STAT 801=830 Normal Samples

Richard Lockhart

Simon Fraser University

STAT 801=830 — Fall 2012

What I assume you already know

- The basics of normal distributions in 1 dimension.
- The t statistic and its distribution.
- The χ^2 distribution.

Normal samples: Distribution Theory

Suppose X_1, \ldots, X_n are independent $N(\mu, \sigma^2)$ random variables. Then

- **1** \bar{X} (sample mean) and s^2 (sample variance) independent.
- 2 $n^{1/2}(\bar{X}-\mu)/\sigma \sim N(0,1)$.
- 3 $(n-1)s^2/\sigma^2 \sim \chi_{n-1}^2$.
- $n^{1/2}(\bar{X}-\mu)/s \sim t_{n-1}.$

Proof

- Let $Z_i = (X_i \mu)/\sigma$.
- Then Z_1, \ldots, Z_D are independent N(0,1).
- So $Z = (Z_1, \dots, Z_p)^t$ is multivariate standard normal.
- Note that $\bar{X} = \sigma \bar{Z} + \mu$ and $s^2 = \sum (X_i - \bar{X})^2 / (n-1) = \sigma^2 \sum (Z_i - \bar{Z})^2 / (n-1)$
- Thus

$$\frac{n^{1/2}(\bar{X}-\mu)}{\sigma}=n^{1/2}\bar{Z}$$
$$\frac{(n-1)s^2}{\sigma^2}=\sum (Z_i-\bar{Z})^2$$

and

$$T = \frac{n^{1/2}(\bar{X} - \mu)}{s} = \frac{n^{1/2}\bar{Z}}{s_7}$$

where
$$(n-1)s_{Z}^{2} = \sum (Z_{i} - \bar{Z})^{2}$$
.

• So: reduced to $\mu = 0$ and $\sigma = 1$.

4 / 13

Proof Continued

• **Step 1**: Define

$$Y = (\sqrt{n}\bar{Z}, Z_1 - \bar{Z}, \dots, Z_{n-1} - \bar{Z})^t.$$

So Y has same dimension as Z. Now

$$Y = \begin{bmatrix} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} \\ 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\ -\frac{1}{n} & 1 - \frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_n \end{bmatrix}$$

or letting M denote the matrix Y = MZ.

• It follows that $Y \sim MVN(0, MM^t)$ so we need to compute MM^t :

$$MM^{t} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 \\ \hline 0 & 1 - \frac{1}{n} & -\frac{1}{n} & \cdots & -\frac{1}{n} \\ \vdots & -\frac{1}{n} & \ddots & \cdots & -\frac{1}{n} \\ 0 & \vdots & \cdots & 1 - \frac{1}{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ \hline 0 & Q \end{bmatrix}.$$

Proof Continued

- Solve for *Z* from *Y*: $Z_i = n^{-1/2}Y_1 + Y_{i+1}$ for $1 \le i \le n-1$.
- Use the identity $\sum_{i=1}^n (Z_i \bar{Z}) = 0$ to get $Z_n = -\sum_{i=2}^n Y_i + n^{-1/2} Y_1$.
- So M invertible:

$$\Sigma^{-1} \equiv (MM^t)^{-1} = \left[egin{array}{c|c} 1 & 0 \ \hline 0 & Q^{-1} \end{array}
ight] \,.$$

• Use change of variables to find f_Y . Let \mathbf{y}_2 denote vector whose entries are y_2, \dots, y_n . Note that

$$y^t \Sigma^{-1} y = y_1^2 + \mathbf{y}_2^t Q^{-1} \mathbf{y}_2$$
.

Then

$$f_Y(y) = \frac{\exp[-y^t \Sigma^{-1} y/2]}{(2\pi)^{n/2} |\det M|} = \frac{e^{-y_1^2/2}}{\sqrt{2\pi}} \frac{\exp[-\mathbf{y}_2^t Q^{-1} \mathbf{y}_2/2]}{(2\pi)^{(n-1)/2} |\det M|}.$$

Proof Continued

- Note: f_Y is ftn of y_1 times a ftn of y_2, \ldots, y_n .
- Thus $\sqrt{n}\bar{Z}$ is independent of $Z_1 \bar{Z}, \dots, Z_{n-1} \bar{Z}$.
- Since s_Z^2 is a function of $Z_1 \bar{Z}, \dots, Z_{n-1} \bar{Z}$ we see that $\sqrt{n}\bar{Z}$ and s_{7}^{2} are independent.
- Also, density of Y_1 is a multiple of the function of y_1 in the factorization above.
- But factor is standard normal density so $\sqrt{n}\bar{Z} \sim N(0,1)$.
- First 2 parts done. Third part is a homework exercise.

Chi-square density n=3

- Suppose Z_1, \ldots, Z_n are independent N(0,1).
- Define χ_n^2 distribution to be that of $U = Z_1^2 + \cdots + Z_n^2$.
- Define angles θ_1, θ_2 by

$$Z_1 = U^{1/2} \cos \theta_1$$

$$Z_2 = U^{1/2} \sin \theta_1 \cos \theta_2$$

$$Z_3 = U^{1/2} \sin \theta_1 \sin \theta_2$$

- These are spherical co-ordinates in 3 dimensions.
- The θ_1 values run from 0 to π
- θ_2 runs from 0 to 2π .
- Derivative formulas:

$$\frac{\partial Z_i}{\partial U} = \frac{1}{2U} Z_i$$

Chi-squared continued

- Use shorthand $R = \sqrt{U}$
- Matrix of partial derivatives is

$$\begin{bmatrix} \frac{\cos\theta_1}{2R} & -R\sin\theta_1 & 0\\ \frac{\sin\theta_1\cos\theta_2}{2R} & R\cos\theta_1\cos\theta_2 & -R\sin\theta_1\sin\theta_2\\ \frac{\sin\theta_1\sin\theta_2}{2R} & R\cos\theta_1\sin\theta_2 & R\sin\theta_1\cos\theta_2 \end{bmatrix}.$$

- Find determinant by adding $2U^{1/2}\cos\theta_j/\sin\theta_j$ times col 1 to col j+1 (no change in determinant).
- Resulting matrix lower triangular; diagonal entries:

$$\frac{\cos \theta_1}{R}, \frac{R \cos \theta_2}{\cos \theta_1}, \frac{R \sin \theta_1}{\cos \theta_2}$$

Multiply these together to get

$$U^{1/2}\sin(\theta_1)/2$$

(non-negative for all U and θ_1).

9 / 13

Chi-squared density

• Thus joint density of U, θ_1, θ_2 is

$$(2\pi)^{-3/2} \exp(-u/2)u^{1/2} \sin(\theta_1)/2$$
.

- To compute density of U do 2 dimensional integral $d\theta_2 d\theta_1$.
- General case replaces $\sin(\theta_1)$ and has $u^{(n-2)/2}$ not $u^{1/2}$.
- ullet Factorization shows density of U has, for some c, the form

$$cu^{(n-2)/2}\exp(-u/2).$$

• Evaluate c by making

$$\int f_U(u)du = c \int_0^\infty u^{(n-2)/2} \exp(-u/2)du = 1.$$

• CONCLUSION: the χ_n^2 density is

$$\frac{1}{2\Gamma(n/2)} \left(\frac{u}{2}\right)^{(n-2)/2} e^{-u/2} \mathbf{1}(u > 0).$$

End of Proof

• Fourth part: consequence of first 3 parts and def'n of t_{ν} distribution. **Def'n**: $T \sim t_{\nu}$ if T has same distribution as

$$Z/\sqrt{U/\nu}$$

for $Z \sim N(0,1)$, $U \sim \chi^2_{\nu}$ and Z, U independent.

• Derive density of *T* in this definition:

$$P(T \le t) = P(Z \le t\sqrt{U/\nu})$$

= $\int_0^\infty \int_{-\infty}^{t\sqrt{u/\nu}} f_Z(z) f_U(u) dz du$

• Differentiate wrt t by differentiating inner integral:

$$\frac{\partial}{\partial t} \int_{at}^{bt} f(x) dx = bf(bt) - af(at)$$

by fundamental thm of calculus.

Student's t continued

Hence

$$\frac{d}{dt}P(T \le t) = \int_0^\infty \frac{f_U(u)}{\sqrt{2\pi}} \left(\frac{u}{\nu}\right)^{1/2} \exp\left(-\frac{t^2u}{2\nu}\right) du.$$

Plug in

$$f_U(u) = \frac{1}{2\Gamma(\nu/2)} (u/2)^{(\nu-2)/2} e^{-u/2}$$

to get

$$f_T(t) = \frac{\int_0^\infty (u/2)^{(\nu-1)/2} e^{-u(1+t^2/\nu)/2} du}{2\sqrt{\pi\nu} \Gamma(\nu/2)}.$$

Student's t continued

• Substitute $y = u(1 + t^2/\nu)/2$, to get

$$dy = (1 + t^2/\nu)du/2$$

and

$$(u/2)^{(\nu-1)/2} = [y/(1+t^2/\nu)]^{(\nu-1)/2}$$

leading to

$$f_T(t) = \frac{(1+t^2/\nu)^{-(\nu+1)/2}}{\sqrt{\pi\nu}\Gamma(\nu/2)} \int_0^\infty y^{(\nu-1)/2} e^{-y} dy$$

• The last term is just $\Gamma((\nu+1)/2)$ so

$$f_T(t) = \frac{\Gamma((\nu+1)/2)}{\sqrt{\pi\nu}\Gamma(\nu/2)} \frac{1}{(1+t^2/\nu)^{(\nu+1)/2}}.$$

