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Purposes of These Notes

Cover the material in Wasserman Chapter 1, 2 pp 1-30; you are
responsible for reading.

This chapter is mostly review.

Define probability spaces, σ-field.

Define cdf, pmf, density, etc.

Discuss coverage in text.
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Probability Definitions pp3-4

Probability Space (or Sample Space): ordered triple (Ω,F ,P).

Ingredients are a set Ω, F which is a family of events (subsets of Ω),
and P the probability.

Required properties on next slide.
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Outcomes, Events, Probabilities pp3-6,13

Ω is a set (possible outcomes); elements are ω called elementary
outcomes.

F is a family of subsets (events) of Ω with the property that F is a
σ-field (or Borel field or σ-algebra):

1 The empty set ∅ and Ω are members of F .
2 A ∈ F implies Ac = {ω ∈ Ω : ω 6∈ A} ∈ F
3 A1,A2, · · · all in F implies A = ∪∞

i=1Ai .

P a function, domain F , range a subset of [0, 1] satisfying:

1 P(∅) = 0 and P(Ω) = 1.
2 Countable additivity: A1,A2, · · · pairwise disjoint (j 6= k

Aj ∩ Ak = ∅)

P(∪∞
i=1Ai ) =

∞
∑

i=1

P(Ai )
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Consequences of axioms pp 6-7

Can compute probabilities by usual rules, including approximation.

Closure under countable intersections:

Ai ∈ F implies ∩i Ai ∈ F

“Continuity” of P :

A1 ⊂ A2 ⊂ · · · all in F implies P(∪Ai ) = lim
n→∞

P(An)

and

A1 ⊃ A2 ⊃ · · · all in F implies P(∩Ai ) = lim
n→∞

P(An)
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Vector valued random variable pp 19-22(p = 1)

A random vector is a function X : Ω 7→ Rp such that, writing
X = (X1, . . . ,Xp),

P(X1 ≤ x1, . . . ,Xp ≤ xp)

is defined for any constants (x1, . . . , xp).

Formally the notation

X1 ≤ x1, . . . ,Xp ≤ xp

is a subset of Ω or event:

{ω ∈ Ω : X1(ω) ≤ x1, . . . ,Xp(ω) ≤ xp}

Remember X is a function on Ω so X1 is also a function on Ω.

Dependence of rv on ω is hidden! Almost always see X not X (ω).
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Borel sets Not in Text; cf pp13,43

Borel σ-field in Rp: smallest σ-field in Rp containing every open ball.

Intersection of all σ fields containing all open balls.

Every common set is a Borel set, that is, in the Borel σ-field.

An Rp valued random variable is a map X : Ω 7→ Rp such that when
A is Borel then {ω ∈ Ω : X (ω) ∈ A} ∈ F .

Fact: this is equivalent to

{ω ∈ Ω : X1(ω) ≤ x1, . . . ,Xp(ω) ≤ xp} ∈ F

for all (x1, . . . , xp) ∈ Rp.
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The Distribution of a random variable cf p 20

Jargon and notation: we write P(X ∈ A) for P({ω ∈ Ω : X (ω) ∈ A})

We define the distribution of X to be the map

A 7→ P(X ∈ A)

This is a probability on the set Rp with the Borel σ-field rather than
the original Ω and F .

Talk about normal, Gamma, Weibull, Binomial, etc distributions.

This is why we rarely see ω.
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Cumulative Distribution Functions pp20-22 p = 1

The Cumulative Distribution Function (CDF) of X : function FX
on Rp defined by

FX (x1, . . . , xp) = P(X1 ≤ x1, . . . ,Xp ≤ xp)

Properties of FX (usually just F ) for p = 1:
1 0 ≤ F (x) ≤ 1.
2 x > y ⇒ F (x) ≥ F (y) (monotone non-decreasing).
3 limx→−∞ F (x) = 0 and limx→∞ F (x) = 1
4 limxցy F (x) = F (y) (right continuous).
5 limxրy F (x) ≡ F (y−) exists.
6 F (x)− F (x−) = P(X = x).
7 FX (t) = FY (t) for all t implies that X and Y have the same

distribution, that is, P(X ∈ A) = P(Y ∈ A) for any (Borel) set A.
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Discrete Distributions pp 20-25

Distribution of a random variable X is discrete (also call rv discrete)
if there is a countable set x1, x2, · · · such that

P(X ∈ {x1, x2 · · · }) = 1 =
∑

i

P(X = xi )

Then discrete density or probability mass function of X is

fX (x) = P(X = x)

∑

x f (x) = 1.
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Absolutely Continuous Distributions pp 20-25

Rv X is absolutely continuous if there is a function f such that for
any (Borel) set A:

P(X ∈ A) =

∫

A

f (x)dx . (1)

This is a p dimensional integral in general. Equivalently (for p = 1)

F (x) =

∫ x

−∞

f (y) dy

Any function f satisfying (1) is a density of X .

Unique (up to null sets).

For almost all values of x F is differentiable at x and

F ′(x) = f (x) .

Text calls these continuous distributions.
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Example distributions see pp26-30,39-40

X is Uniform[0,1] means

F (x) =







0 x ≤ 0
x 0 < x < 1
1 x ≥ 1

f (x) =







1 0 < x < 1
undefined x ∈ {0, 1}
0 otherwise

X is exponential:

F (x) =

{

1− e−x x > 0
0 x ≤ 0

f (x) =







e−x x > 0
undefined x = 0
0 x < 0
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