 1(0 \le y_1 < \infty)$$

and

$$h_2(y_2) = 1(0 \le y_2 < 2\pi)/(2\pi)$$
.

Then

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} h_1(y_1)h_2(y_2) dy_2 = h_1(y_1) \int_{-\infty}^{\infty} h_2(y_2) dy_2$$

so marginal density of Y_1 is a multiple of h_1 .

Continued

• Multiplier makes $\int f_{Y_1} = 1$ but in this case

$$\int_{-\infty}^{\infty} h_2(y_2) \, dy_2 = \int_{0}^{2\pi} (2\pi)^{-1} dy_2 = 1$$

so that Y_1 has the Weibull or Rayleigh law

$$f_{Y_1}(y_1) = y_1 e^{-y_1^2/2} 1(0 \le y_1 < \infty).$$

Similarly

$$f_{Y_2}(y_2) = 1(0 \le y_2 < 2\pi)/(2\pi)$$

which is the **Uniform** $(0, 2\pi)$ density.

- Exercise: $W = Y_1^2/2$ has standard exponential distribution.
- Recall: by definition $U = Y_1^2$ has a χ^2 dist on 2 degrees of freedom.
- Exercise: find χ_2^2 density.
- Notice that $Y_1 \perp Y_2$.

