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Chapter 1

Introduction

1.1 Statistics versus Probability

Statistics versus Probability

I want to begin this course by discussing the difference between Probability Theory and
Statistics. Statisticians use the tools of Probability but reason from effects to causes rather
than from causes to effects. I want to try to say that again with a bit more detail but still
in a vague sort of way.

The standard view of scientific inference starts with a set of theories which make predic-
tions about the outcomes of an experiment as in the following table:

Theory Prediction
A 1
B 2
C 3

Now imagine that we actually conduct the experiment and see outcome 2. We infer that
theory B is correct (or at least that theories A and C are wrong). The question of how much
more faith put in B than before is subtle and has been much discussed. As usual theories can
easily be falsified – that is, shown to be wrong. But they are only shown to be right in the
sense that we try and fail to falsify them. If a theory makes many many correct predictions
in many contexts we start to treat it as if it were true; but one wrong prediction demands a
rethink.

Now we add Randomness to our little table because the outcomes of experiments are not
perfectly predictable, even in theory:

Theory Prediction
A Usually 1 sometimes 2 never 3
B Usually 2 sometimes 1 never 3
C Usually 3 sometimes 1 never 2
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4 CHAPTER 1. INTRODUCTION

Now imagine again that we see outcome 2. We now infer that Theory B is probably
correct, that Theory A is probably not correct, and that Theory C is wrong. Notice the
precision gained, when Theory C absolutely rules out outcome 2 but outcome 2 actually
happens – we can rule out theory C.

That leads me to summarize the difference between Probability and Statistics as follows:

• In Probability Theory: we construct the table by computing likely outcomes of
experiments. We predict what ought to happen if we do the experiment and some
specific theory holds.

• In Statistics we follow the inverse process. We use the table to draw inferences from
outcome of experiment – deciding how sure we are about which theory is correct. In
this course we consider the questions: how should we do draw these inferences and
how wrong are our inferences likely to be? Notice: our task is hopeless unless different
theories make different predictions – see future discussions of identifiable models.

I will start the course with Probability and switch after about 5 weeks to statistics.



Chapter 2

Probability

In this section I want to define the basic objects. I am going to give full precise definitions
and make lists of various properties – even prove some things rigorously – but then I am going
to give examples. In different versions of this course I require more or less understanding of
the objects being studied.

Definition: A Probability Space (or Sample Space) is an ordered triple (Ω,F , P ) with
the following properties:

• Ω is a set (it is the set of all possible outcomes of some experiment); elements of Ω are
denoted by the letter ω. They are called elementary outcomes.

• F is a family of subsets (we call these subsets events) of Ω with the property that F is
a σ-field (or Borel field or σ-algebra) – that is F has the following closure properties:

1. The empty set denoted ∅ and Ω are members of F .

2. A ∈ F implies Ac = {ω ∈ Ω : ω 6∈ A} ∈ F .

3. A1, A2, · · · in F implies A = ∪∞
i=1Ai ∈ F .

• P is a function whose domain is F and whose range is a subset of [0, 1]. The function
P must satisfy:

1. P (∅) = 0 and P (Ω) = 1.

2. Countable additivity: A1, A2, · · · pairwise disjoint (j 6= k Aj ∩ Ak = ∅)

P (∪∞
i=1Ai) =

∞
∑

i=1

P (Ai)

These axioms guarantee that we can compute probabilities by the usual rules, including
approximation. Here are some consequences of the axioms:

Ai ∈ F ; i = 1, 2, · · · implies ∩i Ai ∈ F

5
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A1 ⊆ A2 ⊆ · · · implies P (∪Ai) = lim
n→∞

P (An)

A1 ⊃ A2 ⊃ · · · implies P (∩Ai) = lim
n→∞

P (An)

The last two of these three assertions are sometimes described by saying that P is contin-
uous. I don’t like this jargon because it does not agree very well with the standard meaning
of a continuous function. There is (in what I have presented so far) no well defined topology
or metric or other way to make precise the notion of a sequence of sets converging to a limit.

2.0.1 Examples

It seems wise to list a few examples of these triples which arise in various more or less
sophisticated probability problems.

Example 1: Three Cards Problem

I imagine I have three cards – stiff pieces of paper. One card is green on both sides. One
is red on both sides. The third card is green on one side and red on the other. I shuffle
up the three cards in some container and pick one out, sliding it out of its container and
onto the table in such a way that you can see only the colour on the side of the card which
is up on the table. Later, when I talk about conditional probability, I will be interested in
probabilities connected with the side which is face down on the table but here I just want
to list the elements of Ω and describe F and P .

I want you to imagine that the sides of the card are labelled (in your mind, not visibly
on the cards) in such a way that you can see that there are six sides of the card which could
end up being the one which is showing. One card, the RR card has red on both sides and
ω1 = RR1 means the first of these two sides is showing which ω2 = RR2 denotes the outcome
that the second of these two sides is showing. I use ω3 = RG1 to denote the outcome where
the Red / Green card is selected and the red side is up and ω4 = RG2 to denote the outcome
where the same card is drawn but the green side is up. The remaining two elementary
outcomes are ω5 = GG1 and ω6 = GG2 in what I hope is quite obvious notation.

So now Ω = {ω1, ω2, ω3, ω4, ω5, ω6} is the sample space with six elements. There are
many other possible notations for the elements of this sample space of course. I now turn to
describing F and P .

In problems where Ω is finite or countably infinite we almost always take F to be the
family of all possible subsets of Ω. So in this case F is the collection of all subsets of Ω. To
make a subset of Ω we must decide for each of the six elements of Ω whether or not to put
that element in the set. This makes 2 possible choices for ω1, then for each of these 2 choices
for ω2 and so on. So there are 26 = 64 subsets of Ω; all 64 are in F . In order to be definite
I will try to list the pattern:

F = {∅, {ω1}, . . . , {ω6}, {ω1, ω2}, {ω1, ω3}, . . . , {ω5, ω6}, . . . ,Ω}

My list includes 1 set with 0 elements, 6 sets with 1 element, 6 choose 2 sets with 2 elements
(total of 15), 6 choose 3 with 3 elements (20 such), 6 choose 4 (=15) with 4 elements, 6 with
5 elements and Ω.
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Finally I am supposed to describe P . The usual way, when Ω is finite, to assign proba-
bilities is to give some probability, say pi to the ith elementary outcome ωi. In our case it is
reasonable to assume that all 6 sides of the cards have the same chance of ending up visible
so all

pi = P ({ωi}) =
1

6
.

Then the probability of any subset of Ω is found by adding up the probabilities of the
elementary outcomes in that set. So, for instance

P ({ω1, ω3, ω4}) =
3

6
=

1

2
.

The event “the side showing is red” is a subset of Ω, namely,

{ω1, ω2, ω3}.
The event “the side face down is red” is also subset of Ω, namely,

{ω1, ω2, ω4}.
The event “the side face down is green” is

{ω3, ω5, ω6}.

Example 2: Coin Tossing till First Head Problem

Now imagine tossing a coin until you get “heads” which I denote H. To simplify the
problem I will assume that you quit tossing either when you get H OR when you have tossed
the coin three times without getting H. Letting T denote tails the elements of Ω are, in
obvious notation:

{ω1, ω2, ω3, ω4} ≡ {H, TH, TTH, TTT}
Again F is the collection of all 24 = 16 subsets of Ω and we specify P by assigning prob-
abilities to elementary outcomes. The most natural probabilities to assign are p1 = 1/2,
p2 = 1/4 and p3 = p4 = 1/8. I will return to this assumption when I discuss independence.

Example 3: Coin Tossing till First Head Problem, infinite case

Now imagine tossing the coin until you get “heads” no matter how many tosses are
required. Let ωk be a string of k tails T followed by H. Then

Ω = {ω0, ω1, ω2, · · · }
which has infinitely many elements. Again F is the collection of all subsets of Ω; the number
of such subsets is uncountably infinite so I won’t make a list! We specify P by assigning
probabilities to elementary outcomes. In order to add a bit to the example I will consider a
biased coin. The most natural probabilities to assign are then

pi = P ({ωi}) = p(1− p)i.

This list of numbers adds up to 1, as it must, to ensure P (Ω) = 1; you should recognize the
sum of a geometric series.



8 CHAPTER 2. PROBABILITY

Example 4: Coin Tossing forever

In order to discuss such things as the law of large numbers and many other probability
problems it is useful to imagine the conceptual experiment of tossing the coin forever. In
this case a single “elementary outcome”, ω is actually an infinite sequence of Hs and Ts.
One ω might be

HTHTHTHTHTHTHT · · ·
where the heads and tails alternate for ever. It would be typical to say

Ω = {ω = (ω1, ω2, . . .); such that each ωi ∈ {H, T}}.

You can think about how many elements there are in Ω by taking a typical ω and replacing
each H with a 1, then each T with a 0. Then put “0.” in front and think of the result as a
binary number between 0 and 1. So for instance the sequence above of alternating 0s and 1s
is

ω = 0.1010101010 · · · = 1

2

(

1 +
1

4
+

(

1

4

)2

+ · · ·
)

which is just 2/3 by summing a geometric series.
The summary is that there are as many elements in Ω as there are numbers between 0

and 1 – an uncountably infinite number. It turns out that this is the situation where we
just can’t cope, logically, with having F be the collection of all subsets of Ω. If you want to
know which subsets go into F you need to find out about Borel sets.

In fact we take F to be “the smallest σ-field” which contains all sets of the form

Bi ≡ {ω ∈ Ω : ωi = H}

which is the subset of Ω obtained by keeping only outcomes whose ith toss is H. There is
a bit of mathematical effort to prove the existence of any such “smallest” σ-field; it is the
intersection of all σ-fields which contain the given special sets. Much greater effort is needed
to understand the structure of this σ-field but I want to emphasize that if you can give a
truly clear and explicit description of a subset of Ω that subset will be a Borel set – a member
of F .

Finally we have to say something about how to compute probabilities. Let’s start with
an intuitive presentation using the idea that we might be talking about independent tosses
of a fair coin; I will define independence precisely later but for now I just want you to use
what you already know about independent events. Let

C = B1 ∩ Bc
2 ∩B3 ∩ Bc

4 ∩B5 ∩Bc
6 · · · .

The only point in C is the sequence of alternating heads and tails I wrote down up above.
So what is the probability of C. Certainly

P (C) ≥ P (B1 ∩ Bc
2 ∩B3 ∩ Bc

4 ∩B5 ∩Bc
6 · · ·Bc

2n)

for any n. For independent tosses of a fair coin we compute the probability of this intersection
by just multiplying 1/2 by itself 2n times to get 2−n. But if P (C) ≤ 2−n for all n then
P (C) = 0. In the same way we can check that P ({ω}) = 0 for every elementary outcome ω!
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This just means we cannot compute probabilities of an event by adding up probabilities
of elementary outcomes in the event – that always gives 0. Instead we use the idea of
independence and the assumption that the various Bi are independent and have probability
1/2 to compute any probability we want; sometimes this is hard.

2.1 Random Variables

:

Definition: A Vector valued random variable is a function function X : Ω 7→ Rp such
that, writing X = (X1, . . . , Xp),

P (X1 ≤ x1, . . . , Xp ≤ xp)

is defined for any constants (x1, . . . , xp). Formally the notation

X1 ≤ x1, . . . , Xp ≤ xp

describes a subset of Ω or event:

{ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp} .

Remember X is a function on Ω so X1 is also a function on Ω; that is why we can stick in
the argument ω of the function.

ASIDE: In almost all of probability and statistics the dependence of a random variable
on a point in the probability space is hidden! You almost always see X not X(ω).

There is a subtle mathematical point being made here. Not every function from Ω to Rp

is a random variable or random vector. The problem is that the set

{ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp}

might not be in F ! For our fourth example this is a potential mathematical (but not
practical) problem.

2.1.1 Borel sets

In this subsection I give a small presentation of the notion of Borel sets in Rp. The material
is not really part of this course.

Definition: The Borel σ-field in Rp is the smallest σ-field in Rp containing every open ball.

Definition: For clarity the open ball of radius r > 0 centred at x ∈ Rp is

{y ∈ Rp : ||y − x|| < r}

where

||u|| =

√

√

√

√

p
∑

1

u2i
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for a vector u ∈ Rp. The quantity ||u|| is called the Euclidean norm of u; it is also the usual
notion of length of a vector.

Every common set is a Borel set, that is, in the Borel σ-field.

Definition: An Rp valued random variable is a map X : Ω 7→ Rp such that when A is
Borel then {ω ∈ Ω : X(ω) ∈ A} ∈ F . This is equivalent to

{ω ∈ Ω : X1(ω) ≤ x1, . . . , Xp(ω) ≤ xp} ∈ F

for all (x1, . . . , xp) ∈ Rp.
Jargon and notation: we write P (X ∈ A) for P ({ω ∈ Ω : X(ω) ∈ A}) and define the
distribution of X to be the map

A 7→ P (X ∈ A)

which is a probability on the set Rp with the Borel σ-field rather than the original Ω and F .
We also write

X−1(A) = {ω ∈ Ω : X(ω) ∈ A}
and call this set the inverse image of A under X . So the distribution of X is

PX(A) = P (X−1(A))

which is defined for all Borel sets A ∈ Rp.
Remark: The definition of a random variable depends only on the functions and the σ-fields
involved and NOT on the probability P .

Definition: The Cumulative Distribution Function (cdf) of X is the function FX on
Rp defined by

FX(x1, . . . , xp) = P (X1 ≤ x1, . . . , Xp ≤ xp) .

I will not always use the subscript X to indicate which random vector is being discussed.
When there is no real possibility of confusion I will just write F .

Here are some properties of F for p = 1:

1. 0 ≤ F (x) ≤ 1.

2. x > y ⇒ F (x) ≥ F (y) (monotone non-decreasing).

3. limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

4. limxցy F (x) = F (y) (right continuous).

5. limxրy F (x) ≡ F (y−) exists.

6. F (x)− F (x−) = P (X = x).

7. FX(t) = FY (t) for all t implies that X and Y have the same distribution, that is,
P (X ∈ A) = P (Y ∈ A) for any (Borel) set A.
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Proof: The values of F are probabilities so they are between 0 and 1. If F is the cdf of X
and y < x then

{X ≤ y} ⊆ {X ≤ x}
so

F (y) = P (X ≤ y) ≤ P (X ≤ x) = F (x).

Since F is monotone the assertions about limits may be checked by considering a sequence
xn. For instance, to prove the first half of the third assertion we take xn to be any sequence
decreasing to −∞ – such as xn = −n, say. If

An = {X ≤ xn}

then

A1 ⊇ A2 ⊇ · · ·
and

∩∞
n=1An = ∅

so by the “continuity” of P

0 = P (∅) = lim
n→∞

P (An) = lim
n→∞

F (xn).

The argument at ∞ uses unions in place of intersections and a sequence xn increasing to ∞.
Assertion 4 considers a sequence xn decreasing to y and then with the Ai as above we

find

∩∞
n=1An = {X ≤ y}

so that right continuity of F comes from the continuity of P . Assertion 5 does the parallel
thing with unions and shows F (y−) = P (X < y).

Assertion 6 comes from the fact that

{X < x} ∪ {X = x} = {X ≤ x}.

The union is disjoint so

F (y−) + P (X = x) = F (y).

The final point, property 7, is much more sophisticated – much harder to prove. If you
want to read about it you can look at the appendix on Monotone Class arguments if I ever
get it done. •

For p = 1 any function F with properties 1, 2, 3 and 4 is the cumulative distribution
function of some random variable X . For p > 1 the situation is a bit more complicated.
Consider the case p = 2 and two points (u1, u2) and (v1, v2). If v1 ≥ u1 and v2 ≥ u2 then the
event X1 ≤ u1, X2 ≤ u2 is a subset of the event X1 ≤ v1, X2 ≤ v2. This means that

F (u1, u2) = P (X1 ≤ u1, X2 ≤ u2) ≤ P (X1 ≤ v1, X2 ≤ v2) = F (v1, v2).
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In this sense F is monotone non-decreasing. But even if F is continuous, monotone non-
decreasing and satisfies properties 1 and 3 above we cannot be sure it is a cdf. Think about
the rectangle

R ≡ {(x1, x2) : u1 < x1 ≤ v1, u2 < x2 ≤ v2}
The probability that X lands in this rectangle must be at least 0 but in terms of F you
should be able to check that

P (X ∈ R) = P (u1 < X1 ≤ v1, u2 < X2 ≤ v2)

= F (v1, v2)− F (u1, v2)− F (v1, u2) + F (u1, u2).

So this combination of values of F at the four corners of the rectangle must be non-negative.
For a thorough discussion of the properties of multivariate cumulative distributions see some
reference which I must add.

2.2 Discrete versus Continuous Distributions

Definition: The distribution of a random variable X is called discrete (we also say X is
discrete) if there is a countable set x1, x2, · · · such that

P (X ∈ {x1, x2 · · · }) = 1 =
∑

i

P (X = xi) .

In this case the discrete density or probability mass function of X is

fX(x) = P (X = x) .

Definition: The distribution of a random variable X is called absolutely continuous
(again we also say X is absolutely continuous) if there is a function f such that

P (X ∈ A) =

∫

A

f(x)dx (2.1)

for any (Borel) set A. This is a p dimensional integral in general. Equivalently

F (x) =

∫ x

−∞
f(y) dy .

Definition: Any f satisfying (2.1) is a density of X .
There are a few important warnings and observations here:

• Many statisticians use the word continuous instead of the phrase absolutely continuous
for this property.

• Others use the word continuous to mean only that F is a continuous function.
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• IfX is absolutely continuous then for most (almost all) x the function F is differentiable
at x and

F ′(x) = f(x) .

• Absolute continuity is the property which is needed for a function to be equal to the
integral of its derivative. If the function is continuously differentiable, for instance,
then it is continuous. If F is continuously differentiable except at a finite number of
points where it is continuous then F is absolutely continuous.

Example: The Uniform[0,1] distribution. We say that X is Uniform[0,1] if

F (x) =







0 x ≤ 0
x 0 < x < 1
1 x ≥ 1 .

which is equivalent to

f(x) =







1 0 < x < 1
undefined x ∈ {0, 1}
0 otherwise .

Example: The standard exponential distribution. We say that X is exponential with mean
1 (sometimes written Exp(1)) if

F (x) =

{

1− e−x x > 0
0 x ≤ 0 .

or equivalently

f(x) =







e−x x > 0
undefined x = 0
0 x < 0 .

Remark: I am not going to create notes on all the well known distributions. I expect you will
know something about all the famous distributions (including the uniform and exponential
distributions I just mentioned).

2.3 Independence, Conditioning and Bayes’ Theorem

2.4 Independence, conditional distributions and mod-

elling

When analyzing data statisticians need to specify a statistical model for the data. That is,
we regard the data as random variables and specify possible joint distributions for the data.
Sometimes the modelling proceeds by modelling the joint density of the data explicitly.
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More commonly, however, modelling amounts to a specification in terms of marginal and
conditional distributions.

We begin by describing independence. Our description is formal, mathematical and
precise. It should be said however that the definitions work two ways. Often we will assume
that events or random variables are independent. We will argue that such an assumption
is justified by a lack of causal connection between the events – in such a case knowledge of
whether or not one event happens should not affect the probability the other happens. This
is more subtle than it sounds, though, as we will see when we discuss Bayesian ideas.

Definition: Events A and B are independent if

P (AB) = P (A)P (B) .

(Notation: we often shorten the notation for intersections by omitting the intersection sign.
ThusAB is the event that both A and B happen, which is also written A ∩ B.)

Definition: A sequence of events Ai, i = 1, . . . , p are independent if

P (Ai1 · · ·Air) =

r
∏

j=1

P (Aij)

for any 1 ≤ i1 < · · · < ir ≤ p.

Example: If we have p = 3 independent events then the following equations hold:

P (A1A2A3) = P (A1)P (A2)P (A3)

P (A1A2) = P (A1)P (A2)

P (A1A3) = P (A1)P (A3)

P (A2A3) = P (A2)P (A3)

All these equations are needed for independence! If you have 4 events there are 11 equations;
for general p there are 2p − p− 1.

Example: Here is a small example to illustrate the fact that all these equations are really
needed. In the example there are three events any two of which are independent but where
it is not true that all three are independent. Toss a fair coin twice and define the following
events.

A1 = {first toss is a Head}
A2 = {second toss is a Head}
A3 = {first toss and second toss different}

Then P (Ai) = 1/2 for each i and for i 6= j

P (Ai ∩Aj) =
1

4
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but
P (A1 ∩A2 ∩A3) = 0 6= P (A1)P (A2)P (A3) .

Definition: We say that two random variables X and Y are independent if

P (X ∈ A; Y ∈ B) = P (X ∈ A)P (Y ∈ B)

for all A and B.

Definition: We say that a set of random variables X1, . . . , Xp are independent if, for any
A1, . . . , Ap, we have

P (X1 ∈ A1, · · · , Xp ∈ Ap) =

p
∏

i=1

P (Xi ∈ Ai).

Theorem 1 1. If X ∈ Rp and Y ∈ Rq are independent then for all x, y

FX,Y (x, y) = FX(x)FY (y) .

2. If X ∈ Rp and Y ∈ Rq are independent with joint density fX,Y (x, y) then X and Y
have densities fX and fY , and (for almost all, in the sense of Lebesgue measure) x and
y we have

fX,Y (x, y) = fX(x)fY (y) .

3. If X and Y independent with marginal densities fX and fY then (X, Y ) has a joint
density given by

fX,Y (x, y) = fX(x)fY (y) .

4. If FX,Y (x, y) = FX(x)FY (y) for all x, y then X and Y are independent.

5. If (X, Y ) has joint density f(x, y) and there exist g(x) and h(y) st f(x, y) = g(x)h(y)
for (almost) all (x, y) then X and Y are independent with densities given by

fX(x) = g(x)/

∫ ∞

−∞
g(u)du

fY (y) = h(y)/

∫ ∞

−∞
h(u)du .

6. If the pair (X, Y ) is discrete with joint probability mass function f(x, y) and there exist
functions g(x) and h(y) such that f(x, y) = g(x)h(y) for all (x, y) then X and Y are
independent with probability mass functions given by

fX(x) = g(x)/
∑

u

g(u)

and
fY (y) = h(y)/

∑

u

h(u) .
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Proof: Some of these assertions are quite technical – primarily those involving densities.
My class notes provide only the direct proofs. Here I give more detailed proofs but note that
they are based on ideas which are not really part of the course most years.

1. Since X and Y are independent so are the events X ≤ x and Y ≤ y; hence

P (X ≤ x, Y ≤ y) = P (X ≤ x)P (Y ≤ y) .

2. It is notationally simpler to suppose X and Y real valued. General dimensions are not
really much harder, however. In assignment 2 I ask you to show that existence of the
joint density fX,Y implies the existence of marginal densities fX and fY . Since X, Y
have a joint density, we have, for any sets A and B

P (X ∈ A, Y ∈ B) =

∫

A

∫

B

fX,Y (x, y)dydx

P (X ∈ A)P (Y ∈ B) =

∫

A

fX(x)dx

∫

B

fY (y)dy

=

∫

A

∫

B

fX(x)fY (y)dydx .

Since P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B)

∫

A

∫

B

[fX,Y (x, y)− fX(x)fY (y)]dydx = 0 .

It follows (using ideas from measure theory) that the quantity in [] is 0 for almost every
pair (x, y).

3. For any A and B we have

P (X ∈ A, Y ∈B)

= P (X ∈ A)P (Y ∈ B)

=

∫

A

fX(x)dx

∫

B

fY (y)dy

=

∫

A

∫

B

fX(x)fY (y)dydx .

If we define g(x, y) = fX(x)fY (y) then we have proved that for C = A × B (the
Cartesian product of A and B)

P ((X, Y ) ∈ C) =

∫

C

g(x, y)dydx .

To prove that g is fX,Y we need only prove that this integral formula is valid for an
arbitrary Borel set C, not just a rectangle A× B.
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This is proved via a monotone class argument. The collection of sets C for which
identity holds has closure properties which guarantee that this collection includes the
Borel sets. Here are some details.

Definition: A collection M of subsets of some set E is called a monotone class if,
whenever A1, A2, . . . all belong to M and either

A1 ⊆ A2 ⊆ · · ·

or

A1 ⊇ A2 ⊇ · · ·
then, in the first case,

∪∞
i=1Ai ∈ M

and, in the second case,

∩∞
i=1Ai ∈ M.

Definition: A collection F of subsets of some set E is called a field if:

∅ ∈ F
A ∈ F =⇒ Ac ∈ F

A1, . . . , Ap ∈ F =⇒ ∪p
i=1Ai ∈ F .

This definition is simply the definition of a σ field but with the weaker requirement of
closure under finite rather than countable unions.

Lemma 1 The smallest monotone class containing a field F is the smallest σ-field
containing F .

Proof: The power set of E (the collection of all subsets of E) is both a σ-field and
a monotone class containing F . By “smallest” σ-field containing F we mean the
intersection of all σ-fields containing F ; the previous sentence says this is not an
empty intersection. The meaning of “smallest” monotone class is analogous. Let H
denote the smallest σ-field and M the smallest monotone class containing F .

Any σ field containing F is a monotone class so the smallest monotone class containing
F is a subset of the smallest σ-field containing F . That is, H ⊇ M. It remains to
prove the other direction. Let G be the collection of all sets A ∈ M such that Ac ∈ M.
If A ∈ calF then Ac ∈ F so G includes F . If A1 ⊆ A2 ⊆ · · · are all sets in G ⊆ M
then A ≡ ∪nAn ∈ M. On the other hand

Ac
1 ⊇ Ac

2 ⊇ · · ·



18 CHAPTER 2. PROBABILITY

are all sets in M. Since M is a monotone class we must have

∩nA
c
n ∈ M

but ∩nA
c
n = Ac so Ac ∈ M. That is, G is closed under monotone increasing unions

(one of the two properties of a monotone class.

Similarly if
A1 ⊇ A2 ⊇ · · ·

are all sets in G then A ≡ ∩nAn ∈ M and

Ac
1 ⊆ Ac

2 ⊆ · · ·

are all sets in M. Since M is a monotone class we must have

∪nA
c
n ∈ M.

But ∪nA
c
n = Ac so Ac ∈ M. Again we see that G is closed under monotone decreasing

unions. Thus G is a monotone class containing F . Since it was defined by taking only
sets from M we must have G = M. That is:

A ∈ M =⇒ Ac ∈ M.

Next I am going to show that M is closed under countable unions, that is, if A1, A2, . . .
are all in M then so is their union. (Notice that this union might not be a monotone
union.) If I can establish this assertion then I will have proved that M is a σ-field
containing F so M ⊇ H. This would finish the proof that M = H.

First fix a B ∈ F and let now G be the collection of all A ∈ M such that A∪B ∈ M.
Just as in the previous part of the argument prove that this new G is a monotone class
containing F . This shows G = M and that for every A ∈ M and every B ∈ F we
have A ∪ B ∈ M. Now let G be the collection of all B ∈ M such that for all A ∈ M
we have A ∪ B ∈ M. Again G contains F . Check that this third G is a monotone
class and deduce that for every A ∈ M and every B ∈ M we have A ∪ B ∈ M. In
other words: M is closed under finite unions (by induction on the number of sets in
the union).

We have now proved that M is a field and a monotone class. If A1, A2, . . . are all in
M define Bn = ∪n

i=1Ai. Then

(a) B1 ⊆ B2 ⊆ · · · .
(b) Each Bi ∈ M.

(c) A ≡ ∪nAn = ∪nBn

Since M is a monotone class this last union must be in M. That is ∪nAn ∈ M. This
proves M is a σ-field. •

4. Another monotone class argument.
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5.

P (X ∈ A, Y ∈ B) =

∫

A

∫

B

g(x)h(y)dydx

=

∫

A

g(x)dx

∫

B

h(y)dy .

Take B = R1 to see that

P (X ∈ A) = c1

∫

A

g(x)dx

where c1 =
∫

h(y)dy. So c1g is the density of X . Since
∫ ∫

fX,Y (xy)dxdy = 1 we see
that

∫

g(x)dx
∫

h(y)dy = 1 so that c1 = 1/
∫

g(x)dx. A similar argument works for Y .

6. The discrete case is easier.

Our next theorem asserts something students think is nearly obvious. It is proved by
another monotone class argument but the proof is less important than the meaning. The
idea is that if U , V , W , X , Y and Z are independent then, for instance U/V , W +X and
Y eZ are independent.

Theorem 2 If X1, . . . , Xp are independent and Yi = gi(Xi) then Y1, . . . , Yp are indepen-
dent. Moreover, (X1, . . . , Xq) and (Xq+1, . . . , Xp) are independent. Similarly X1, . . . , Xq1,
Xq1+1, . . . , Xq2 and so on are independent (provided q1 < q2 < · · · ).

Example: Suppose X and Y are independent standard exponential random variables. That
is, X and Y have joint density

fX,Y (x, y) = e−x1(x > 0)e−y1y > 0.

Let
U = min{X, Y } and W = max{X, Y }

I will find the joint cdf and joint density of U and W . Begin by considering the event
{U ≤ u,W ≤ w}. If u ≤ 0 or w ≤ 0 then the probability is 0 so now assume u > 0 and
w > 0. We then have

{U ≤ u,W ≤ w} = {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w}
= {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w,X < Y }

∪ {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w,X > Y }
∪ {min{X, Y } ≤ u,max{X, Y } −min{X, Y } ≤ w,X = Y }

The first of these three events is

{X ≤ u,X < Y ≤ X + w}

while the second is
{Y ≤ u, Y < X ≤ Y + w}.
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The third event is a subset of {X = Y } which has probability 0. Thus

FU,W (u, w) = P (X ≤ u,X < Y ≤ X + w) + P (Y ≤ u, Y < X ≤ Y + w).

Since X and Y are independent and have the same distribution the two probabilities on the
right hand side are equal and we compute only the first. To do so we integrate the joint
density of the random variables over the set

{(x, y) : 0 < x ≤ u, x < y < x+ w}.

The second restriction makes it natural to integrate in the y direction first then in the x
direction second. We get

P (X ≤ u,X < Y ≤ X + w) =

∫ u

0

∫ x+w

x

e−xe−y dy dx.

The inside integral is just

e−x
(

e−x − e−(x+w)
)

= e−2x
(

1− e−w
)

so

P (X ≤ u,X < Y ≤ X + w) =
(

1− e−w
)

∫ u

0

e−2x dx =
(

1− e−w
) (

1− e−2u
)

/2.

Assembling the results we get

FU,W (u, w) =

{

(1− e−w) (1− e−2u) u, w > 0

0 otherwise.

This function can be rewritten using indicators

FU,W (u, w) =
(

1− e−w
)

1(w > 0)
(

1− e−2u
)

1(u > 0).

This evidently factors as the product FU(u)FW (w) where

FU(u) =
(

1− e−2u
)

1(u > 0)

FW (w) =
(

1− e−w
)

1(w > 0).

Thus we find U ⊥⊥ W and that U has an exponential distribution with mean 1/2 while W
has an exponential distribution with mean 1.

2.5 Conditional probability

The interpretation of probability as long run relative frequency motivates the following def-
initions of conditional probability. Suppose we have an experiment in which two events A
and B are defined and suppose that P (B) > 0. Imagine an infinite sequence of independent
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repetitions of the experiment. Amongst the first n repetitions there must be close to nP (B)
occasions where event B occurs in the sense that the ratio number of occurrences divided
by n gets close to (B). That is

# Bs in first n trials

n
→ P (B).

Also
# times both A and B occur in first n trials

n
→ P (AB).

So if we just pick out of the first n trials those trials where B occur and then see what
fraction of these also have A occurring we get

# times both A and B occur in first n trials

# Bs in first n trials
→ P (AB

P (B)
.

This leads to our basic definition.

Definition: We define the conditional probability of an event A given an event B with
P (B) > 0 by

P (A|B) = P (AB)/P (B).

Definition: For discrete random variables X and Y the conditional probability mass func-
tion of Y given X is

fY |X(y|x) = P (Y = y|X = x)

= fX,Y (x, y)/fX(x)

= fX,Y (x, y)/
∑

t

fX,Y (x, t)

For an absolutely continuous random variable X we have P (X = x) = 0 for all x. So
what is P (A|X = x) or fY |X(y|x) since we may not divide by 0? As is usual in mathematics
we define the ratio 0/0 by taking a suitable limit:

P (A|X = x) = lim
δx→0

P (A|x ≤ X ≤ x+ δx)

If, e.g., X, Y have joint density fX,Y then with A = {Y ≤ y} we have

P (A|x ≤ X ≤ x+ δx)

=
P (A ∩ {x ≤ X ≤ x+ δx})

P (x ≤ X ≤ x+ δx)

=

∫ y

−∞
∫ x+δx

x
fX,Y (u, v)dudv

∫ x+δx

x
fX(u)du

Divide the top and bottom by δx and let δx→ 0. The denominator converges to fX(x); the
numerator converges to

∫ y

−∞
fX,Y (x, v)dv
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We now define the conditional cumulative distribution function of Y given X = x by

P (Y ≤ y|X = x) =

∫ y

−∞ fX,Y (x, v)dv

fX(x)

If we differentiate this formula by y we get the undergraduate definition of the conditional
density of Y given X = x, namely,

fY |X(y|x) = fX,Y (x, y)/fX(x) ;

in words we find “conditional = joint/marginal”.

Example: The 3 cards problem revisited. This is the problem where we have 3 cards – red
on both sides, green on both sides and red on one / green on the other. We draw a card and
see the colour on the side which is face up. Suppose we see Red. What is the chance the
side face down is Red?

Students sometimes think the answer is 1/2. They say: either I am looking at the all red
card or the red/green card. These are equally likely so this conditional probability is 1/2.
This is wrong – the two cards are not equally likely given that the side facing up is Red.

To see this clearly we should go back to the basics. Let A be the event that we see a red
side. In terms of the elementary outcomes in the example at the start of Chapter 2 we have

A = {ω1, ω2, ω3}.

Let B be the event that the side face down is red. Then

B = {ω1, ω2, ω4}.

We then have

P (B|A) = P (AB)

P (A)
=

2/6

3/6
=

2

3
.

It is also possible to do this more intuitively but to do so you have to be careful. You are
conditioning on the event that you are looking at 1 of the 3 red sides – all equally likely. Of
these three sides two have the property that the other side is red. That makes the conditional
probability 2/3.

2.5.1 Bayes Theorem

The definition of conditional probability shows that if P (A) > 0 and P (B) > 0 then we have

P (AB) = P (A|B)P (B) = P (B|A)P (A).

The crucial point about this observation is that one formula conditions on B and the other on
A. Bayes theorem just rewrites this formula to emphasize the change in order of conditioning:

Theorem 3 If A and B are two events with P (A) > 0 and P (B) > 0 then

P (B|A) = P (A|B)P (B)

P (A)
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It seems to me to be useful to relate this to some reasoning ideas. If a certain statement
P implies a statement Q then Q is always true whenever P is true. Of course if Q is not
true then neither is P . That is, the statement “not Q” implies the statement “not P”. In
terms of probabilities the analogy is that if P (B|A) = 1 then P (Ac|Bc) = 1 (assuming that
P (Bc) 6= 0). This follows from

P (Ac|Bc) =
P (AcBc)

P (Bc)

=
1− P (A ∪ B)

P (Bc)

=
1− P (A)− P (B) + P (B|A)P (A)

1− P (B)

=
1− P (A)− P (B) + P (A)

1− P (B)

=
1− P (B)

1− P (B)
= 1.

It is NOT a theorem of logic that if P implies Q then Q implies P . But there is a sense in
which if P usually happens and usually when P happens so does Q then Q usually happens
and when Q happens usually P does too. Let’s look at the formula with statements P and
Q replaced by events A and B. Imagine that P is “A happens” and Q is “B happens”.

Then
P (B|A)P (A) = P (A|B)P (B)

so if both terms on the left are nearly 1 (”usually happens”) then both terms on the right
must be nearly 1 (because if either were small the product would be too small to equal the
thing on the left which is nearly 1).

The idea underlying Bayes’ Theorem can be translated into the language of conditional
densities:

fX|Y =
fY |XfX
fY

Nowadays Bayesians like to write

(x|y) = (y|x)(x)/(y)

with the parentheses indicating densities and the letters indicating variables. This notation
uses the letter in the argument of a function to indicate which function is being discussed
and is at least a bit dangerous since

(1|2) = (2|1)(1)/(2)

doesn’t really tell you which variables are under discussion even though it a special case of
the formula above with x = 1 and y = 2.

More general formulas arise like

P (ABCD) = P (A|BCD)P (B|CD)P (C|D)P (D)
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This formula can be rewritten in many orders to get a variety of equivalent expressions which,
divided by some of the terms involved give theorems like that of Bayes. Also, if A1, . . . , Ak

are mutually exclusive and exhaustive then

P (A1|B) =
P (B|A1)P (A1)
∑

i P (B|Aj)P (Aj)

Bayes theorem is often written in this form. Of course the denominator is just P (B). I
remark that mutually exclusive means pairwise disjoint and exhaustive means

∪k
1Ai = Ω.

The density formula is really analogous to this more general looking version of Bayes’ theorem
since integrals are limits of sums and

fX|Y (x|y) =
fXY (x, y)

fY (y)
=
fY |X(y|x)fX(x)
∫

u
fXY (u, y)du

.



Chapter 3

Expectation and Moments

I begin by reviewing the usual undergraduate definitions of expected value. For absolutely
continuous random variables X we usually say:

Definition: If X has density f then

E{g(X)} =

∫

g(x)f(x) dx .

For discrete random variables we say:

Definition: If X has discrete density f then

E{g(X)} =
∑

x

g(x)f(x) .

There is something of a problem with these two definitions. They seem to define, for
instance, E(X2), in two different ways. If X has density fX then we would have

E(X2) =

∫

x2fX(x) dx.

But we could also define Y = X2 and try to figure out a density fY for Y . Then we would
have

E(Y ) =

∫

yfY (y)dy.

Are these two formulas the same? The answer is yes.

Fact: If Y = g(X) for some one-to-one smooth function g (by which I mean say g is
continuously differentiable) then

E(Y ) =

∫

yfY (y) dy =

∫

g(x)fY (g(x))g
′(x) dx

= E{g(X)}

25



26 CHAPTER 3. EXPECTATION AND MOMENTS

by change of variables formula for integration so we must have

fX(x) = fY (g(x))g
′(x).

For the moment I won’t prove this but let me consider the case where, for instance Y = e2X .
Then g(x) = e2x and g′(x) = 2e2x. Moreover

fX(x) =
d

dx
FX(x)

=
d

dx
P (X ≤ x)

=
d

dx
P (e2X ≤ e2x)

=
d

dx
P (Y ≤ e2x)

=
d

dx
FY (e

2x)

= fY (e
2x)

d

dx
e2x

as advertised.

3.0.2 General Definition of E

There are random variables which are neither absolutely continuous nor discrete. I now
give a definition of expected value which covers such cases and includes both discrete and
continuous random variables.

Definition: We say that a random variable X is simple if we can write

X(ω) =

n
∑

1

ai1(ω ∈ Ai)

for some constants a1, . . . , an and events Ai.

Definition: For a simple random variable X we define

E(X) =
∑

aiP (Ai) .

I remark that logically it might be possible to write X in two ways, say

n
∑

i=1

ai1(ω ∈ Ai) =

m
∑

i=1

bi1(ω ∈ Bi)

some constants a1, . . . , an, b1, . . . , bm and events A1, . . . , An and B1, . . . , Bm. I claim that if
this happens then we must have

n
∑

i=1

aiP (Ai) =

m
∑

i=1

biP (Bi).
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I won’t prove the claim!
For positive random variables which are not simple we extend our definition by approxi-

mation from below:

Definition: If X ≥ 0 then

E(X) = sup{E(Y ) : 0 ≤ Y ≤ X, Y simple} .

This notation hides the fact that for positive, simple, random variables X we appear to
have given 2 definitions for E(X). It is possible to prove they are the same.

Finally we extend the definition to general random variables:

Definition: A random variable X is integrable if

E(|X|) <∞ .

In this case we define

E(X) = E{max(X, 0)} − E{max(−X, 0)} .

Again it might seem we have another definition for simple random variable or for non-negative
random variables but it is possible to prove all the definitions agree.

Fact: : E is a linear, monotone, positive operator. This means:

1. Linear: E(aX + bY ) = aE(X) + bE(Y ) provided X and Y are integrable.

2. Positive: P (X ≥ 0) = 1 implies E(X) ≥ 0.

3. Monotone: P (X ≥ Y ) = 1 and X , Y integrable implies E(X) ≥ E(Y ).

Jargon: An operator is a function whose domain is itself a set of functions. That makes
E an operator because random variables are functions. Sometimes we call operators whose
range is in real or complex numbers a functional.

3.0.3 Convergence Theorems

There are some important theorems about interchanging limits with integrals and our def-
inition of E is really the definition of an integral. In fact you will often see a variety of
notations:

E(g(X)) =

∫

g(x)F (dx)

=

∫

g(x)dF (x)

=

∫

gdF
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Sometimes the integral notations make it easier to see how a calculation works out. The
notation dF (x) has the advantage that if F has a density f = F ′ we can write

dF (x) = f(x)dx.

In calculus courses there is quite a bit of attention paid to such questions as when

d

dy

∫

g(x, y)dx =

∫

∂

∂y
g(x, y)dx.

The issue is that the definition of a derivative involves a limit. The left hand side is

lim
h→0

∫

g(x, y + h)− g(x, y)

h
dx

while the right hand side is

∫

lim
h→0

g(x, y + h)− g(x, y)

h
dx

and the issue is whether or not you can pull limits in and out of integrals. You often can;
the next two theorems give precise conditions for this to work.

Theorem 4 (Monotone Convergence) If 0 ≤ X1 ≤ X2 ≤ · · · and X = limXn (the
limit X automatically exists) then

E(X) = lim
n→∞

E(Xn) .

Remark: In the hypotheses we need P (Xn+1 ≥ Xn) = 1 and P (X1 ≥ 0) = 1.

Theorem 5 (Dominated Convergence) If |Xn| ≤ Yn and ∃ a random variable X such
that Xn → X (technical details of this convergence come later in the course) and a random
variable Y such that Yn → Y with limn→∞ E(Yn) = E(Y ) <∞ then

lim
n→∞

E(Xn) = E(X) .

Remark: The dominated convergence theorem is often used with all Yn the same random
variable Y . In this case the hypothesis that limn→∞ E(Yn) = E(Y ) <∞ is just the hypothesis
that E(Y ) <∞.

Remark: These theorems are used in approximation. We compute the limit of the expected
values of a sequence of random variables Xn and then approximate E(X225) (or whatever n
we actually have instead of 225) by E(X).
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3.0.4 Connection to ordinary integrals

Theorem 6 With this definition of E:

1. if X has density f(x) (even in Rp say) and Y = g(X) then

E(Y ) =

∫

g(x)f(x)dx .

(This could be a multiple integral.)

2. If X has probability mass function f then

E(Y ) =
∑

x

g(x)f(x) .

3. The first conclusion works, e.g., even if X has a density but Y doesn’t.

3.0.5 Moments

• Definition: The rth moment (about the origin) of a real random variable X is µ′
r =

E(Xr) (provided it exists).

• We generally use µ for E(X).

• Definition: The rth central moment is

µr = E[(X − µ)r]

• We call σ2 = µ2 the variance.

• Definition: For an Rp valued random vector X

µX = E(X)

is the vector whose ith entry is E(Xi) (provided all entries exist).

• Definition: The (p× p) variance covariance matrix of X is

Var(X) = E
[

(X − µ)(X − µ)t
]

which exists provided each component Xi has a finite second moment.
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3.0.6 Moments and independence

Theorem 7 If X1, . . . , Xp are independent and each Xi is integrable then X = X1 · · ·Xp is
integrable and

E(X1 · · ·Xp) = E(X1) · · ·E(Xp) .

Proof: Suppose each Xi is simple:

Xi =
∑

j

xij1(Xi = xij)

where the xij are the possible values of Xi. Then

E(X1 · · ·Xp) =
∑

j1...jp

x1j1 · · ·xpjpE(1(X1 = x1j1) · · · 1(Xp = xpjp))

=
∑

j1...jp

x1j1 · · ·xpjpP (X1 = x1j1 · · ·Xp = xpjp)

=
∑

j1...jp

x1j1 · · ·xpjpP (X1 = x1j1) · · ·P (Xp = xpjp)

=
∑

j1

x1j1P (X1 = x1j1) · · ·
∑

jp

xpjpP (Xp = xpjp)

=
∏

E(Xi) .

Non-negative Case: Now consider non-negative random variables Xi, Let Xin be Xi

rounded down to the nearest multiple of 2−n to a maximum of n. That is: if

k

2n
≤ Xi <

k + 1

2n

then Xin = k/2n for k = 0, . . . , n2n. For Xi > n putXin = n. Now apply the case we have
just done:

E(
∏

Xin) =
∏

E(Xin) .

Monotone convergence applies to both sides to prove the result for non-negative Xi.
General case: now consider general Xi and write each Xi as the difference of positive and

negative parts:

Xi = max(Xi, 0)−max(−Xi, 0) .

Write out
∏

i |Xi| as a sum of products and apply the positive case to see that if all the Xi

are integrable then so is
∏

iXi.

3.0.7 Conditional Expectations

• Abstract definition of conditional expectation is:
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• Definition: E(Y |X) is any function of X such that

E [R(X)E(Y |X)] = E [R(X)Y ]

for any bounded function R(X).

• Definition: E(Y |X = x) is a function g(x) such that

g(X) = E(Y |X)

• Fact: If X, Y has joint density fX,Y (x, y) and conditional density f(y|x) then

g(x) =

∫

yf(y|x)dy

satisfies these definitions.

Proof:

E(R(X)g(X)) =

∫

R(x)g(x)fX(x)dx

=

∫

R(x)

∫

yf(y|x)dyfX(x)dx

=

∫ ∫

R(x)yfX(x)f(y|x)dydx

=

∫ ∫

R(x)yfX,Y (x, y)dydx

= E(R(X)Y )

Interpretation of conditional expectation

• Intuition: Think of E(Y |X) as average Y holding X fixed.

• Behaves like ordinary expected value but functions of X only are like constants:

E(
∑

Ai(X)Yi|X) =
∑

Ai(X)E(Yi|X)

• Statement called Adam’s law by Jerzy Neyman – he used to say it comes before all
the others:

E[E(Y |X)] = E(Y )

which is just the definition of E(Y |X) with R(X) ≡ 1.

• In regression courses we say that the total sum of squares is the sum of the regression
sum of squares plus the residual sum of squares:

Var(Y) = Var(E(Y |X)) + E[Var(Y |X)]

• The conditional variance means

Var(Y |X) = E[(Y − E(Y |X))2|X ].
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3.0.8 Moments

Moment is an old word from physics used in such terms as moments of inertia. There is
actually a good analogy between the physics use of the term and our use. If you made a
block of wood shaped like the density of a random variable X and you tried to balance the
block (it will be thin, long, flat on the bottom and curved into the shape of the density on
the top) on a pencil the pencil would have to be located under the mean of the density. The
moment of force about this pencil would be 0. Warning: go elsewhere to learn physics.

Definition: The rth moment (about the origin) of a real random variable X is µ′
r = E(Xr)

(provided it exists – that is, provided Xr is integrable).

Notation: We generally use µ for E(X).

Definition: The rth central moment is

µr = E[(X − µ)r]

Notation: We call σ2 = µ2 the variance.

Definition: For an Rp valued random vector X

µX = E(X)

is the vector whose ith entry is E(Xi) (provided all entries exist). Similarly for matrices we
take expected values entry by entry.

Definition: The (p× p) variance covariance matrix of X is

Var(X) = E
[

(X − µ)(X − µ)t
]

which exists provided each component Xi has a finite second moment.
The ijth entry in (X − µ)(X − µ)t is (Xi − µi)(Xj − µj). As a result this matrix has

diagonal entries which are the usual variances of the individual Xi and off diagonal entries
which are covariances.

3.0.9 Moments and independence

Theorem 8 If X1, . . . , Xp are independent and each Xi is integrable then X = X1 · · ·Xp is
integrable and

E(X1 · · ·Xp) = E(X1) · · ·E(Xp) .

Proof: First suppose each Xi is simple:

Xi =
∑

j

xij1(Xi = xij)
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where the xij are the possible values of Xi. Then

E(X1 · · ·Xp) =
∑

j1...jp

x1j1 · · ·xpjpE(1(X1 = x1j1) · · ·1(Xp = xpjp))

=
∑

j1...jp

x1j1 · · ·xpjpP (X1 = x1j1 · · ·Xp = xpjp)

=
∑

j1...jp

x1j1 · · ·xpjpP (X1 = x1j1) · · ·P (Xp = xpjp)

=
∑

j1

x1j1P (X1 = x1j1) · · ·
∑

jp

xpjpP (Xp = xpjp)

=
∏

E(Xi) .

Now we consider the case of general Xi ≥ 0. Let Xin be Xi rounded down to nearest
multiple of 2−n (to maximum of n). That is, if

k

2n
≤ Xi <

k + 1

2n

then we define Xin = k/2n for k = 0, . . . , n2n and for Xi > n we put Xin = n.
Now we apply the case we have just done:

E(
∏

Xin) =
∏

E(Xin) .

Finally we apply the monotone convergence theorem to both sides.
It remains to consider Xi which might not be positive. Use the previous case to prove

that

|
∏

Xi| =
∏

|Xi|

is integrable. Then expend the product of positive minus negative parts,

Xi = max(Xi, 0)−max(−Xi, 0) .

Next check that all of the 2p terms you get, after expanding out, are integrable and apply
the previous case. The details are algebraically messy and not very informative in my view.
An alternative theory is that I am too lazy to write them out.

3.1 Conditional Expectations

I am going to give here the abstract “definition” of a conditional expectation. The definition
is indirect – it is a thing which has a certain property. That means that I ought to prove
there is a thing with that property and that the thing with the property is unique. As usual
– I won’t be doing that here.

The abstract definition of conditional expectation is:
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Definition: E(Y |X) is any function of X such that

E [R(X)E(Y |X)] = E [R(X)Y ]

for any bounded function R(X).

Definition: E(Y |X = x) is a function g(x) such that

g(X) = E(Y |X)

that is, such that g(X) satisfies the previous definition.

Fact: If X, Y has joint density fX,Y (x, y) and conditional density f(y|x) then

g(x) =

∫

yf(y|x)dy

satisfies these definitions.

Proof:

E(R(X)g(X)) =

∫

R(x)g(x)fX(x)dx

=

∫

R(x)

∫

yf(y|x)dyfX(x)dx

=

∫ ∫

R(x)yfX(x)f(y|x)dydx

=

∫ ∫

R(x)yfX,Y (x, y)dydx

= E(R(X)Y )

3.1.1 Interpretation and properties of conditional expectation

• Intuition: Think of E(Y |X) as average Y holding X fixed.

• Behaves like ordinary expected value but functions of X only are like constants:

E(
∑

Ai(X)Yi|X) =
∑

Ai(X)E(Yi|X)

• Statement called Adam’s law by Jerzy Neyman – he used to say it comes before all
the others:

E[E(Y |X)] = E(Y )

which is just the definition of E(Y |X) with R(X) ≡ 1.

• In regression courses we say that the total sum of squares is the sum of the regression
sum of squares plus the residual sum of squares:

Var(Y) = Var(E(Y |X)) + E[Var(Y |X)]

• The conditional variance means

Var(Y |X) = E[(Y − E(Y |X))2|X ].



3.2. GENERATING FUNCTIONS 35

3.2 Generating Functions

3.2.1 Moment Generating Functions

There are many uses of generating functions in mathematics. We often study the properties
of a sequence an of numbers by creating the function

∞
∑

n=0

ans
n

In statistics the most commonly used generating functions are the probability generating
function (for discrete variables), the moment generating function, the characteristic function
and the cumulant generating function. I begin with moment generating functions:

Definition: The moment generating function of a real valued random variable X is

MX(t) = E(etX)

defined for those real t for which the expected value is finite.

Definition: The moment generating function of a random vector X ∈ Rp is

MX(u) = E[eu
tX ]

defined for those vectors u for which the expected value is finite.
This function has a formal connection to moments obtained by taking expected values

term by term; in fact if MX(t) is finite for all |t| < ǫ then it is legitimate to take expected
values term by term for |t| < ǫ. We get

MX(t) =

∞
∑

k=0

E[(tX)k]/k!

=

∞
∑

k=0

µ′
kt

k/k! .

Sometimes we can find the power series expansion of MX and read off the moments of X
from the coefficients of tk/k!.

Theorem 9 If M is finite for all t ∈ [−ǫ, ǫ] for some ǫ > 0 then

1. Every moment of X is finite.

2. M is C∞ (in fact M is analytic).

3. µ′
k =

dk

dtk
MX(0).

Note: A function is C∞ if it has continuous derivatives of all orders.

Note: Analytic means the function has a convergent power series expansion in neighbour-
hood of each t ∈ (−ǫ, ǫ).

The proof, and many other facts about moment generating functions, rely on advanced
techniques in the field of complex variables. I won’t be proving any of these assertions.
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3.2.2 Moment Generating Functions and Sums

One of the most useful facts about moment generating functions is that the moment gen-
erating function of a sum of independent variables is the product of the individual moment
generating functions.

Theorem 10 If X1, . . . , Xp are independent random vectors in Rp and Y =
∑

Xi then the
moment generating function of Y is the product of those of the individual Xi:

MY (u) = E(eu
tY ) =

∏

i

E(eu
tXi) =

∏

i

MXi
(u).

If we could find the power series expansion of MY then we could find the moments of
MY . The problem, however, is that the power series expansion of MY not nice function of
the expansions of individual MXi

. There is a related fact, namely, that the first 3 moments
(meaning µ, σ2 and µ3) of Y are sums of those of the Xi:

E(Y ) =
∑

E(Xi)

Var(Y ) =
∑

Var(Xi)

E[(Y − E(Y ))3] =
∑

E[(Xi − E(Xi))
3]

(I have given the univariate versions of these formulas but the multivariate versions are
correct as well. The first line is a vector, the second a matrix and the third an object with
3 subscripts.) However:

E[(Y − E(Y ))4] =
∑

{E[(Xi − E(Xi))
4]− 3E2[(Xi − E(Xi))

2]}

+ 3
{

∑

E[(Xi − E(Xi))
2]
}2

These observations lead us to consider cumulants and the cumulant generating function.
Since the logarithm of a product is a sum of logarithms we are led to consider taking logs of
the moment generating function. The result will give us cumulants which add up properly.

Definition: the cumulant generating function of a a random vector X by

KX(u) = log(MX(u)) .

Then if X1, . . . , Xn are independent and Y =
∑n

1 Xi we have

KY (t) =
∑

KXi
(t) .

Note that moment generating functions are all positive so that the cumulant generating
functions are defined wherever the moment generating functions are.

Now KY has a power series expansion. I consider here only the univariate case.

KY (t) =
∞
∑

r=1

κrt
r/r! .
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Definition: the κr are the cumulants of Y .
Observe that

κr(Y ) =
∑

κr(Xi) .

In other words cumulants of independent quantities add up. Now we examine the relation
between cumulants and moments by relating the power series expansion of M with that of
its logarithm. The cumulant generating function is

K(t) = log(M(t))

= log(1 + [µ1t+ µ′
2t

2/2 + µ′
3t

3/3! + · · · ])
Call the quantity in [. . .] x and expand

log(1 + x) = x− x2/2 + x3/3− x4/4 · · · .
Stick in the power series

x = µt+ µ′
2t

2/2 + µ′
3t

3/3! + · · · ;
Expand out powers of x and collect together like terms. For instance,

x2 = µ2t2 + µµ′
2t

3 + [2µ′
3µ/3! + (µ′

2)
2/4]t4 + · · ·

x3 = µ3t3 + 3µ′
2µ

2t4/2 + · · ·
x4 = µ4t4 + · · · .

Now gather up the terms. The power t1 occurs only in x with coefficient µ. The power t2

occurs in x and in x2 and so on. Putting these together gives

K(t) =µt+ [µ′
2 − µ2]t2/2 + [µ′

3 − 3µµ′
2 + 2µ3]t3/3!

+ [µ′
4 − 4µ′

3µ− 3(µ′
2)

2 + 12µ′
2µ

2 − 6µ4]t4/4! · · ·
Comparing coefficients of tr/r! we see that

κ1 = µ

κ2 = µ′
2 − µ2 = σ2

κ3 = µ′
3 − 3µµ′

2 + 2µ3 = E[(X − µ)3]

κ4 = µ′
4 − 4µ′

3µ− 3(µ′
2)

2 + 12µ′
2µ

2 − 6µ4

= E[(X − µ)4]− 3σ4 .

Reference: Kendall and Stuart (or a new version called Kendall’s Theory of Advanced
Statistics by Stuart and Ord) for formulas for larger orders r.

Example: The normal distribution: Suppose X1, . . . , Xp independent, Xi ∼ N(µi, σ
2
i ) so

that

MXi
(t) =

∫ ∞

−∞
etxe−

1

2
(x−µi)2/σ2

i dx/(
√
2πσi)

=

∫ ∞

−∞
et(σiz+µi)e−z2/2dz/

√
2π

=etµi

∫ ∞

−∞
e−(z−tσi)2/2+t2σ2

i /2dz/
√
2π

=eσ
2

i t
2/2+tµi .
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The cumulant generating function is then

KXi
(t) = log(MXi

(t)) = σ2
i t

2/2 + µit .

The cumulants are κ1 = µi, κ2 = σ2
i and every other cumulant is 0. Cumulant generating

function for Y =
∑

Xi is

KY (t) =
∑

σ2
i t

2/2 + t
∑

µi

which is the cumulant generating function of N(
∑

µi,
∑

σ2
i ).

Example: The χ2 distribution: In you homework I am asking you to derive the moment and
cumulant generating functions and moments of a Gamma random variable. Now suppose
Z1, . . . , Zν independent N(0, 1) rvs. By definition the random variable Sν =

∑ν
1 Z

2
i has χ2

ν

distribution. It is easy to check S1 = Z2
1 has density

(u/2)−1/2e−u/2/(2
√
π)

and then the moment generating function of S1 is

(1− 2t)−1/2 .

It follows that

MSν (t) = (1− 2t)−ν/2

which is (from the homework) the moment generating function of a Gamma(ν/2, 2) random
variable. So the χ2

ν distribution has a Gamma(ν/2, 2) density given by

(u/2)(ν−2)/2e−u/2/(2Γ(ν/2)) .

Example: The Cauchy distribution: The Cauchy density is

1

π(1 + x2)
;

the corresponding moment generating function is

M(t) =

∫ ∞

−∞

etx

π(1 + x2)
dx

which is +∞ except for t = 0 where we get 1. Every t distribution has exactly same moment
generating function. So we cannot use moment generating functions to distinguish such
distributions. The problem is that these distributions do not have infinitely many finite
moments. So we now develop a substitute substitute for the moment generating function
which is defined for every distribution, namely, the characteristic function.
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3.2.3 Aside on complex arithmetic

Complex numbers are a fantastically clever idea. The idea is to imagine that −1 has a
square root and see what happens. We add i ≡

√
−1 to the real numbers. Then, we insist

that all the usual rules of algebra are unchanged. So, if i and any real numbers a and b are
to be complex numbers then so must be a + bi. Now let us look at each of the arithmetic
operations to see how they have to work:

• Multiplication: If we multiply a complex number a + bi with a and b real by another
such number, say c + di then the usual rules of arithmetic (associative, commutative
and distributive laws) require

(a+ bi)(c + di) =ac + adi+ bci+ bdi2

=ac + bd(−1) + (ad+ bc)i

=(ac− bd) + (ad+ bc)i

so this is precisely how we define multiplication.

• Addition: we follow the usual rules (commutative, associative and distributive laws)
to get

(a+ bi) + (c+ di) = (a + c) + (b+ d)i .

• Additive inverses:
−(a+ bi) = −a + (−b)i.

Notice that 0 + 0i functions as 0 – it is an additive identity. In fact we normally just
write 0.

• Multiplicative inverses:

1

a+ bi
=

1

a + bi

a− bi

a− bi

=
a− bi

a2 − abi+ abi− b2i2
=

a− bi

a2 + b2
.

• Division:
a + bi

c+ di
=

(a + bi)

(c+ di)

(c− di)

(c− di)
=
ac− bd+ (bc + ad)i

c2 + d2
.

This rule for clearing the complex number from the denominator is a perfect match
for the technique taught in high school and used in calculus, for dealing with fractions
involving a + b

√
c in the denominator.

• You should now notice that the usual rules of arithmetic don’t require any more num-
bers than

x+ yi

where x and y are real. So the complex numbers C are just all these numbers.
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• Transcendental functions: For real x have ex =
∑

xk/k! and ea+b = eaeb so we
want to insist that

ex+iy = exeiy .

The problem is how to compute eiy?

• Remember i2 = −1 so i3 = −i, i4 = 1 i5 = i1 = i and so on. Then

eiy =

∞
∑

0

(iy)k

k!

=1 + iy + (iy)2/2 + (iy)3/6 + · · ·
=1− y2/2 + y4/4!− y6/6! + · · ·
+ iy − iy3/3! + iy5/5! + · · ·

=cos(y) + i sin(y)

• We can thus write
ex+iy = ex(cos(y) + i sin(y))

• Identify x+ yi with the corresponding point (x, y) in the plane.

• Picture the complex numbers as forming a plane.

• Now every point in the plane can be written in polar co-ordinates as (r cos θ, r sin θ)
and comparing this with our formula for the exponential we see we can write

x+ iy =
√

x2 + y2 eiθ = reiθ

for an angle θ ∈ [0, 2π).

• Multiplication revisited: if x + iy = reiθ and x′ + iy′ = r′eiθ
′

then when we multiply
we get

(x+ iy)(x′ + iy′) = reiθr′eiθ
′

= rr′ei(θ+θ′) .

• We will need from time to time a couple of other definitions:

• Definition: The modulus of x+ iy is

|x+ iy| =
√

x2 + y2 .

• Definition: The complex conjugate of x+ iy is x+ iy = x− iy.

• Some identities: z = x+ iy = reiθ and z′ = x′ + iy′ = r′eiθ
′

.

• Then
zz = x2 + y2 = r2 = |z|2
z′

z
=
z′z

|z|2 = rr′ei(θ
′−θ)

reiθ = re−iθ.
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3.2.4 Notes on calculus with complex variables

The rules for calculus with complex numbers are really very much like the usual rules. For
example,

d

dt
eit = ieit .

We will (mostly) be doing only integrals over the real line; the theory of integrals along paths
in the complex plane is a very important part of mathematics, however.

Fact: (This fact is not used explicitly in course). If f : C 7→ C is differentiable then f is
analytic (has power series expansion).

3.2.5 Characteristic Functions

Definition: The characteristic function of a real random variable X is

φX(t) = E(eitX)

where i =
√
−1 is the imaginary unit.

Since
eitX = cos(tX) + i sin(tX)

we find that
φX(t) = E(cos(tX)) + iE(sin(tX)) .

Since the trigonometric functions are bounded by 1 the expected values must be finite for
all t. This is precisely the reason for using characteristic rather than moment generating
functions in probability theory courses.

The characteristic function is called “characteristic” because if you know it you know the
distribution of the random variable involved. That is what is meant in mathematics when
we say something characterizes something else.

Theorem 11 For any two real random vectors X and Y (say p-dimensional) the following
are equivalent:

1. X and Y have the same distribution, that is, for any (Borel) set A ⊂ Rp we have

P (X ∈ A) = P (Y ∈ A) .

2. FX(t) = FY (t) for all t ∈ Rp.

3. φX(u) = E(eiu
tX) = E(eiu

tY ) = φY (u) for all u ∈ Rp.

Moreover, all these are implied if there is ǫ > 0 such that for all |t| ≤ ǫ

MX(t) =MY (t) <∞ .
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3.3 Inversion Formulae

3.3.1 Inversion

The previous theorem is non-constructive characterization. That is, it says that φX deter-
mines FX and fX but it does not say how to find the latter from the former. This raises the
question: Can get from φX to FX or fX by inversion.

If X is a random variable taking only integer values then for each integer k

P (X = k) =
1

2π

∫ 2π

0

φX(t)e
−itkdt

=
1

2π

∫ π

−π

φX(t)e
−itkdt .

The proof proceeds from the formula

φX(t) =
∑

k

eiktP (X = k) .

You multiply this by e−ijt and integrate from 0 to 2π. This produces

∫ 2π

0

e−ijtφX(t) dt =
∑

k

P (X = k)

∫ 2π

0

ei(k−j)t dt.

Now for k 6= j the derivative of

ei(k−j)t

with respect to t is just

i(k − j)ei(k−j)t

so the integral is simply

ei(k−j)t

i(k − j)

∣

∣

∣

∣

t=2π

t=0

=
cos(2(k − j)π) + i sin(2(k − j)π)− cos(0)− i sin(0)

i(k − j)
=

1 + 0i− 1− 0i

i(k − j)
= 0.

The integral with k = j, however, is different. It is just

∫ 2π

0

ei0tdt =

∫ 2π

0

1dt = 2π.

So
∫ 2π

0

e−ijtφX(t) dt = 2πP (X = j).

Now suppose X has continuous bounded density f . Define

Xn = [nX ]/n
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where [a] denotes the integer part (rounding down to the next smallest integer). We have

P (k/n ≤ X < (k + 1)/n)

=P ([nX ] = k)

=
1

2π

∫ π

−π

φ[nX](t)× e−itkdt .

Make the substitution t = u/n, and get

nP (k/n ≤ X < (k + 1)/n) =
1

2π
×
∫ nπ

−nπ

φ[nX](u/n)e
−iuk/ndu .

Now, as n→ ∞ we have

φ[nX](u/n) = E(eiu[nX]/n) → E(eiuX) .

(Dominated convergence: |eiu| ≤ 1.)
Range of integration converges to the whole real line.
If k/n→ x left hand side converges to density f(x) while right hand side converges to

1

2π

∫ ∞

−∞
φX(u)e

−iuxdu

which gives the inversion formula

fX(x) =
1

2π

∫ ∞

−∞
φX(u)e

−iuxdu .

Many other such formulas are available to compute things like F (b) − F (a) and so on; the
book by Loève on probability is a good source for such formulas and their proofs.

All such formulas are called Fourier inversion formulas. The characteristic function
is also called the Fourier transform of f or F .

3.3.2 Inversion of the Moment Generating Function and Saddle-

point Approximations

The moment generating function and the characteristic function are related formally:

MX(it) = φX(t) .

When MX exists this relationship is not merely formal; the methods of complex variables
mean there is a “nice” (analytic) function which is E(ezX) for any complex z = x + iy for
which MX(x) is finite. So: there is an inversion formula for MX using a complex contour
integral:

If z1 and z2 are two points in the complex plane and C a path between these two points
we can define the path integral

∫

C

f(z)dz
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by the methods of line integration.
The inversion formula just derived was

2πif(x) =

∫ ∞

−∞
MX(it)e

−itxdt

Now imagine making a change of variables to z = it. As t, a real variable, goes from −∞
to ∞ the variable z runs up the imaginary axis. We also have dz = i dt. This leads to the
following inversion formula for the moment generating function

2πif(x) =

∫ i∞

−i∞
M(z)e−zxdz

(the limits of integration indicate a contour integral running up the imaginary axis.)
It is now possible to replace contour (using complex variables theory) with the line

Re(z) = c. (Re(Z) denotes the real part of z, that is, x when z = x+ iy with x and y real.)
We must choose c so that M(c) < ∞. In this case we rewrite the inversion formula using
the cumulant generating function K(t) = log(M(t)) in the following form:

2πif(x) =

∫ c+i∞

c−i∞
exp(K(z)− zx)dz .

Along the contour in question we have z = c+ iy so we can think of the integral as being

i

∫ ∞

−∞
exp(K(c + iy)− (c+ iy)x)dy .

Now we do a Taylor expansion of the exponent:

K(c+ iy)− (c+ iy)x = K(c)− cx+ iy(K ′(c)− x)− y2K ′′(c)/2 + · · · .

Ignore the higher order terms and select a c so that the first derivative

K ′(c)− x

vanishes. Such a c is called a saddlepoint. We get the formula

2πf(x) ≈ exp(K(c)− cx)

∫ ∞

−∞
exp(−y2K ′′(c)/2)dy .

The integral is a normal density calculation; it gives

√

2π/K ′′(c) .

Thus our saddlepoint approximation is

f(x) ≈ exp(K(c)− cx)
√

2πK ′′(c)
.
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The tactic used here is essentially the same idea as in Laplace’s approximation whose
most famous example is Stirling’s formula

Example: Stirling’s approximation to a factorial. We may show, by induction on n and
integration by parts that

n! =

∫ ∞

0

exp(n log(x)− x)dx .

The exponent is maximized when x = n. For n large we approximate f(x) = n log(x)−x by

f(x) ≈ f(x0) + (x− x0)f
′(x0) + (x− x0)

2f ′′(x0)/2

and choose x0 = n to make f ′(x0) = 0. Then

n! ≈
∫ ∞

0

exp[n log(n)− n− (x− n)2/(2n)]dx .

Substitute y = (x− n)/
√
n; get approximation

n! ≈ n1/2nne−n

∫ ∞

−∞
e−y2/2dy

or
n! ≈

√
2πnn+1/2e−n .

Note: I am being quite sloppy about limits of integration; this is a fixable error but I won’t
be doing the fixing. A real proof must show that the integral over x not near n is negligible.
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Chapter 4

Distribution Theory

The basic problem of distribution is to compute the distribution of statistics when the data
come from some model. You start with assumptions about the density f or the cumulative
distribution function F of some random vector X = (X1, . . . , Xp); typically X is your data
and f or F come from your model. If you don’t know f you need to try to do this calculation
for all the densities which are possible according to your model. So now suppose Y =
g(X1, . . . , Xp) is some function of X — usually some statistic of interest.

How can we compute the distribution or CDF or density of Y ?

4.1 Univariate Techniques

Method 1: our first method is to compute the cumulative distribution function of Y by
integration and differentiate to find the density fY .

Example: Suppose U ∼ Uniform[0, 1] and Y = − logU .

FY (y) = P (Y ≤ y) = P (− logU ≤ y)

= P (logU ≥ −y) = P (U ≥ e−y)

=

{

1− e−y y > 0
0 y ≤ 0 .

so that Y has a standard exponential distribution.

Example: The χ2 density. Suppose Z ∼ N(0, 1), that is, that Z has density

fZ(z) =
1√
2π
e−z2/2

and let Y = Z2. Then

FY (y) = P (Z2 ≤ y)

=

{

0 y < 0
P (−√

y ≤ Z ≤ √
y) y ≥ 0 .

47
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Now differentiate
P (−√

y ≤ Z ≤ √
y) = FZ(

√
y)− FZ(−

√
y)

to get

fY (y) =







0 y < 0
d
dy

[

FZ(
√
y)− FZ(−

√
y)
]

y > 0

undefined y = 0 .

Now we differentiate:

d

dy
FZ(

√
y) = fZ(

√
y)
d

dy

√
y

=
1√
2π

exp
(

− (
√
y)2 /2

) 1

2
y−1/2

=
1

2
√
2πy

e−y/2 .

There is a similar formula for the other derivative. Thus

fY (y) =







1√
2πy
e−y/2 y > 0

0 y < 0
undefined y = 0 .

We will find indicator notation useful:

1(y > 0) =

{

1 y > 0
0 y ≤ 0

which we use to write

fY (y) =
1√
2πy

e−y/21(y > 0) .

This changes our definition unimportantly at y = 0.
Notice: I never evaluated FY before differentiating it. In fact FY and FZ are integrals I can’t
do but I can differentiate them anyway. Remember the fundamental theorem of calculus:

d

dx

∫ x

a

f(y) dy = f(x)

at any x where f is continuous.
This leads to the following summary: for Y = g(X) with X and Y each real valued

P (Y ≤ y) = P (g(X) ≤ y)

= P (X ∈ g−1(−∞, y]) .

Take d/dy to compute the density

fY (y) =
d

dy

∫

{x:g(x)≤y}
fX(x) dx .
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Often we can differentiate without doing the integral.
Method 2: One general case is handled by the method of change of variables. Suppose that
g is one to one. I will do the case where g is increasing and differentiable.

We begin from the interpretation of density (based on the notion that the density is give
by F ′):

fY (y) = lim
δy→0

P (y ≤ Y ≤ y + δy)

δy

= lim
δy→0

FY (y + δy)− FY (y)

δy

and

fX(x) = lim
δx→0

P (x ≤ X ≤ x+ δx)

δx
.

Now assume y = g(x). Define δy by y + δy = g(x+ δx). Then

P (y ≤ Y ≤ g(x+ δx)) = P (x ≤ X ≤ x+ δx) .

We get
P (y ≤ Y ≤ y + δy))

δy
=
P (x ≤ X ≤ x+ δx)/δx

{g(x+ δx)− y}/δx .

Take the limit as δx→ 0 to get

fY (y) = fX(x)/g
′(x) or fY (g(x))g

′(x) = fX(x) .

Alternative view: we can now try to look at this calculation in a slightly different way:
each probability above is the integral of a density. The first is the integral of fY from y = g(x)
to y = g(x+ δx). The interval is narrow so fY is nearly constant over this interval and

P (y ≤ Y ≤ g(x+ δx)) ≈ fY (y)(g(x+ δx)− g(x)) .

Since g has a derivative g(x+ δx)− g(x) ≈ δxg′(x) so we get

P (y ≤ Y ≤ g(x+ δx)) ≈ fY (y)g
′(x)δx .

The same idea applied to P (x ≤ X ≤ x+ δx) gives

P (x ≤ X ≤ x+ δx) ≈ fX(x)δx

so that
fY (y)g

′(x)δx ≈ fX(x)δx

or, cancelling the δx in the limit

fY (y)g
′(x) = fX(x) .

If you remember y = g(x) then you get

fX(x) = fY (g(x))g
′(x) .
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It is often more useful to express the whole formula in terms of the new variable y to get
a formula for fY (y). We do this by solving y = g(x) to get x in terms of y, that is, find a
formula for x = g−1(y) and then see that

fY (y) = fX(g
−1(y))/g′(g−1(y)) .

This is just the change of variables formula for doing integrals.

Remark: : For g decreasing g′ < 0 but then the interval (g(x), g(x+ δx)) is really (g(x+
δx), g(x)) so that g(x)− g(x+ δx) ≈ −g′(x)δx. In both cases this amounts to the formula

fX(x) = fY (g(x))|g′(x)| .

This leads to what I think is a very useful Mnemonic:

fY (y)dy = fX(x)dx .

To use the mnemonic to find a formula for fY (y) you solve that equation for fY (y). The
right hand side will have dx/dy which is the derivative of x with respect to y when you have
a formula for x in terms of y. The x is fX(x) must be replaced by the equivalent formula
using y to make sure your formula for fY (y) has only y in it – not x.

Example: Suppose X ∼ Weibull(shape α, scale β) or

fX(x) =
α

β

(

x

β

)α−1

exp {−(x/β)α} 1(x > 0) .

Let Y = logX or g(x) = log(x). Solve y = log x to get x = exp(y) or g−1(y) = ey. Then
g′(x) = 1/x and 1/g′(g−1(y)) = 1/(1/ey) = ey. Hence

fY (y) =
α

β

(

ey

β

)α−1

exp {−(ey/β)α} 1(ey > 0)ey .

For any y, ey > 0 so the indicator is always just 1. Thus

fY (y) =
α

βα
exp {αy − eαy/βα} .

Now define φ = log β and θ = 1/α; this is called a reparametrization. Then

fY (y) =
1

θ
exp

{

y − φ

θ
− exp

{

y − φ

θ

}}

.

This is the Extreme Value density with location parameter φ and scale parameter θ.
You should be warned that there are several distributions are called “Extreme Value”.
Marginalization. Sometimes we have a few variables which come from many variables and
we want the joint distribution of the few. For example we might want the joint distribution of
X̄ and s2 when we have a sample of size n from the normal distribution. We often approach
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this problem in two steps. The first step, which I describe later, involves padding out the list
of the few variables to make as many as the number of variables you started with (so padding
out the list with n − 2 other variables in the normal case). Then the second step is called
marginalization: compute the marginal density of the variables of interest by integrating
away the others.

Here is the simplest multivariate problem. We begin with

X = (X1, . . . , Xp), Y = X1

(or in general Y is any Xj). We know the joint density of X and want simply the density of
Y . The relevant theorem is one I have already described:

Theorem 12 If X has density f(x1, . . . , xp) and q < p then Y = (X1, . . . , Xq) has density

fY (x1, . . . , xq) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
f(x1, . . . , xp) dxq+1 . . . dxp .

In fact, fX1,...,Xq is the marginal density of X1, . . . , Xq and fX is the joint density of X .
Really they are both just densities. “Marginal” just serves to distinguish it from the joint
density of X .

Example: The function f(x1, x2) = Kx1x21(x1 > 0, x2 > 0, x1 + x2 < 1) is a density
provided

P (X ∈ R2) =

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) dx1 dx2 = 1 .

The integral is

K

∫ 1

0

∫ 1−x1

0

x1x2 dx1 dx2 = K

∫ 1

0

x1(1− x1)
2 dx1/2

= K(1/2− 2/3 + 1/4)/2 = K/24

so K = 24. The marginal density of X1 is Beta(2, 3):

fX1
(x1) =

∫ ∞

−∞
24x1x21(x1 > 0, x2 > 0, x1 + x2 < 1) dx2

=24

∫ 1−x1

0

x1x21(0 < x1 < 1)dx2

=12x1(1− x1)
21(0 < x1 < 1) .

A more general problem has Y = (Y1, . . . , Yq) with Yi = gi(X1, . . . , Xp). We distinguish
the cases where q > p, q < p and q = p.
Case 1: q > p. In this case Y won’t have a density for “smooth” transformations g. In
fact Y will have a singular or discrete distribution. This problem is rarely of real interest.
(But, e.g., the vector of all residuals in a regression problem has a singular distribution.)
Case 2: q = p. In this case we use a multivariate change of variables formula. (See below.)
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Case 3: q < p. In this case we pad out Y –add on p−q more variables (carefully chosen) say
Yq+1, . . . , Yp. We define these extra variables by finding functions gq+1, . . . , gp and setting,
for q < i ≤ p, Yi = gi(X1, . . . , Xp) and then let Z = (Y1, . . . , Yp) . We need to choose gi so
that we can use the Case 2 change of variables on g = (g1, . . . , gp) to compute fZ . We then
hope to find fY by integration:

fY (y1, . . . , yq) =

∫ ∞

−∞
· · ·
∫ ∞

−∞
fZ(y1, . . . , yq, zq+1, . . . , zp)dzq+1 . . . dzp

4.2 Multivariate Change of Variables

Suppose Y = g(X) ∈ Rp with X ∈ Rp having density fX . Assume g is a one to one
(“injective”) map, i.e., g(x1) = g(x2) if and only if x1 = x2. Find fY using the following
steps (sometimes they are easier said than done).

Step 1 : Solve for x in terms of y: x = g−1(y).

Step 2 : Use our basic equation

fY (y)dy = fX(x)dx

and rewrite it in the form

fY (y) = fX(g
−1(y))

dx

dy
.

Step 3 : Now we need an interpretation of the derivative dx
dy

when p > 1:

dx

dy
=

∣

∣

∣

∣

det

(

∂xi
∂yj

)
∣

∣

∣

∣

which is the so called Jacobian.

• Equivalent formula inverts the matrix:

fY (y) =
fX(g

−1(y))
∣

∣

dy
dx

∣

∣

• This notation means

∣

∣

∣

∣

dy

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

det







∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xp

...
∂yp
∂x1

∂yp
∂x2

· · · ∂yp
∂xp







∣

∣

∣

∣

∣

∣

∣

but with x replaced by the corresponding value of y, that is, replace x by g−1(y).
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Example: : The bivariate normal density. The standard bivariate normal density is

fX(x1, x2) =
1

2π
exp

{

−x
2
1 + x22
2

}

.

Let Y = (Y1, Y2) where Y1 =
√

X2
1 +X2

2 and 0 ≤ Y2 < 2π is the angle from the positive
x axis to the ray from the origin to the point (X1, X2). I.e., Y is X in polar co-ordinates.
Solve for x in terms of y to get:

X1 = Y1 cos(Y2) X2 = Y1 sin(Y2)

This makes

g(x1, x2) = (g1(x1, x2), g2(x1, x2))

= (
√

x21 + x22, argument(x1, x2))

g−1(y1, y2) = (g−1
1 (y1, y2), g

−1
2 (y1, y2))

= (y1 cos(y2), y1 sin(y2))
∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

=

∣

∣

∣

∣

det

(

cos(y2) −y1 sin(y2)
sin(y2) y1 cos(y2)

)
∣

∣

∣

∣

= y1 .

It follows that

fY (y1, y2) =
1

2π
exp

{

−y
2
1

2

}

y11(0 ≤ y1 <∞)1(0 ≤ y2 < 2π) .

It remains to compute the marginal densities of Y1 and Y2. Factor fY as fY (y1, y2) =
h1(y1)h2(y2) where

h1(y1) = y1e
−y2

1
/21(0 ≤ y1 <∞)

and
h2(y2) = 1(0 ≤ y2 < 2π)/(2π) .

Then

fY1
(y1) =

∫ ∞

−∞
h1(y1)h2(y2) dy2 = h1(y1)

∫ ∞

−∞
h2(y2) dy2

so the marginal density of Y1 is a multiple of h1. The multiplier makes
∫

fY1
= 1 but in this

case
∫ ∞

−∞
h2(y2) dy2 =

∫ 2π

0

(2π)−1dy2 = 1

so that Y1 has the Weibull or Rayleigh law

fY1
(y1) = y1e

−y2
1
/21(0 ≤ y1 <∞) .

Similarly
fY2

(y2) = 1(0 ≤ y2 < 2π)/(2π)

which is the Uniform(0, 2π) density.
I leave you the following exercise: show that W = Y 2

1 /2 has a standard exponential
distribution. Recall: by definition U = Y 2

1 has a χ2 dist on 2 degrees of freedom. I also leave
you the exercise of finding the χ2

2 density. Notice that Y1 ⊥⊥ Y2.
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4.3 The Multivariate Normal Distribution

In this section I present the basics of the multivariate normal distribution as an example to
illustrate our distribution theory ideas.

Definition: A random variable Z ∈ R1 has a standard normal distribution (we write
Z ∼ N(0, 1)) if and only if Z has the density

fZ(z) =
1√
2π
e−z2/2 .

Note: To see that this is a density let

I =

∫ ∞

−∞
exp(−u2/2)du.

Then

I2 =

{
∫ ∞

−∞
exp(−u2/2)du.

}2

=

{
∫ ∞

−∞
exp(−u2/2)du

}{
∫ ∞

−∞
exp(−v2/2)dv

}

=

∫ ∞

−∞

∫ ∞

−∞
exp{−(u2 + v2)/2}dudv

Now do this integral in polar co-ordinates by the substitution u = r cos θ and v = r sin θ for
0 < r <∞ and −π < θ ≤ θ. The Jacobian is r and we get

I2 =

∫ ∞

0

∫ π

−π

r exp(−r2/2)dθdr

= 2π

∫ ∞

0

r exp(−r2/2)dr

= −2π exp(−r2/2)
∣

∣

∞
r=0

= 2π.

Thus
I =

√
2π.

Definition: A random vector Z ∈ Rp has a standard multivariate normal distribution,
written Z ∼ MVN(0, I) if and only if Z = (Z1, . . . , Zp)

t with the Zi independent and each
Zi ∼ N(0, 1).

In this case according to our theorem 4.3

fZ(z1, . . . , zp) =
∏ 1√

2π
e−z2i /2

= (2π)−p/2 exp{−ztz/2} ;
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here, superscript t denotes matrix transpose.

Definition: X ∈ Rp has a multivariate normal distribution if it has the same distribution
as AZ + µ for some µ ∈ Rp, some p× p matrix of constants A and Z ∼MV N(0, I).

Remark: If the matrix A is singular then X does not have a density. This is the case for
example for the residual vector in a linear regression problem.

Remark: If the matrix A is invertible we can derive the multivariate normal density by
change of variables:

X = AZ + µ⇔ Z = A−1(X − µ)

∂X

∂Z
= A

∂Z

∂X
= A−1 .

So

fX(x) = fZ(A
−1(x− µ))| det(A−1)|

=
exp{−(x− µ)t(A−1)tA−1(x− µ)/2}

(2π)p/2| detA| .

Now define Σ = AAt and notice that

Σ−1 = (At)−1A−1 = (A−1)tA−1

and
det Σ = detA detAt = (detA)2 .

Thus fX is
exp{−(x− µ)tΣ−1(x− µ)/2}

(2π)p/2(det Σ)1/2
;

the MVN(µ,Σ) density. Note that this density is the same for all A such that AAt = Σ.
This justifies the usual notation MV N(µ,Σ).

Here is a question: for which µ, Σ is this a density? The answer is that this is a density
for any µ but if x ∈ Rp then

xtΣx = xtAAtx

= (Atx)t(Atx)

=

p
∑

1

y2i ≥ 0

where y = Atx. The inequality is strict except for y = 0 which is equivalent to x = 0. Thus
Σ is a positive definite symmetric matrix.

Conversely, if Σ is a positive definite symmetric matrix then there is a square invertible
matrix A such that AAt = Σ so that there is a MVN(µ,Σ) distribution. (This square root
matrix A can be found via the Cholesky decomposition, e.g.)
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When A is singular X will not have a density because ∃a such that P (atX = atµ) = 1;
in this case X is confined to a hyperplane. A hyperplane has p dimensional volume 0 so no
density can exist.

It is still true that the distribution of X depends only on Σ = AAt: if AAt = BBt then
AZ+µ and BZ+µ have the same distribution. This can be proved using the characterization
properties of moment generating functions.

I now make a list of three basic properties of the MVN distribution.

1. All margins of a multivariate normal distribution are multivariate normal. That is, if

X =

[

X1

X2

]

,

µ =

[

µ1

µ2

]

and

Σ =

[

Σ11 Σ12

Σ21 Σ22

]

then X ∼MVN(µ,Σ) ⇒ X1 ∼MV N(µ1,Σ11).

2. All conditionals are normal: the conditional distribution of X1 given X2 = x2 is
MVN(µ1 + Σ12Σ

−1
22 (x2 − µ2),Σ11 − Σ12Σ

−1
22 Σ21)

3. If X ∼ MVNp(µ,Σ) then MX + ν ∼ MVN(Mµ + ν,MΣM t). We say that an affine
transformation of a multivariate normal vector is normal.

4.4 Samples from the Normal Distribution

The ideas of the previous sections can be used to prove the basic sampling theory results for
the normal family. Here is the theorem which describes the distribution theory of the most
important statistics.

Theorem 13 Suppose X1, . . . , Xn are independent N(µ, σ2) random variables. Then

1. X̄ (sample mean)and s2 (sample variance) independent.

2. n1/2(X̄ − µ)/σ ∼ N(0, 1).

3. (n− 1)s2/σ2 ∼ χ2
n−1.

4. n1/2(X̄ − µ)/s ∼ tn−1.

Proof: Let Zi = (Xi−µ)/σ. Then Z1, . . . , Zp are independent N(0, 1). So Z = (Z1, . . . , Zp)
t

is multivariate standard normal.
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Note that X̄ = σZ̄ + µ and s2 =
∑

(Xi − X̄)2/(n− 1) = σ2
∑

(Zi − Z̄)2/(n− 1) Thus

n1/2(X̄ − µ)

σ
= n1/2Z̄

(n− 1)s2

σ2
=
∑

(Zi − Z̄)2

and

T =
n1/2(X̄ − µ)

s
=
n1/2Z̄

sZ

where (n−1)s2Z =
∑

(Zi− Z̄)2. It is therefore enough to prove the theorem in the case µ = 0
and σ = 1.
Step 1: Define

Y = (
√
nZ̄, Z1 − Z̄, . . . , Zn−1 − Z̄)t .

(So that Y has same dimension as Z.) Now

Y =











1√
n

1√
n

· · · 1√
n

1− 1
n

− 1
n

· · · − 1
n

− 1
n

1− 1
n

· · · − 1
n

...
...

...
...





















Z1

Z2
...
Zn











or letting M denote the matrix
Y =MZ .

It follows that Y ∼MV N(0,MM t) so we need to compute MM t:

MM t =











1 0 0 · · · 0
0 1− 1

n
− 1

n
· · · − 1

n
... − 1

n

. . . · · · − 1
n

0
... · · · 1− 1

n











=





1 0

0 Q



 .

Solve for Z from Y : Zi = n−1/2Y1 + Yi+1 for 1 ≤ i ≤ n− 1. Use the identity

n
∑

i=1

(Zi − Z̄) = 0

to get Zn = −∑n
i=2 Yi + n−1/2Y1. So M is invertible:

Σ−1 ≡ (MM t)−1 =





1 0

0 Q−1



 .
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Now use the change of variables formula to find fY . Let y2 denote the vector whose entries
are y2, . . . , yn. Note that

ytΣ−1y = y21 + yt
2Q

−1y2 .

Then

fY (y) =(2π)−n/2 exp[−ytΣ−1y/2]/| detM |

=
1√
2π
e−y2

1
/2×

(2π)−(n−1)/2 exp[−yt
2Q

−1y2/2]

| detM | .

Note: fY is a function of y1 times a ftn of y2, . . . , yn. Thus
√
nZ̄ is independent of Z1 −

Z̄, . . . , Zn−1 − Z̄. Since s2Z is a function of Z1 − Z̄, . . . , Zn−1 − Z̄ we see that
√
nZ̄ and s2Z

are independent.
Also, the density of Y1 is a multiple of the function of y1 in the factorization above. But

this factor is a standard normal density so
√
nZ̄ ∼ N(0, 1).

The first 2 parts of the theorem are now done. The third part is a homework exercise.
I now present a derivation of the χ2 density; this is not part of the proof of the theorem

but is another distribution theory example. Suppose Z1, . . . , Zn are independent N(0, 1).
Define the χ2

n distribution to be that of U = Z2
1 + · · ·+ Z2

n. Define angles θ1, . . . , θn−1 by

Z1 = U1/2 cos θ1

Z2 = U1/2 sin θ1 cos θ2
... =

...

Zn−1 = U1/2 sin θ1 · · · sin θn−2 cos θn−1

Zn = U1/2 sin θ1 · · · sin θn−1 .

(These are k spherical co-ordinates in n dimensions. The θ values run from 0 to π except
last θ from 0 to 2π.) Here are the derivative formulae:

∂Zi

∂U
=

1

2U
Zi

and

∂Zi

∂θj
=







0 j > i
−Zi tan θi j = i
Zi cot θj j < i .

Fix n = 3 to clarify the formulae. Use the shorthand R =
√
U The matrix of partial

derivatives is












cos θ1
2R

−R sin θ1 0

sin θ1 cos θ2
2R

R cos θ1 cos θ2 −R sin θ1 sin θ2

sin θ1 sin θ2
2R

R cos θ1 sin θ2 R sin θ1 cos θ2













.
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We can find the determinant by adding 2U1/2 cos θj/ sin θj times col 1 to col j+1 (no change
in the determinant). The resulting matrix is lower triangular with diagonal entries given by

cos θ1
R

,
R cos θ2
cos θ1

,
R sin θ1
cos θ2

Multiply these together to get
U1/2 sin(θ1)/2

which I observe is non-negative for all U and θ1. For general n every term in the first column
contains a factor U−1/2/2 while every other entry has a factor U1/2.

Fact: multiplying a column in a matrix by c multiplies the determinant by c.
So: the Jacobian of the transformation is

u(n−1)/2u−1/2/2× h(θ1, θn−1)

for some function, h, which depends only on the angles. Thus the joint density of U, θ1, . . . θn−1

is
(2π)−n/2 exp(−u/2)u(n−2)/2h(θ1, · · · , θn−1)/2 .

To compute the density of U we must do an n−1 dimensional multiple integral dθn−1 · · · dθ1.
The answer has the form

cu(n−2)/2 exp(−u/2)
for some c. We can evaluate c by making

∫

fU(u)du = c

∫ ∞

0

u(n−2)/2 exp(−u/2)du

= 1.

Substitute y = u/2, du = 2dy to see that

c2n/2
∫ ∞

0

y(n−2)/2e−ydy = c2n/2Γ(n/2)

= 1.

Conclusion: the χ2
n density is

1

2Γ(n/2)

(u

2

)(n−2)/2

e−u/21(u > 0) .

The fourth part of the theorem is a consequence of first 3 parts and the definition of the
tν distribution.

Definition: T ∼ tν if T has same distribution as

Z/
√

U/ν
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for Z ∼ N(0, 1), U ∼ χ2
ν and Z, U independent.

Though the proof of the theorem is now finished I will Derive the density of T in this
definition as a further example of the techniques of distribution theory. Begin with the
cumulative distribution function of T written in terms of Z and U :

P (T ≤ t) = P (Z ≤ t
√

U/ν)

=

∫ ∞

0

∫ t
√

u/ν

−∞
fZ(z)fU(u)dzdu

Differentiate this cdf with respect to t by differentiating the inner integral:

∂

∂t

∫ bt

at

f(x)dx = bf(bt)− af(at)

by the fundamental theorem of calculus. Hence

d

dt
P (T ≤ t) =

∫ ∞

0

fU(u)√
2π

(u

ν

)1/2

exp

(

−t
2u

2ν

)

du .

Plug in

fU(u) =
1

2Γ(ν/2)
(u/2)(ν−2)/2e−u/2

to get

fT (t) =

∫∞
0
(u/2)(ν−1)/2e−u(1+t2/ν)/2du

2
√
πνΓ(ν/2)

.

Substitute y = u(1 + t2/ν)/2, to get

dy = (1 + t2/ν)du/2

(u/2)(ν−1)/2 = [y/(1 + t2/ν)](ν−1)/2

leading to

fT (t) =
(1 + t2/ν)−(ν+1)/2

√
πνΓ(ν/2)

∫ ∞

0

y(ν−1)/2e−ydy

or

fT (t) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

1

(1 + t2/ν)(ν+1)/2
.



Chapter 5

Convergence in Distribution

In the previous chapter I showed you examples in which we worked out precisely the distribu-
tion of some statistics. Usually this is not possible. Instead we are reduced to approximation.
One method, nowadays likely the default method, is Monte Carlo simulation. The method
can be very effective for computing the first two digits of a probability. That generally re-
quires about 10,000 replicates of the basic experiment. Each succeeding digit required forces
you to multiply the sample size by 100. I note that in this case leading zeros after the decimal
point count – so to get a decent estimate of a probability down around 10−4 requires more
than 108 simulations (or some extra cleverness –see the chapter later on Monte Carlo.

In this chapter I discuss a second method – large sample, or limit, theory – in which we
compute limits as n→ ∞ to approximate probabilities. I begin with the most famous limit
of this type – the central limit theorem.

In undergraduate courses we often teach the following version of the central limit theorem:
if X1, . . . , Xn are an iid sample from a population with mean µ and standard deviation σ
then n1/2(X̄ − µ)/σ has approximately a standard normal distribution. Also we say that a
Binomial(n, p) random variable has approximately a N(np, np(1− p)) distribution.

What is the precise meaning of statements like “X and Y have approximately the same
distribution”? The desired meaning is that X and Y have nearly the same cdf. But care is
needed. Here are some questions designed to try to highlight why care is needed.

Q1) If n is a large number is the N(0, 1/n) distribution close to the distribution of X ≡ 0?

Q2) Is N(0, 1/n) close to the N(1/n, 1/n) distribution?

Q3) Is N(0, 1/n) close to N(1/
√
n, 1/n) distribution?

Q4) If Xn ≡ 2−n is the distribution of Xn close to that of X ≡ 0?

Answers depend on how close close needs to be so it’s a matter of definition. In practice
the usual sort of approximation we want to make is to say that some random variable X ,
say, has nearly some continuous distribution, like N(0, 1). So: we want to know probabilities
like P (X > x) are nearly P (N(0, 1) > x). The real difficulties arise in the case of discrete
random variables or in infinite dimensions: the latter is not done in this course. For discrete
variables the following discussion highlights some of the problems. See the homework for an
example of the so-called local central limit theorem.

61
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Mathematicians mean one of two things by “close”: Either they can provide an upper
bound on the distance between the two things or they are talking about taking a limit. In
this course we take limits.

Definition: A sequence of random variables Xn converges in distribution to a random
variable X if

E(g(Xn)) → E(g(X))

for every bounded continuous function g.

Theorem 14 For real random variables Xn, X the following are equivalent:

1. Xn converges in distribution to X.

2. P (Xn ≤ x) → P (X ≤ x) for each x such that P (X = x) = 0

3. The limit of the characteristic functions of Xn is the characteristic function of X:

E(eitXn) → E(eitX)

for every real t.

These are all implied by
MXn(t) → MX(t) <∞

for all |t| ≤ ǫ for some positive ǫ.

Now let’s go back to the questions I asked:

• Take Xn ∼ N(0, 1/n) and X = 0. Then

P (Xn ≤ x) →







1 x > 0
0 x < 0
1/2 x = 0

Now the limit is the cdf of X = 0 except for x = 0 and the cdf of X is not continuous
at x = 0 so yes, Xn converges to X in distribution.

• I asked if Xn ∼ N(1/n, 1/n) had a distribution close to that of Yn ∼ N(0, 1/n). The
definition I gave really requires me to answer by finding a limit X and proving that
both Xn and Yn converge to X in distribution. Take X = 0. Then

E(etXn) = et/n+t2/(2n) → 1 = E(etX)

and
E(etYn) = et

2/(2n) → 1

so that both Xn and Yn have the same limit in distribution.
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Figure 5.1: Comparison of the N(0, 1/n) distribution and point mass at 0.
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Figure 5.2: Comparison of the N(0, 1/n) distribution and the N(1/n, 1/n) distribution.
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Figure 5.3: Comparison of the N(n−1/2, 1/n) distribution and the N(0, 1/n) distribution.
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• Multiply both Xn and Yn by n1/2 and let X ∼ N(0, 1). Then
√
nXn ∼ N(n−1/2, 1)

and
√
nYn ∼ N(0, 1). Use characteristic functions to prove that both

√
nXn and

√
nYn

converge to N(0, 1) in distribution.

• If you now let Xn ∼ N(n−1/2, 1/n) and Yn ∼ N(0, 1/n) then again both Xn and Yn
converge to 0 in distribution.

• If you multiply Xn and Yn in the previous point by n1/2 then n1/2Xn ∼ N(1, 1) and
n1/2Yn ∼ N(0, 1) so that n1/2Xn and n1/2Yn are not close together in distribution.

• You can check that 2−n → 0 in distribution.

Summary: to derive approximate distributions:
Show that a sequence of random variables Xn converges to some X . The limit distribu-

tion (i.e. the distribution of X) should be non-trivial, like say N(0, 1). Don’t say: Xn is
approximately N(1/n, 1/n). Do say: n1/2(Xn − 1/n) converges to N(0, 1) in distribution.

Theorem 15 The Central Limit Theorem If X1, X2, · · · are iid with mean 0 and vari-
ance 1 then n1/2X̄ converges in distribution to N(0, 1). That is,

P (n1/2X̄ ≤ x) → 1√
2π

∫ x

−∞
e−y2/2dy .
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Proof: As before
E(eitn

1/2X̄) → e−t2/2

This is the characteristic function of aN(0, 1) random variable so we are done by our theorem.

5.0.1 Edgeworth expansions

It is possible to improve the normal approximation, though sometimes n has to be even larger.
For the moment introduce the notation γ = E(X3) (remember that X is standardized to
have mean 0 and standard deviation 1). Then

φ(t) ≈ 1− t2/2− iγt3/6 + · · ·

keeping one more term than I did for the central limit theorem. Then

log(φ(t)) = log(1 + u)

where
u = −t2/2− iγt3/6 + · · ·

Use log(1 + u) = u− u2/2 + · · · to get

log(φ(t)) ≈
[−t2/2− iγt3/6 + · · · ]

− [· · · ]2/2 + · · ·

which rearranged is
log(φ(t)) ≈ −t2/2− iγt3/6 + · · ·

Now apply this calculation to

log(φT (t)) ≈ −t2/2− iE(T 3)t3/6 + · · ·

Remember E(T 3) = γ/
√
n and exponentiate to get

φT (t) ≈ e−t2/2 exp{−iγt3/(6
√
n) + · · · }

You can do a Taylor expansion of the second exponential around 0 because of the square
root of n and get

φT (t) ≈ e−t2/2(1− iγt3/(6
√
n))

neglecting higher order terms. This approximation to the characteristic function of T can
be inverted to get an Edgeworth approximation to the density (or distribution) of T which
looks like

fT (x) ≈
1√
2π
e−x2/2[1− γ(x3 − 3x)/(6

√
n) + · · · ]

Remarks:
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1. The error using the central limit theorem to approximate a density or a probability is
proportional to n−1/2

2. This is improved to n−1 for symmetric densities for which γ = 0.

3. These expansions are asymptotic. This means that the series indicated by · · · usually
does not converge. For instance, when n = 25 it may help to take the second term
but get worse if you include the third or fourth or more.

4. You can integrate the expansion above for the density to get an approximation for the
cdf.

Multivariate convergence in distribution

Definition: Xn ∈ Rp converges in distribution to X ∈ Rp if

E(g(Xn)) → E(g(X))

for each bounded continuous real valued function g on Rp. This is equivalent to either of
Cramér Wold Device: atXn converges in distribution to atX for each a ∈ Rp

or
Convergence of characteristic functions:

E(eia
tXn) → E(eia

tX)

for each a ∈ Rp.

Extensions of the CLT

1. Y1, Y2, · · · iid in Rp, mean µ, variance covariance Σ then n1/2(Ȳ − µ) converges in
distribution to MVN(0,Σ).

2. Lyapunov CLT: for each n Xn1, . . . , Xnn independent rvs with

E(Xni) = 0

V ar(
∑

i

Xni) = 1

∑

E(|Xni|3) → 0

then
∑

iXni converges to N(0, 1).

3. Lindeberg CLT: 1st two conditions of Lyapunov and
∑

E(X2
ni1(|Xni| > ǫ)) → 0

each ǫ > 0. Then
∑

iXni converges in distribution to N(0, 1). (Lyapunov’s condition
implies Lindeberg’s.)
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4. Non-independent rvs: m-dependent CLT, martingale CLT, CLT for mixing processes.

5. Not sums: Slutsky’s theorem, δ method.

Theorem 16 Slutsky’s Theorem: If Xn converges in distribution to X and Yn converges
in distribution (or in probability) to c, a constant, then Xn + Yn converges in distribution to
X + c. More generally, if f(x, y) is continuous then f(Xn, Yn) ⇒ f(X, c).

Warning: the hypothesis that the limit of Yn be constant is essential.

Definition: We say Yn converges to Y in probability if

P (|Yn − Y | > ǫ) → 0

for each ǫ > 0.
The fact is that for Y constant convergence in distribution and in probability are the

same. In general convergence in probability implies convergence in distribution. Both of
these are weaker than almost sure convergence:

Definition: We say Yn converges to Y almost surely if

P ({ω ∈ Ω : lim
n→∞

Yn(ω) = Y (ω)}) = 1 .

The delta method:

Theorem 17 The δ method: Suppose:

• the sequence Yn of random variables converges to some y, a constant.

• there is a sequence of constants an → 0 such that if we define Xn = an(Yn − y) then
Xn converges in distribution to some random variable X.

• the function f is differentiable ftn on range of Yn.

Then an{f(Yn) − f(y)} converges in distribution to f ′(y)X. (If Xn ∈ Rp and f : Rp 7→ Rq

then f ′ is q × p matrix of first derivatives of components of f .)

Example: Suppose X1, . . . , Xn are a sample from a population with mean µ, variance σ2,
and third and fourth central moments µ3 and µ4. Then

n1/2(s2 − σ2) ⇒ N(0, µ4 − σ4)

where ⇒ is notation for convergence in distribution. For simplicity I define s2 = X2 − X̄2.
Take Yn = (X2, X̄). Then Yn converges to y = (µ2 + σ2, µ). Take an = n1/2. Then

n1/2(Yn − y)
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converges in distribution to MV N(0,Σ) with

Σ =

[

µ4 − σ4 µ3 − µ(µ2 + σ2)
µ3 − µ(µ2 + σ2) σ2

]

Define f(x1, x2) = x1−x22. Then s2 = f(Yn). The gradient of f has components (1,−2x2).
This leads to

n1/2(s2 − σ2) ≈

n1/2[1,−2µ]

[

X2 − (µ2 + σ2)
X̄ − µ

]

which converges in distribution to (1,−2µ)Y . This random variable isN(0, atΣa) = N(0, µ4−
σ2) where a = (1,−2µ)t.

Remark: In this sort of problem it is best to learn to recognize that the sample variance is
unaffected by subtracting µ from each X . Thus there is no loss in assuming µ = 0 which
simplifies Σ and a.

Special case: if the observations are N(µ, σ2) then µ3 = 0 and µ4 = 3σ4. Our calculation
has

n1/2(s2 − σ2) ⇒ N(0, 2σ4)

You can divide through by σ2 and get

n1/2(
s2

σ2
− 1) ⇒ N(0, 2)

In fact (n − 1)s2/σ2 has a χ2
n−1 distribution and so the usual central limit theorem shows

that
(n− 1)−1/2[(n− 1)s2/σ2 − (n− 1)] ⇒ N(0, 2)

(using mean of χ2
1 is 1 and variance is 2). Factoring out n− 1 gives the assertion that

(n− 1)1/2(s2/σ2 − 1) ⇒ N(0, 2)

which is our δ method calculation except for using n − 1 instead of n. This difference is
unimportant as can be checked using Slutsky’s theorem.

5.0.2 The sample median

In this subsection I consider an example which is intended to illustrate the fact that many
statistics which do not seem to be directly functions of sums can nevertheless be analyzed
by thinking about sums. Later we will see examples in maximum likelihood estimation and
estimating equations but here I consider the sample median.

The example has a number of irritating little points surrounding the median. First,
the median of a distribution might not be unique. Second, it turns out that the sample
median can be badly behaved even if the population median is unique – if the density of the
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distribution being studied is 0 at the population median. Third the definition of the sample
median is not unique when the sample size is even. We will avoid all these complications by
giving an restricting our attention to distributions with a unique median, m, and a density
f which is continuous and has f(m) > 0.

Here is the framework. We have a sample X1, . . . , Xn drawn from a cdf F . We assume:

1. There is a unique solution x = m of the equation

F (x) = 1/2.

2. The distribution F has a density f which is continuous and has

f(m) > 0.

We will define the sample median as follows. If the sample size n is odd, say n = 2k − 1
then the sample median, m̂, is the kth smallest (=kth largest) Xi. If n is even, n = 2k then
again we let m̂ be the kth smallest Xi. The most important point in what follows is this:

{m̂ ≤ x} = {
∑

i

1(Xi ≤ x) ≥ k).

The random variable
Un(x) =

∑

i

1(Xi ≤ x)

has a Binomial(n, p) distribution with p = F (x). Thus

{Un(x) ≥ k} =

{√
n[Un(x)/n− p]
√

p(1− p)
≥

√
n(k/n− p)
√

p(1− p)

}

Now put x = m+ y/
√
n and compute

lim
n→∞

√
n(k/n− p)
√

p(1− p)

First note that p(1− p) → 1/4. Then
√
n(k/n− 1/2) → 0. Next

lim
n→∞

√
n(1/2− F (x)) = f(m).

Assembling these pieces we find

lim
n→∞

√
n(k/n− p)
√

p(1− p)
= −2f(m)y.

Finally applying the central limit theorem we find

√
n[Un(x)/n− p]
√

p(1− p)

d→ N(0, 1).
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This gives
P (

√
n(m̂−m) ≤ y) → 1− Φ(−2f(m)y) = Φ(2f(m)y)

Setting u = 2f(m)y shows
√
n(m̂−m)

d→ N(0, 1/(4f 2(m))).

The important take-away point is that this is another example of how the behaviour of
many statistics is determined by the behaviour of averages (because Un(x)/n is an average).
I remark that similar calculations apply to other quantiles.

5.1 Monte Carlo Techniques

Modern statistics is dominated by computations made by simulation. There are many many
clever simulation ideas; here we discuss only the basics. We imagine we are given random
variables X1, . . . , Xn whose joint distribution is somehow specified. We are interested in
some statistic T (X1, . . . , Xn) whose distribution we want.

Here is the basic Monte Carlo method to compute the survival function of T , that is, to
compute P (T > t):

1. Generate X1, . . . , Xn from the density f .

2. Compute T1 = T (X1, . . . , Xn).

3. Repeat this process independently N times getting statistic values T1, . . . , TN .

4. Estimate p = P (T > t) by p̂ =M/N where M is number of repetitions where Ti > t.

5. Estimate the accuracy of p̂ using
√

p̂(1− p̂)/N . In the jargon of later chapters this is
the estimated standard error of p̂.

Note: The accuracy of this computational method is inversely proportional to
√
N .

Next: we review some tricks to make the method more accurate.

Warning: The tricks only change the constant of proportionality — the standard error is
still inversely proportional to

√
N .

5.1.1 Generating the Sample

Step 1 in the overall outline just presented calls for “generating” samples from the known
distribution of X1, . . . , Xn. In this subsection I want to try to explain what is meant. The
basic idea is to carry out an experiment which is like performing the original experiment,
generating an outcome ω and calculating the value of the random variables. Instead of
doing a real experiment we use a pseudo-random number generator, a computer program
which is intended to mimic the behaviour of a real random process. This relies on a basic
computing tool: pseudo uniform random numbers — variables U which have (approximately)
a Uniform[0, 1] distribution. I will not be discussing the algorithms used for such generators.
Instead we take them as a given, ignore any flaws and pretend that we have a way of
generating a sequence of independent and identically distributed Uniform[0,1] variables.
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5.1.2 Transformation

Other distributions are often then generated by transformation:

Example: Exponential: If U is Uniform[0,1] then X = − logU has an exponential distri-
bution:

P (X > x) = P (− log(U) > x)

= P (U ≤ e−x) = e−x

This generator has the following pitfall: random uniform variables generated on a computer
sometimes have only 6 or 7 digits. As a consequence the tail of the generated distribution
(using the transformation above) is grainy.

Here is a simplified explanation. Suppose the generated value of U is always a multiple
of 10−6. Then the largest possible value of X is 6 log(10) and the number of values larger
than 3 log(10) = 6.91 is 1000

Here is an improved algorithm

• Generate U a Uniform[0,1] variable.

• Pick a small ǫ like 10−3 say. If U > ǫ take Y = − log(U).

• If U ≤ ǫ we make use of the fact that the conditional distribution of Y − y given
Y > y is exponential. Generate an independent new uniform variable U ′. Compute
Y ′ = − log(U ′). Take Y = Y ′ − log(ǫ).

The resulting Y has an exponential distribution. As an exercise you should check this
assertion by computing P (Y > y). The new Y has 1,000,000 possible values larger than
3 log(10) and the largest possible values is now 9 log(10). As a result the distribution is
much less grainy.

5.1.3 General technique: inverse probability integral transform

One standard technique which is closely connected to our exponential generator is called
the inverse probability integral transformation. If Y is to have cdf F we use the following
general algorithm:

• Generate U ∼ Uniform[0, 1].

• Take Y = F−1(U):

P (Y ≤ y) = P (F−1(U) ≤ y)

= P (U ≤ F (y)) = F (y)
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Jargon: F−1(U) is the inverse probability integral transform. In fact U = F (Y ) is called
the probability integral transform of Y .

Example: Suppose X has a standard exponential distribution. Then F (x) = 1 − e−x and
F−1(u) = − log(1 − u). Compare this generator to our previous method where we used U
instead of 1− U . Of course U and 1− U both have Uniform[0,1].

Example: Normal: F = Φ (this is common notation for the standard normal cumulative
distribution function). There is no closed form for F−1. One way to generate N(0, 1) is to
use a numerical algorithm to compute F−1.

An alternative method is the Box Müller generator:

• Generate U1, U2, two independent Uniform[0,1] variables.

• Define
Y1 =

√

−2 log(U1) cos(2πU2)

and
Y2 =

√

−2 log(U1) sin(2πU2) .

• As an exercise: use the change of variables technique to prove that Y1 and Y2 are
independent N(0, 1) variables.

5.1.4 Acceptance Rejection

Suppose we can’t calculate F−1 but know the density f . Find some density g and constant
c such that

1. f(x) ≤ cg(x) for each x and

2. either G−1 is computable or we can generate observations W1,W2, . . . independently
from g.

Then we use the following algorithm:

1. Generate W1.

2. Compute p = f(W1)/(cg(W1)) ≤ 1.

3. Generate a Uniform[0,1] random variable U1 independent of all W s.

4. Let Y =W1 if U1 ≤ p.

5. Otherwise get new W,U ; repeat until you find Ui ≤ f(Wi)/(cg(Wi)).

6. Make Y be the last W generated.

7. This Y has density f .
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5.1.5 Markov Chain Monte Carlo

Recently popular tactic, particularly for generating multivariate observations.
Theorem Suppose W1,W2, . . . is an (ergodic) Markov chain with stationary transitions

and the stationary initial distribution of W has density f . Then starting the chain with any
initial distribution

1

n

n
∑

i=1

g(Wi) →
∫

g(x)f(x)dx .

Estimate things like
∫

A
f(x)dx by computing the fraction of the Wi which land in A.

Many versions of this technique including Gibbs Sampling and Metropolis-Hastings al-
gorithm.

Technique invented in 1950s: Metropolis et al.
One of the authors was Edward Teller “father of the hydrogen bomb”.
Importance Sampling
If you want to compute

θ ≡ E(T (X)) =

∫

T (x)f(x)dx

you can generate observations from a different density g and then compute

θ̂ = n−1
∑

T (Xi)f(Xi)/g(Xi)

Then

E(θ̂) = n−1
∑

E {T (Xi)f(Xi)/g(Xi)}

=

∫

{T (x)f(x)/g(x)}g(x)dx

=

∫

T (x)f(x)dx

= θ

Variance reduction

Example: In this example we simulate to estimate the distribution of the sample mean for
a sample from the Cauchy distribution. The Cauchy density is

f(x) =
1

π(1 + x2)

The basic algorithm is

1. Generate U1, . . . , Un uniforms.

The basic algorithm is

2. Define Xi = tan−1(π(Ui − 1/2)).
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3. Compute T = X̄.

4. To estimate p = P (T > t) use

p̂ =
N
∑

i=1

1(Ti > t)/N

after generating N samples of size n.

5. This estimate is unbiased.

6. Its standard error is
√

p(1− p)/N .

The algorithm can be improved by using antithetic variables. Note first that −Xi also
has a Cauchy distribution. Take Si = −Ti. Remember that Si has the same distribution as
Ti. Try (for t > 0)

p̃ = [

N
∑

i=1

1(Ti > t) +

N
∑

i=1

1(Si > t)]/(2N)

which is the average of two estimates like p̂. Then the variance of p̃ is

(4N)−1Var(1(Ti > t) + 1(Si > t))

= (4N)−1Var(1(|T | > t))

which is
2p(1− 2p)

4N
=
p(1− 2p)

2N

This variance has an extra 2 in the denominator and the numerator is also smaller – partic-
ularly for p near 1/2. So we need only half the sample size to get the same accuracy.

5.1.6 Regression estimates

Suppose Z ∼ N(0, 1). In this example we consider ways to compute

θ = E(|Z|) .

To begin with we generate N iid N(0, 1) variables Z1, . . . , ZN . Compute the basic estimate
θ̂ =

∑ |Zi|/N . But we know that E(Z2
i ) = 1. We also know that θ̂ is positively correlated

with
∑

Z2
i /N . So we try

θ̃ = θ̂ − c(
∑

Z2
i /N − 1)

Notice that E(θ̃) = θ and

Var(θ̃) =

Var(θ̂)− 2cCov(θ̂,
∑

Z2
i /N)

+ c2Var(
∑

Z2
i /N)
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The value of c which minimizes this is

c =
Cov(θ̂,

∑

Z2
i /N)

Var(
∑

Z2
i /N)

We can estimate c by regressing |Zi| on Z2
i ! Notice that minimization is bound to produce

a smaller variance than just using c = 0 which is the original estimate.



Chapter 6

Introduction to Inference

Definition: A model is a family {Pθ; θ ∈ Θ} of possible distributions for some random
variable X . (Our data set is X , so X will generally be a big vector or matrix or even more
complicated object.)

We will assume throughout this course that the true distribution P of X is in fact some
Pθ0 for some θ0 ∈ Θ. We call θ0 the true value of the parameter. Notice that this assumption
will be wrong; we hope it is not wrong in an important way. If we are very worried that it
is wrong we enlarge our model putting in more distributions and making Θ bigger.

Our goal is to observe the value of X and then guess θ0 or some property of θ0. We will
consider the following classic mathematical versions of this:

1. Point estimation: we must compute an estimate θ̂ = θ̂(X) which lies in Θ (or something
close to Θ).

2. Point estimation of a function of θ: we must compute an estimate φ̂ = φ̂(X) of φ = g(θ).

3. Interval (or set) estimation. We must compute a set C = C(X) in Θ which we think
will contain θ0.

4. Hypothesis testing: We must choose between θ0 ∈ Θ0 and θ0 6∈ Θ0 where Θ0 ⊂ Θ.

5. Prediction: we must guess the value of an observable random variable Y whose distri-
bution depends on θ0. Typically Y is the value of the variable X in a repetition of the
experiment.

There are several schools of statistical thinking. Some of the main schools of thought can
be summarized roughly as follows:

• Neyman Pearson: A statistical procedure is evaluated by its long run frequency per-
formance. Imagine repeating the data collection exercise many times, independently.
Quality of procedure measured by its average performance when true distribution of
X values is Pθ0.

For instance, estimates are studied by computing their sampling properties such as
mean, variance, bias and mean squared error.

77
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Definition: If φ̂ is an estimator of some parameter φ then the bias, variance and mean
squared error are the following functions of the unknown distribution F of the data.

Bias:

biasφ̂(F ) = EF (φ̂)− φ(F ).

Variance:

biasφ̂(F ) = VarF (φ̂).

Mean Squared Error:

MSEφ̂(F ) = E

[

{

φ̂− φ(F )
}2
]

.

Several features of these definitions deserve discussion. First, each distribution F in
the model F must have some value for the parameter φ. We denote this value φ(F )
in the definitions above. In parametric models the distribution F is indexed by the
parameter θ and we write φ(θ) instead of φ(F ). Second, the subscripts F on E and
Var remind us that while the model has many possible distributions when we come
to compute probabilities and moments we have to use some particular distribution.
Third, notice that the subscript F , indicating which distribution goes into computing
the means and variances is the same as the one going into φ. Fourth, you need to know
the following decomposition of MSE:

MSE = bias2 +Variance.

Finally, the idea is that good estimators have small biases, small variances and small
mean squared errors. They are being judged on the basis of their long-run or average
or expected performance NOT on the basis of how well they will work with today’s
data. This is the Neyman-Pearson approach to inference – ask the question “how well
does my statistical procedure work on average?”

Confidence sets or intervals are also to be judged on the basis of their average perfor-
mance. A confidence set is a random subset C(X) of Θ or Φ (where Φ is the set of
possible values of some parameter φ). The set has level β if

PF (φ(F ) ∈ C(X)) ≥ β

for all F ∈ F . It is absolutely crucial to note that the only thing random in this
formula is the set C(X), NOT, φ(F ). That means that the probability describes the
average behaviour of the procedure used to compute the set C(X) NOT the behaviour
on today’s data set.

Several details should be mentioned. First if we replace ≥ β by ≡ β then the set is
exact. Second the random set C(X) is usually just a random interval [L(X), U(X)]
– all the values of φ between these two random limits. Third in practice the desired
property is more stringent that we can achieve. Generally we can only replace ≥ β with
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the assertion that the probability is approximately β or approximately some number
≥ β.

Example: You all know that for samples of size n from the N(µ, σ2) distribution the
interval

X̄ ± tn−1,α/2s/
√
n or L = X̄ − tn−1,α/2s/

√
n to U = barX + tn−1,α/2s/

√
n

is an exact level 1 − α confidence interval for µ. (As usual tν,α is the upper α critical
point for a Student’s t distribution on ν degrees of freedom.

There are more features to discuss in a confidence interval beyond its coverage proba-
bility PF (φ ∈ C(X)). For instance the probability it does not include a given wrong
value of φ should be high. The set should be as small as possible since that corresponds
to a precise estimate of φ.

Hypothesis tests are judged on the basis of error rates. For problems when a hypothesis
is true we ask how often we conclude the hypothesis is true. The probability we
incorrectly conclude the hypothesis is wrong is an error rate. Note particularly that
we just ask what fraction of data sets the procedure works for, NOT, whether or not
it appears likely to work with today’s data.

• Bayes: Treat θ as random just like X . Compute conditional law of unknown quantities
given known quantities. In particular ask how a procedure will work on the data we
actually got – no averaging over data we might have got.

For point estimation the Bayesian would study the distribution of the estimation error
φ̂(X)− φ(F ) given the data X . Now only F is random – X is known and treated as
a fixed deterministic object. The Bayesian then chooses φ̂(X) to make the estimation
error as small as possible – as measured by some feature of its distribution give X ;
this distribution is called a posterior distribution since it applies after the data are
observed.

For confidence sets the Bayesian, too, would work out a set C(X) of values of φ which
s/he considers likely to contain the true value but now the Bayesian wants

P (φ ∈ C(X)|X)

to be large while making C(X) as small as possible. Typically the Bayesian insists
that

P (φ ∈ C(X)|X) = β

for some given β. The Bayesian asks only about today’s data X as s/he observed it
and not about other data which might have been observed but was not.

For hypothesis testing the Bayesian naturally computes the probability, given X that
each hypothesis is correct.

• Likelihood: Try to combine previous 2 by looking only at actual data while trying to
avoid treating θ as random.

I will try, later in the course, to describe this school of inference.
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We use the Neyman Pearson approach to evaluate the quality of likelihood and other
methods in this course – and even to study the behaviour of Bayesian methods.

6.1 Nonparametric Inference: an introduction

6.1.1 The Empirical Distribution Function – EDF

The most common interpretation of probability is that the probability of an event is the
long run relative frequency of that event when the basic experiment is repeated over and
over independently. So, for instance, if X is a random variable then P (X ≤ x) should be
the fraction of X values which turn out to be no more than x in a long sequence of trials. In
general an empirical probability or expected value is just such a fraction or average computed
from the data.

To make this precise, suppose we have a sample X1, . . . , Xn of iid real valued random
variables. Then we make the following definitions:

Definition: The empirical distribution function, or EDF, is

F̂n(x) =
1

n

n
∑

i=1

1(Xi ≤ x).

This is a cumulative distribution function. It is an estimate of F , the cdf of the Xs.
People also speak of the empirical distribution of the sample:

P̂ (A) =
1

n

n
∑

i=1

1(Xi ∈ A)

This is the probability distribution whose cdf is F̂n.
Now we consider the qualities of F̂n as an estimate, the standard error of the estimate,

the estimated standard error, confidence intervals, simultaneous confidence intervals and so
on. To begin with we describe the best known summaries of the quality of an estimator:
bias, variance, mean squared error and root mean squared error.

6.1.2 Bias, variance, MSE and RMSE

There are many ways to judge the quality of estimates of a parameter φ; all of them focus on
the distribution of the estimation error φ̂−φ. This distribution is to be computed when φ is
the true value of the parameter. For our non-parametric iid sampling model the estimation
error we are interested in is

F̂(x)− F (x)

where F is the true distribution function of the Xs.
The simplest summary of the size of a variable is the root mean squared error :

RMSE =

√

Eθ

[

(φ̂− φ)2
]
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In this definition the subscript θ on E is important; it specifies the true value of θ and the
value of φ in the error must match the value of θ. For example if we were studying the
N(µ, 1) model and estimating φ = µ2 then the θ in the subscript would be µ and the φ in
the error would be µ2 and the two values of µ would be required to be the same.

The RMSE is measured in the same units as φ. That is if the parameter φ is a certain
number of dollars then the RMSE is also some number of dollars. This makes the RMSE more
scientifically meaningful than the more commonly discussed (by statisticians) mean squared
error or MSE. The latter has, however, no square root and many formulas involving the
MSE therefore look simpler. The weakness of MSE is one that it shares with the variance.
For instance one might survey household incomes and get a mean of say $40,000 with a
standard deviation of $50,000 because income distributions are very skewed to the right.
The variance of household income would then be 2,500,000,000 squared dollars – ludicrously
hard to interpret.

Having given that warning, however, it is time to define the MSE:

Definition: The mean squared error (MSE) of any estimate is

MSE = Eθ

[

(φ̂− φ)2
]

= Eθ

[

(φ̂− Eθ(φ̂) + Eθ(φ̂)− φ)2
]

= Eθ

[

(φ̂− Eθ(φ̂))
2
]

+
{

Eθ(φ̂)− φ
}2

In making this calculation there was a cross product term which you should check is 0. The
two terms in this formula have names: the first is the variance of φ̂ while the second is the
square of the bias.

Definition: The bias of an estimator φ̂ is

biasφ̂(θ) = Eθ(φ̂)− φ

Notice that it depends on θ. The φ on the right hand side also depends on the parameter θ.
Thus our decomposition above says

MSE = Variance + (bias)2.

In practice we often find there is a trade-off; if we try to make the variance small we often
increase the bias. Statisticians often speak of a “variance-bias trade-off”.

We now apply these ideas to the EDF. The EDF is an unbiased estimate of F . That is,

E[F̂n(x)] =
1

n

n
∑

i1=

E[1(Xi ≤ x)]

=
1

n

n
∑

i=1

F (x) = F (x)
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so the bias of F̂n(x) is 0. The mean squared error is then

MSE = Var(F̂n(x)) =
1

n2

n
∑

i=1

Var[1(Xi ≤ x)] =
1

n
F (x)[1− F (x)].

This is very much the most common situation: the MSE is proportional to 1/n in large
samples. So the RMSE is proportional to 1/

√
n.

The EDF is a sample average and all sample averages are unbiased estimates of their
expected values. There are many estimates in use – most estimates really – which are
biased. Here is an example. Again we consider a sample X1, . . . , Xn. The sample mean is

X̄ =
1

n
Xi.

The sample second moment is

X̄2 =
1

n
X2

i .

These two estimates are unbiased estimates of E(X) and E(X2). We might combine them
to get a natural estimate of σ2 if we remember that

σ2 = Var(X) = E(X2)− (E(X))2.

It would then be natural to use X̄2 to estimate µ2 which would lead to the following estimate
of σ2:

σ̂2 = X̄2 − X̄2.

This estimate is biased, however, because it is a non-linear function of X̄ . In fact we find

E
[

(X̄)2
]

= Var(X̄) +
[

E(X̄)
]2

= σ2/n+ µ2.

So the bias of σ̂2 is

E
[

X̄2
]

− E
[

(X̄)2
]

− σ2 = µ′
2 − µ2 − σ2/n− σ2 = −σ2/n.

In this case and many others the bias is proportional to 1/n. The variance is proportional
to 1/n. The squared bias is proportional to 1/n2. So in large samples the variance is more
important than the bias!

Remark: The biased estimate σ̂2 is traditionally changed to the usual sample variance
s2 = nσ̂2/(n− 1) to remove the bias.
WARNING: the MSE of s2 is larger than that of σ̂2.

6.1.3 Standard Errors and Interval Estimation

Traditionally theoretical statistics courses spend a considerable amount of time on finding
good estimators of parameters. The theory is elegant and sophisticated but point estimation
itself is a silly exercise which we will not pursue here. The problem is that a bare estimate is
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of very little value indeed. Instead assessment of the likely size of the error of our estimate
is essential. A confidence interval is one way to provide that assessment.

The most common kind of confidence interval is approximate:

estimate ± 2 estimated standard error

This is an interval of values L(X) < parameter < U(X) where U and L are random because
they depend on the data.

What is the justification for the two SE interval above? In order to explain we introduce
some notation.

Notation: Suppose φ̂ is the estimate of φ. Then σ̂φ̂ denotes the estimated standard error.
We often use the central limit theorem, the delta method, and Slutsky’s theorem to prove

lim
n→∞

PF

(

φ̂− φ

σ̂φ̂
≤ x

)

= Φ(x)

where Φ is the standard normal cdf:

Φ(x) =

∫ x

−∞

e−u2/2

√
2π

du.

Example: We illustrate the ideas by giving first what we will call pointwise confidence limits
for F (x). Define, as usual, the notation for the upper α critical point zα by the requirement
Φ(zα) = 1− α. Then we approximate

PF

(

−zα/2 ≤
φ̂− φ

σ̂φ̂
lezα/2

)

≈ 1− α.

Then we solve the inequalities inside the probability to get the usual interval.
Now we apply this to φ = F (x) for one fixed x. Our estimate is φ̂ ≡ F̂n(x). The random

variable nφ̂ has a Binomial distribution. So Var(F̂n(x)) = F (x)(1− F (x))/n. The standard
error is

σφ̂ ≡ σF̂n(x)
≡ SE ≡

√

F (x)[1− F (x)]√
n

.

According to the central limit theorem

F̂n(x)− F (x)

σF̂n(x)

d→ N(0, 1)

(In the homework I ask you to turn this into a confidence interval.)
It is easier to solve the inequality

∣

∣

∣

∣

∣

F̂n(x)− F (x)

SE

∣

∣

∣

∣

∣

≤ zα/2
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if the term SE does not contain the unknown quantity F (x). In the example above it did
but we will modify the SE term by estimating the standard error. The method we follow
uses a so-called plug-in procedure.

In our example we will estimate
√

F (x)[1− F (x)]/n by replacing F (x) by F̂n(x):

σ̂Fn(x) =

√

F̂n(x)[1 − F̂n(x)

n
.

This is an example of a general strategy in which we start with an estimator, a confidence
interval or a test statistic whose formula depends on some other parameter; we plug-in an
estimate of that other parameter to the formula and then use the resulting object in our
inference procedure. Sometimes the method changes the behaviour of our procedure and
sometimes, at least in large samples, it doesn’t.

In our example Slutsky’s theorem shows

F̂n(x)− F (x)

σ̂Fn(x)

d→ N(0, 1).

So there was no change in the limit law (which is common alternative jargon for the word
distribution).

We now have two pointwise 95% confidence intervals:

F̂n(x)± z0.025

√

F̂n(x)[1 − F̂n(x)]/n

or

{F (x) :
∣

∣

∣

∣

∣

√
n(F̂n(x)− F (x))
√

F (x)[1− F (x)]

∣

∣

∣

∣

∣

≤ z0.025}

When we use these intervals they depend on x. Moreover, we usually look at a plot of the
results against x. This leads to a problem. If we pick out an x for which the confidence
interval is surprising or interesting to us we may well be picking one of the x values for which
the confidence interval misses its target. After all, 1 out of every 20 confidence intervals with
95% coverage probabilities misses its target.

This suggests that what we really want is

PF (L(X, x) ≤ F (x) ≤ U(X, x) for all x) ≥ 1− α.

In that case the confidence intervals are called simultaneous. Thee are at least two possible
methods: one is exact (meaning that the coverage probability of a 95% confidence interval
is at least 95% for every choice of F , but conservative (meaning that the coverage is often
quite a bit larger that 95% so that the interval is unnecessarily wide); the other method is
approximate and less conservative. Here are some incomplete details.

The exact, conservative, procedure is base on the Dvoretsky-Kiefer-Wolfowitz inequality:

PF (∃x : |F̂n(x)− F (x)| >
√

− log(α/2)

2n
) ≤ α
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The use of this inequality to generate confidence intervals is quite uncommon – the homework
problems ask you to compare it to the next interval and to criticize its properties.

The approximate procedure is based on large sample limit theory. The following assertion
is a famous piece of probability theory:

lim
n→∞

PF (∃x : |
√
n|F̂n(x)− F (x)| > y) = P (∃t ∈ [0, 1] : |B0(t)| > y)

where B0 is a Brownian Bridge. A Brownian Bridge is a stochastic process; in particular it
is a Gaussian process, with mean E(B0(x)) ≡ 0 and covariance function

Cov(B0(x), B0(y)) = min{x, y} − xy.

I won’t be describing precisely what that all means. You might consult some book or other
which I will eventually cite I hope. It is possible, however, to choose y so that the probability
on the right hand side above is α

6.1.4 Statistical Functionals

Not all parameters are created equal. Some of them have a meaning for all or at least most
distribution functions or densities while others really only have a meaning inside some quite
specific model. For instance, in the Weibull model density

f(x;α, β) =
1

β

(

x

β

)α−1

exp{−(x/β)α}1(x > 0).

there are two parameters: shape α and scale β. These parameters have no meaning in other
densities; that is if the real density is normal we cannot say what α and β are. But every
distribution has a median and other quantiles:

pth-quantile = inf{x : F (x) ≥ p}.

Too, if r is a bounded function then every distribution has a value for the parameter

φ ≡ EF (r(X)) ≡
∫

r(x)dF (x).

Similarly, most distributions have a mean, variance and so on.

Definition: A function from set of all cdfs to real line is called a statistical functional.

Example: : The quantity T (F ) ≡ EF (X
2) − [EF (X)]2 is a statistical functional, namely,

the variance of F . It is not quite defined for all F but it is defined for most.
The statistical functional

T (F ) =

∫

r(x)dF (x)

is linear. The sample variance is not a linear functional.
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Statistical functionals are often estimated using plug-in estimates so that

ˆT (F ) =

∫

r(x)dF̂n(x) =
1

n

n
∑

1

r(Xi).

This estimate is unbiased and has variance

σ2
ˆT (F )

= n−1

[

∫

r2(x)dF (x)−
{
∫

r(x)dF (x)

}2
]

.

This variance can in turn be estimated using a plug-in estimate:

σ̂2
ˆT (F )

= n−1

[

∫

r2(x)dF̂n(x)−
{
∫

r(x)dF̂n(x)

}2
]

.

And of course from that estimated variance we get an estimated standard error.

6.1.5 Bootstrap standard errors

When r(x) = x we have T (T ) = µF (the mean). The standard error of this estimate is σ/
√
n.

The plug-in estimate of the standard error replaces σ with the sample standard deviation
(but with n not n− 1 as the divisor).

Now consider a general functional T (F ). The plug-in estimate of this is T (F̂n). The
plug-in estimate of the standard error of this estimate is

√

VarF̂n
(T (F̂n)).

which is hard to read and seems hard to calculate in general. The solution is to simulate,
particularly to estimate the standard error.

6.1.6 Basic Monte Carlo

To compute a probability or expected value we can simulate.

Example: To compute P (|X| > 2) for some random variable X we use software to generate
some number, say M , of replicates: X∗

1 , . . . , X
∗
M all having same distribution as X . Then

we estimate the desired probability using the sample fraction. Here is some R code:

x=rnorm(1000000)

y =rep(0,1000000)

y[abs(x) >2] =1

sum(y)

This produced 45348 when I tried it which gives me the estimate p̂ = 0.045348. Using
pnorm I find the correct answer is 0.04550026. So using a million samples gave 2 correct
significant digits and an error of 2 in the third digit. Using M = 10000 has traditionally
been more common, though I think that is changing. Using 10000, I got p̂ = 0.0484. In
fact, the SE of p̂ is

√

p(1− p)/100 = 0.0021. So error of up to 4 in second significant digit
is reasonably likely.
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6.1.7 The bootstrap

In the previous section we were drawing samples from some specific distribution – the normal
distribution in the example. In bootstrapping the random variableX is replaced by the whole
data set and we simulate by drawing samples from the distribution F̂n.

The idea is to generate new data sets (I will use a superscript ∗ as in X∗ to indicate these
are newly generated data sets) from the distribution F of X . Bu we don’t know F so we use
F̂n.

Example: Suppose we are interested in confidence intervals for the mean of a distribution.
We will get them by simulating the distribution of the t pivot:

t =

√
n(X̄ − µ)

s
.

We have data X1, . . . , Xn and as usual for statisticians we don’t know µ or the cumulative
distribution function F of the Xs. So we replace these by quantities computed from F̂n. Call
µ∗ =

∫

xdF̂n(x) = X̄. Then draw X∗
1,1, . . . , X

∗
1,n an iid sample from the cdf F̂ . Repeat this

sampling process M times computing t from the * values each time. Here is R code:

x=runif(5)

mustar = mean(x)

tv=rep(0,M)

tstarv=rep(0,M)

for( i in 1:M){

xn=runif(5)

tv[i]=sqrt(5)*mean(xn-0.5)/sqrt(var(xn))

xstar=sample(x,5,replace=TRUE)

tstarv[i]=sqrt(5)*mean(xstar-mustar)/sqrt(var(xstar))

}

This loop does two simulations. First, the variables xn and tv implement parametric
bootstrapping : they simulate the t-pivot from a parametric model, namely, the Uniform[0,1]
model. On the other hand xstar is bootstrap sample from the population x and tstarv is
the t-pivot computed from xstar.

When I ran the code the first time I got the original data set

x = (0.7432447, 0.8355277, 0.8502119, 0.3499080, 0.8229354)

So mustar =0.7203655. Now let us look at side-by-side histograms of tv and tstarv:

Confidence intervals: based on t-statistic: T =
√
n(X̄ − µ)/s.

Use the bootstrap distribution to estimate P (|T | > t).

Adjust t to make this 0.05. Call result c. Solve |T | < c to get interval

X̄ ± cs/
√
n.
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Figure 6.1: Histograms of simulations. The histogram on the left is of t pivots for 1,000,000
samples of size 5 drawn from the uniform distribution. The one on the right is for t pivots
computed for 1,000,000 samples of size 5 drawn from the population with just 5 elements as
specified in the text
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Get c = 22.04, x̄ = 0.720, s = 0.211; interval is -1.36 to 2.802. Pretty lousy interval. Is this
because it is a bad idea? Repeat but simulate X̄∗ − µ∗. Learn

P (X̄∗ − µ∗ < −0.192) = 0.025 = P (X̄∗ − µ∗ > 0.119)

Solve inequalities to get (much better) interval

0.720− 0.119 < µ < 0.720 + 0.192

Of course the interval missed the true value!

6.1.8 Monte Carlo Study

So how well do these methods work? We can do either a theoretical analysis or a simulation
study. To describe the possible theoretical analysis let Cn be resulting interval. Usually we
assume the number of bootstrap repetitions is so large that we can ignore that simulation
error. Now we use theory (more sophisticated than in this course) to compute

lim
n→∞

PF (µ(F ) ∈ Cn)

We say the method is asymptotically valid (or calibrated or accurate) if this limit is 1− α.
The other way to assess this point is via simulation analysis: we generate many data sets

of size 5 from say the Uniform[0,1] distribution. Then we carry out the bootstrap method
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for each data set and compute the interval Cn. Finally we count up the number of simulated
uniform data sets with 0.5 ∈ Cn to get an empirical coverage probability. Since we will be
using the method without knowing the true distribution we repeat the process with samples
from (many) other distributions. We try to select enough distributions to give us a pretty
good idea of the overall behaviour.

Remark: : Some statisticians never do anything except the simulation part. I think this is
somewhat perilous – you are hard pressed to guarantee that your simulation covered all the
realistic possibilities. But then, I do theory for a living.

Here is some R code which carries out a bit of that Monte Carlo study:

tstarint = function(x,M=10000){

n = length(x)

must=mean(x)

se=sqrt(var(x)/n)

xn=matrix(sample(x,n*M,replace=T),nrow=M)

one = rep(1,n)/n

dev= xn%*%one - must

tst=dev/sqrt(diag(var(t(xn)))/n)

c1=quantile(dev,c(0.025,0.975))

c2=quantile(abs(tst),0.95)

c(must-c1[2],must-c1[1], must -c2*se,must+c2*se)

}

lims=matrix(0,1000,4)

count=lims

for(i in 1:1000){

x=runif(5)

lims[i,]=tstarint(x)

}

count[,1][lims[,1]<0.5]=1

count[,2][lims[,2]>0.5]=1

count[,3][lims[,3]<0.5]=1

count[,4][lims[,4]>0.5]=1

sum(count[,1]*count[,2])

sum(count[,3]*count[,4])

The results for the study I did are these. For samples of size 5 from the Uniform[0,1]
distribution the empirical coverage probability for the true mean of 1/2, using the bootstrap
distribution of the error X̄ − µ is 80.4% in 1000 Monte Carlo trials using 10,000 bootstrap
samples in each trial. This compares to coverage of 97.2% under the same conditions using
the t pivot

√
n)(X̄ − µ)/s. (Strictly speaking t is only an approximate pivot.) For samples

of size 25 I got 92.1% and 94.8%. I also tried exponential data. For n = 5 I got ? and ?
while for n = 25 I got 92.1% and 94.1%.
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Remark: : It is possible to put standard errors on these Monte Carlo estimates and to assess
the inaccuracy induced by using only 10,000 bootstrap samples instead of infinitely many.
Ignoring the latter you should be able to add standard errors to each of the percentages
given. They are all roughly 0.007 or 0.7 percentage points.



Chapter 7

Estimation

7.1 Likelihood Methods of Inference

Imagine we toss a coin 6 times and get Heads twice. Let p be the probability of getting H on
an individual toss and suppose the tosses are independent. Then the probability of getting
exactly 2 heads is

15p2(1− p)4

This function of p is called the likelihood function.

Definition: The likelihood function is the map L whose domain Θ and whose values are
given by

L(θ) = fθ(X)

Key Point: we think about how the density depends on θ not about how it depends on
X . Notice that X , the observed value of the data, has been plugged into the formula for
density. Notice also that the coin tossing example uses the discrete density for f .

We use likelihood for most inference problems:

1. Point estimation: we must compute an estimate θ̂ = θ̂(X) which lies in Θ. The
maximum likelihood estimate (MLE) of θ is the value θ̂ which maximizes L(θ)
over θ ∈ Θ if such a θ̂ exists.

2. Point estimation of a function of θ: we must compute an estimate φ̂ = φ̂(X) of φ = g(θ).
We use φ̂ = g(θ̂) where θ̂ is the MLE of θ.

3. Interval (or set) estimation. We must compute a set C = C(X) in Θ which we think
will contain θ0. We will use

{θ ∈ Θ : L(θ) > c}
for a suitable c.

4. Hypothesis testing: decide whether or not θ0 ∈ Θ0 where Θ0 ⊂ Θ. We base our decision
on the likelihood ratio

sup{L(θ); θ ∈ Θ \Θ0}
sup{L(θ); θ ∈ Θ0}

.

91
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7.1.1 Maximum Likelihood Estimation

To find the MLE we maximize L. This is a typical function maximization problem: Set
the gradient of L equal to 0 and check to see that the root you find is a maximum, not a
minimum or a saddle point.

Now let’s examine some likelihood plots in examples:

Example: Cauchy Data
Suppose we have an iid sample X1, . . . , Xn from the Cauchy(θ) density given by

f(x; θ) =
1

π(1 + (x− θ)2)

The likelihood function is

L(θ) =

n
∏

i=1

1

π(1 + (Xi − θ)2)

I want you to notice the following points:

• The likelihood functions have peaks near the true value of θ (which is 0 for the data
sets I generated).

• The peaks are narrower for the larger sample size.

• The peaks have a more regular shape for the larger value of n.

• I actually plotted L(θ)/L(θ̂) which has exactly the same shape as L but runs from 0
to 1 on the vertical scale.

To maximize this likelihood you differentiate L, and set the result equal to 0. Notice that
L is product of n terms; its derivative is

n
∑

i=1

∏

j 6=i

1

π(1 + (Xj − θ)2)

2(Xi − θ)

π(1 + (Xi − θ)2)2

which is quite unpleasant. It is much easier to work with the logarithm of L because the log
of a product is a sum and the logarithm function is monotone increasing.

Definition: The Log Likelihood function is

ℓ(θ) = log{L(θ)} .

For the Cauchy problem we have

ℓ(θ) = −
∑

log(1 + (Xi − θ)2)− n log(π)

Notice the following points:

• Plots of ℓ for n = 25 quite smooth, rather parabolic.
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• For n = 5 many local maxima and minima of ℓ.

The likelihood tends to 0 as |θ| → ∞ so the maximum of ℓ occurs at a root of ℓ′, the
derivative of ℓ with respect to θ.

Definition: The Score Function is the gradient of ℓ

U(θ) =
∂ℓ

∂θ

The MLE θ̂ is usually a root of the Likelihood Equations

U(θ) = 0

In our Cauchy example we find

U(θ) =
∑ 2(Xi − θ)

1 + (Xi − θ)2

[Examine plots of score functions.]
Notice: there are often multiple roots of likelihood equations.

Example: X ∼ Binomial(n, θ)

L(θ) =

(

n
X

)

θX(1− θ)n−X

ℓ(θ) = log

(

n
X

)

+X log(θ) + (n−X) log(1− θ)

U(θ) =
X

θ
− n−X

1− θ

The function L is 0 at θ = 0 and at θ = 1 unless X = 0 or X = n so for 1 ≤ X ≤ n the
MLE must be found by setting U = 0 and getting

θ̂ =
X

n

For X = n the log-likelihood has derivative

U(θ) =
n

θ
> 0

for all θ so that the likelihood is an increasing function of θ which is maximized at θ̂ = 1 =
X/n. Similarly when X = 0 the maximum is at θ̂ = 0 = X/n.

The Normal Distribution
Now we have X1, . . . , Xn iid N(µ, σ2). There are two parameters θ = (µ, σ). We find

L(µ, σ) =
e−

∑
(Xi−µ)2/(2σ2)

(2π)n/2σn

ℓ(µ, σ) = −n
2
log(2π)−

∑

(Xi − µ)2

2σ2
− n log(σ)
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and that U is
[ ∑

(Xi−µ)
σ2∑

(Xi−µ)2

σ3 − n
σ

]

Notice that U is a function with two components because θ has two components.
Setting the likelihood equal to 0 and solving gives

µ̂ = X̄

and

σ̂ =

√

∑

(Xi − X̄)2

n

Check this is maximum by computing one more derivative. Matrix H of second derivatives
of ℓ is

[

−n
σ2

−2
∑

(Xi−µ)
σ3

−2
∑

(Xi−µ)
σ3

−3
∑

(Xi−µ)2

σ4 + n
σ2

]

Plugging in the mle gives

H(θ̂) =

[ −n
σ̂2 0
0 −2n

σ̂2

]

which is negative definite. Both its eigenvalues are negative. So θ̂ must be a local maximum.
[Examine contour and perspective plots of ℓ.]
Notice that the contours are quite ellipsoidal for the larger sample size.
For X1, . . . , Xn iid log likelihood is

ℓ(θ) =
∑

log(f(Xi, θ)) .

The score function is

U(θ) =
∑ ∂ log f

∂θ
(Xi, θ) .

The MLE θ̂ maximizes ℓ. If the maximum occurs in the interior of the parameter space and
the log likelihood is continuously differentiable then θ̂ solves the likelihood equations

U(θ) = 0 .

Some examples concerning existence of roots:

Solving U(θ) = 0: Examples

Example: N(µ, σ2) In this case the unique root of the likelihood equations is a global
maximum.

Remark: Suppose we called τ = σ2 the parameter. The score function still has two com-
ponents: the first component is the same as before but the second component is

∂

∂τ
ℓ =

∑

(Xi − µ)2

2τ 2
− n

2τ
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Setting the new likelihood equations equal to 0 still gives

τ̂ = σ̂2

This is an example of a general invariance (or more properly equivariance) principal: If
φ = g(θ) is some reparametrization of a model (a one to one relabelling of the parameter
values) then φ̂ = g(θ̂). This idea does not apply to estimators derived from other principles
of estimation.]

Example: Cauchy: location θ
At least 1 root of likelihood equations but often several more. One root is a global

maximum; others, if they exist may be local minima or maxima.

Example: Binomial(n, θ)
If X = 0 or X = n: no root of likelihood equations; likelihood is monotone. Other values

of X : unique root, a global maximum. Global maximum at θ̂ = X/n even if X = 0 or n.

Example: The 2 parameter exponential
The density is

f(x;α, β) =
1

β
e−(x−α)/β1(x > α)

Log-likelihood is −∞ for α > min{X1, . . . , Xn} and otherwise is

ℓ(α, β) = −n log(β)−
∑

(Xi − α)/β

Increasing function of α till α reaches

α̂ = X(1) = min{X1, . . . , Xn}

which gives mle of α. Now plug in α̂ for α; get so-called profile likelihood for β:

ℓprofile(β) = −n log(β)−
∑

(Xi −X(1))/β

Set β derivative equal to 0 to get

β̂ =
∑

(Xi −X(1))/n

Notice mle θ̂ = (α̂, β̂) does not solve likelihood equations; we had to look at the edge of
the possible parameter space. α is called a support or truncation parameter. ML methods
behave oddly in problems with such parameters.

Example: Three parameter Weibull
The density in question is

f(x;α, β, γ) =
1

β

(

x− α

β

)γ−1

× exp[−{(x− α)/β}γ]1(x > α)
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The log-likelihood is

−n log(β)−
n
∑

i=1

(

Xi − α

β

)γ

+ (γ − 1)
n
∑

i=1

log((Xi − α)/β).

There are three likelihood equations:

0 =
∂ℓ

α
=
γ

β

n
∑

i=1

(

Xi − α

β

)γ−1 n
∑

i=1

γ − 1

Xi − α

0 =
∂ℓ

β
=
nγ

β
+
γ

β

n
∑

i=1

(

Xi − α

β

)γ

0 =
∂ℓ

γ
= −

n
∑

i=1

log((Xi − α)/β)

(

Xi − α

β

)γ

+
n
∑

i=1

log((Xi − α)/β).

First set the β derivative equal to 0 and find

β̂(α, γ) =
[

∑

(Xi − α)γ/n
]1/γ

where β̂(α, γ) indicates that the mle of β could be found by finding the mles of the other
two parameters and then plugging into the formula above. It is not possible to find explicit
formulas for the estimates of the remaining two parameters; numerical methods are needed.

However, putting γ < 1 and letting α → X(1) will make the log-likelihood go to ∞. As
a result, the MLE is not uniquely defined: any γ < 1 and any β will do. If the true value
of γ is more than 1 then the probability that there is a root of the likelihood equations is
high; in this case there must be two more roots: a local maximum and a saddle point! For a
true value of γ > 1 the theory we detail below applies to the local maximum and not to the
global maximum of the likelihood equations. You could look at (?, RALMAS3par)

7.2 Large Sample Theory for Maximum Likelihood

Large Sample Theory
We can study the approximate behaviour of θ̂ by studying the function U . Notice first

that U is a sum of independent random variables and remember the law of large numbers:

Theorem 18 If Y1, Y2, . . . are iid with mean µ then

∑

Yi
n

→ µ

For the strong law of large numbers we mean

P (lim

∑

Yi
n

= µ) = 1
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and for the weak law of large numbers we mean that

limP (|
∑

Yi
n

− µ| > ǫ) = 0

For iid Yi the stronger conclusion holds; for our heuristics we ignore the differences between
these notions.

Now suppose θ0 is true value of θ. Then

U(θ)/n → µ(θ)

where

µ(θ) =Eθ0

[

∂ log f

∂θ
(Xi, θ)

]

=

∫

∂ log f

∂θ
(x, θ)f(x, θ0)dx

Example: N(µ, 1) data:

U(µ)/n =
∑

(Xi − µ)/n = X̄ − µ

If the true mean is µ0 then X̄ → µ0 and

U(µ)/n→ µ0 − µ

Consider first the case µ < µ0. Then the derivative of ℓ(µ) is likely to be positive so that
ℓ increases as µ increases. For µ > µ0 the derivative of ℓ is probably negative and so ℓ tends
to be decreasing for µ > 0. Hence: ℓ is likely to be maximized close to µ0.

We can repeat these ideas for a more general case. To do so we study the random variable

log[f(Xi, θ)/f(Xi, θ0)].

You know the inequality
E(X)2 ≤ E(X2)

(the difference between the two is Var(X) ≥ 0.) This inequality admits an important
generalization called Jensen’s inequality:

Theorem 19 If g is a convex function (g′′ ≥ 0 roughly) then

g(E(X)) ≤ E(g(X))

The special case above has g(x) = x2. Here we use g(x) = − log(x). This function is
convex because g′′(x) = x−2 > 0. We get

− log(Eθ0 [f(Xi, θ)/f(Xi, θ0)] ≤ Eθ0 [− log{f(Xi, θ)/f(Xi, θ0)}]
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But

Eθ0

[

f(Xi, θ)

f(Xi, θ0)

]

=

∫

f(x, θ)

f(x, θ0)
f(x, θ0)dx

=

∫

f(x, θ)dx

= 1

We can reassemble the inequality and this calculation to get

Eθ0 [log{f(Xi, θ)/f(Xi, θ0)}] ≤ 0

In fact this inequality is strict unless the θ and θ0 densities are actually the same.
Now let µ(θ) < 0 be this expected value. Then for each θ we find

ℓ(θ)− ℓ(θ0)

n

∑

log[f(Xi, θ)/f(Xi, θ0)]

n
→ µ(θ)

This proves that the likelihood is probably higher at θ0 than at any other single fixed θ.
This idea can often be stretched to prove that the mle is consistent; to do so we need to
establish uniform convergence in θ.

Definition: A sequence θ̂n of estimators of θ is consistent if θ̂n converges weakly (or strongly)
to θ.

Proto theorem: In regular problems the mle θ̂ is consistent.
Here are some more precise statements of possible conclusions. Use the following notation

N(ǫ) = {θ : |θ − θ0| ≤ ǫ} .
Suppose:

1. θ̂n is global maximizer of ℓ.

2. θ̂n,δ maximizes ℓ over N(δ) = {|θ − θ0| ≤ δ}.
3.

Aǫ = {|θ̂n − θ0| ≤ ǫ}
Bδ,ǫ = {|θ̂n,δ − θ0| ≤ ǫ}

CL = {∃!θ ∈ N(L/n1/2) : U(θ) = 0, U ′(θ) < 0}
Theorem 20 1. Under unspecified conditions I P (Aǫ) → 1 for each ǫ > 0.

2. Under unspecified conditions II there is a δ > 0 such that for all ǫ > 0 we have
P (Bδ,ǫ) → 1.

3. Under unspecified conditions III for all δ > 0 there is an L so large and an n0 so large
that for all n ≥ n0, P (CL) > 1− δ.

4. Under unspecified conditions III there is a sequence Ln tending to ∞ so slowly that
P (CLn) → 1.

The point is that the conditions get weaker as the conclusions get weaker. There are
many possible conditions in the literature. See the book by Zacks (?, Zacks)or some precise
conditions.
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7.2.1 Asymptotic Normality

Study shape of log likelihood near the true value of θ. Assume θ̂ is a root of the likelihood
equations close to θ0. Taylor expansion (1 dimensional parameter θ):

U(θ̂) = 0 = U(θ0) + U ′(θ0)(θ̂ − θ0) + U ′′(θ̃)(θ̂ − θ0)
2/2

for some θ̃ between θ0 and θ̂.
WARNING: This form of the remainder in Taylor’s theorem is not valid for multivariate

θ. Derivatives of U are sums of n terms.
So each derivative should be proportional to n in size.
Second derivative is multiplied by the square of the small number θ̂ − θ0 so should be

negligible compared to the first derivative term.
Ignoring second derivative term we get

−U ′(θ0)(θ̂ − θ0) ≈ U(θ0)

Now look at terms U and U ′.
Normal case:

U(θ0) =
∑

(Xi − µ0)

has a normal distribution with mean 0 and variance n (SD
√
n).

Derivative is
U ′(µ) = −n .

Next derivative U ′′ is 0.
Notice: both U and U ′ are sums of iid random variables.
Let

Ui =
∂ log f

∂θ
(Xi, θ0)

and

Vi = −∂
2 log f

∂θ2
(Xi, θ)

In general, U(θ0) =
∑

Ui has mean 0 and approximately a normal distribution.
Here is how we check that:

Eθ0(U(θ0)) = nEθ0(U1)

= n

∫

∂ log(f(x, θ0))

∂θ
f(x, θ0)dx

= n

∫

∂f(x, θ0)/∂θ

f(x, θ0)
f(x, θ0)dx

= n

∫

∂f

∂θ
(x, θ0)dx

= n
∂

∂θ

∫

f(x, θ)dx

∣

∣

∣

∣

θ=θ0

= n
∂

∂θ
1

= 0
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Notice: interchanged order of differentiation and integration at one point.
This step is usually justified by applying the dominated convergence theorem to the

definition of the derivative.
Differentiate identity just proved:

∫

∂ log f

∂θ
(x, θ)f(x, θ)dx = 0

Take derivative of both sides wrt θ; pull derivative under integral sign:
∫

∂

∂θ

[

∂ log f

∂θ
(x, θ)f(x, θ)

]

dx = 0

Do the derivative and get

−
∫

∂2 log(f)

∂θ2
f(x, θ)dx

=

∫

∂ log f

∂θ
(x, θ)

∂f

∂θ
(x, θ)dx

=

∫
[

∂ log f

∂θ
(x, θ)

]2

f(x, θ)dx

Definition: The Fisher Information is

I(θ) = −Eθ(U
′(θ)) = nEθ0(V1)

We refer to I(θ0) = Eθ0(V1) as the information in 1 observation.
The idea is that I is a measure of how curved the log likelihood tends to be at the true

value of θ. Big curvature means precise estimates. Our identity above is

I(θ) = V arθ(U(θ)) = nI(θ)

Now we return to our Taylor expansion approximation

−U ′(θ0)(θ̂ − θ0) ≈ U(θ0)

and study the two appearances of U .
We have shown that U =

∑

Ui is a sum of iid mean 0 random variables. The central
limit theorem thus proves that

n−1/2U(θ0) ⇒ N(0, σ2)

where σ2 = Var(Ui) = E(Vi) = I(θ).
Next observe that

−U ′(θ) =
∑

Vi

where again

Vi = −∂Ui

∂θ
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The law of large numbers can be applied to show

−U ′(θ0)/n→ Eθ0 [V1] = I(θ0)
Now manipulate our Taylor expansion as follows

n1/2(θ̂ − θ0) ≈
[∑

Vi
n

]−1 ∑
Ui√
n

Apply Slutsky’s Theorem to conclude that the right hand side of this converges in distribution
to N(0, σ2/I(θ)2) which simplifies, because of the identities, to N{0, 1/I(θ)}.

Summary
In regular families: assuming θ̂ = θ̂n is a consistent root of U(θ) = 0.

• n−1/2U(θ0) ⇒MV N(0, I) where
Iij = Eθ0 {V1,ij(θ0)}

and

Vk,ij(θ) = −∂
2 log f(Xk, θ)

∂θi∂θj

• If Vk(θ) is the matrix [Vk,ij] then
∑n

k=1Vk(θ0)

n
→ I

• If V(θ) =
∑

k Vk(θ) then

{V(θ0)/n}n1/2(θ̂ − θ0)− n−1/2U(θ0) → 0

in probability as n→ ∞.

• Also
{V(θ̂)/n}n1/2(θ̂ − θ0)− n−1/2U(θ0) → 0

in probability as n→ ∞.

• n1/2(θ̂ − θ0)− {I(θ0)}−1U(θ0) → 0 in probability as n→ ∞.

• n1/2(θ̂ − θ0) ⇒ MVN(0, I−1).

• In general (not just iid cases)
√

I(θ0)(θ̂ − θ0) ⇒ N(0, 1)
√

I(θ̂)(θ̂ − θ0) ⇒ N(0, 1)
√

V (θ0)(θ̂ − θ0) ⇒ N(0, 1)
√

V (θ̂)(θ̂ − θ0) ⇒ N(0, 1)

where V = −ℓ′′ is the so-called observed information, the negative second derivative of
the log-likelihood.
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Note: If the square roots are replaced by matrix square roots we can let θ be vector
valued and get MV N(0, I) as the limit law.

Why all these different forms? Use limit laws to test hypotheses and compute confidence
intervals. Test Ho : θ = θ0 using one of the 4 quantities as test statistic. Find confidence
intervals using quantities as pivots. E.g.: second and fourth limits lead to confidence intervals

θ̂ ± zα/2/

√

I(θ̂)

and

θ̂ ± zα/2/

√

V (θ̂)

respectively. The other two are more complicated. For iid N(0, σ2) data we have

V (σ) =
3
∑

X2
i

σ4
− n

σ2

and

I(σ) =
2n

σ2

The first line above then justifies confidence intervals for σ computed by finding all those σ
for which

∣

∣

∣

∣

∣

√
2n(σ̂ − σ)

σ

∣

∣

∣

∣

∣

≤ zα/2

Similar interval can be derived from 3rd expression, though this is much more complicated.
Usual summary: mle is consistent and asymptotically normal with an asymptotic variance

which is the inverse of the Fisher information.

Problems with maximum likelihood

1. Many parameters lead to poor approximations. MLEs can be far from right answer.
See homework for Neyman Scott example where MLE is not consistent.

2. Multiple roots of the likelihood equations: you must choose the right root. Start
with different, consistent, estimator; apply iterative scheme like Newton Raphson to
likelihood equations to find MLE. Not many steps of NR generally required if starting
point is a reasonable estimate.

Finding (good) preliminary Point Estimates

Method of Moments
Basic strategy: set sample moments equal to population moments and solve for the

parameters. Remember the definitions:

Definition: The rth sample moment (about the origin) is

1

n

n
∑

i=1

Xr
i
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The rth population moment is

E(Xr)

Definition: (Central moments are

1

n

n
∑

i=1

(Xi − X̄)r

and

E [(X − µ)r] .

If we have p parameters we can estimate the parameters θ1, . . . , θp by solving the system
of p equations:

µ1 = X̄

µ′
2 = X2

and so on to

µ′
p = Xp

You need to remember that the population moments µ′
k will be formulas involving the pa-

rameters.

Example: The Gamma model: The Gamma(α, β) density is

f(x;α, β) =
1

βΓ(α)

(

x

β

)α−1

exp

[

−x
β

]

1(x > 0)

and has

µ1 = αβ

and
µ′
2 = α(α+ 1)β2.

This gives the equations

αβ = X

α(α + 1)β2 = X2

or

αβ = X

αβ2 = X2 −X
2
.

Divide the second equation by the first to find the method of moments estimate of β is

β̃ = (X2 −X
2
)/X .
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Then from the first equation get

α̃ = X/β̃ = (X)2/(X2 −X
2
) .

The method of moments equations are much easier to solve than the likelihood equations
which involve the function

ψ(α) =
d

dα
log(Γ(α))

called the digamma function.
Score function has components

Uβ =

∑

Xi

β2
− nα/β

and
Uα = −nψ(α) +

∑

log(Xi)− n log(β) .

You can solve for β in terms of α to leave you trying to find a root of the equation

−nψ(α) +
∑

log(Xi)− n log(
∑

Xi/(nα)) = 0

To use Newton Raphson on this you begin with the preliminary estimate α̂1 = α̃ and then
compute iteratively

α̂k+1 =
log(X)− ψ(α̂k)− log(X)/α̂k

1/α− ψ′(α̂k)

until the sequence converges. Computation of ψ′, the trigamma function, requires special
software. Web sites like netlib and statlib are good sources for this sort of thing.

Estimating Equations
Same large sample ideas arise whenever estimates derived by solving some equation.
Example: large sample theory for Generalized Linear Models.
Suppose Yi is number of cancer cases in some group of people characterized by values xi

of some covariates.
Think of xi as containing variables like age, or a dummy for sex or average income or . . ..
Possible parametric regression model: Yi has a Poisson distribution with mean µi where

the mean µi depends somehow on xi.
Typically assume g(µi) = β0 + xiβ; g is link function.
Often g(µ) = log(µ) and xiβ is a matrix product: xi row vector, β column vector.
“Linear regression model with Poisson errors”.
Special case log(µi) = βxi where xi is a scalar.
The log likelihood is simply

ℓ(β) =
∑

(Yi log(µi)− µi)

ignoring irrelevant factorials. The score function is, since log(µi) = βxi,

U(β) =
∑

(Yixi − xiµi) =
∑

xi(Yi − µi)
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(Notice again that the score has mean 0 when you plug in the true parameter value.) The key
observation, however, is that it is not necessary to believe that Yi has a Poisson distribution
to make solving the equation U = 0 sensible. Suppose only that log(E(Yi)) = xiβ. Then we
have assumed that

Eβ(U(β)) = 0

This was the key condition in proving that there was a root of the likelihood equations which
was consistent and here it is what is needed, roughly, to prove that the equation U(β) = 0
has a consistent root β̂. Ignoring higher order terms in a Taylor expansion will give

V (β)(β̂ − β) ≈ U(β)

where V = −U ′. In the mle case we had identities relating the expectation of V to the
variance of U . In general here we have

Var(U) =
∑

x2iVar(Yi) .

If Yi is Poisson with mean µi (and so Var(Yi) = µi) this is

Var(U) =
∑

x2iµi .

Moreover we have
Vi = x2iµi

and so
V (β) =

∑

x2iµi .

The central limit theorem (the Lyapunov kind) will show that U(β) has an approximate
normal distribution with variance σ2

U =
∑

x2iVar(Yi) and so

β̂ − β ≈ N(0, σ2
U/(
∑

x2iµi)
2)

If Var(Yi) = µi, as it is for the Poisson case, the asymptotic variance simplifies to 1/
∑

x2iµi.
Other estimating equations are possible, popular. If wi is any set of deterministic weights

(possibly depending on µi) then could define

U(β) =
∑

wi(Yi − µi)

and still conclude that U = 0 probably has a consistent root which has an asymptotic normal
distribution.

Idea widely used:
Example: Generalized Estimating Equations, Zeger and Liang.
Abbreviation: GEE.
Called by econometricians Generalized Method of Moments.
An estimating equation is unbiased if

Eθ(U(θ)) = 0
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Theorem 21 Suppose θ̂ is a consistent root of the unbiased estimating equation

U(θ) = 0.

Let V = −U ′. Suppose there is a sequence of constants B(θ) such that

V (θ)/B(θ) → 1

and let
A(θ) = V arθ(U(θ))

and
C(θ) = B(θ)A−1(θ)B(θ).

Then

√

C(θ0)(θ̂ − θ0) ⇒ N(0, 1)
√

C(θ̂)(θ̂ − θ0) ⇒ N(0, 1)

Other ways to estimate A, B and C lead to the same conclusions. There are multivariate
extensions using matrix square roots.



Chapter 8

Hypothesis Testing

Hypothesis testing is a statistical problem where you must choose, on the basis of data
X , between two alternatives. We formalize this as the problem of choosing between two
hypotheses: Ho : θ ∈ Θ0 or H1 : θ ∈ Θ1 where Θ0 and Θ1 are a partition of the model
Pθ; θ ∈ Θ. That is Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅.

A rule for making the required choice can be described in two ways:

1. In terms of the set

R = {X : we choose Θ1 if we observe X}

called the rejection or critical region of the test.

2. In terms of a function φ(x) which is equal to 1 for those x for which we choose Θ1 and
0 for those x for which we choose Θ0.

For technical reasons which will come up soon I prefer to use the second description.
However, each φ corresponds to a unique rejection region Rφ = {x : φ(x) = 1}.

Neyman Pearson approach treats two hypotheses asymmetrically. Hypothesis Ho referred
to as the null hypothesis (traditionally the hypothesis that some treatment has no effect).

Definition: The power function of a test φ (or the corresponding critical region Rφ) is

π(θ) = Pθ(X ∈ Rφ) = Eθ(φ(X))

We might be interested in optimality theory, that is, the problem of finding the best φ.
A good φ will evidently have π(θ) small for θ ∈ Θ0 and large for θ ∈ Θ1. There is generally
a trade off which can be made in many ways, however.

8.0.2 Simple versus Simple testing

Finding a best test is easiest when the hypotheses are very precise.

Definition: A hypothesis Hi is simple if Θi contains only a single value θi.

119
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The simple versus simple testing problem arises when we test θ = θ0 against θ = θ1 so
that Θ has only two points in it. This problem is of importance as a technical tool, not
because it is a realistic situation.

Suppose that the model specifies that if θ = θ0 then the density of X is f0(x) and if
θ = θ1 then the density of X is f1(x). How should we choose φ? To answer the question we
begin by studying the problem of minimizing the total error probability.

Jerzy Neyman and Egon Pearson (Egon’s father Karl Pearson was also a famous statis-
tician) invented the jargon which surrounds their philosophy of hypothesis testing. Unfor-
tunately much of the jargon is lame:

Definition: Type I error is the error made when θ = θ0 but we choose H1, that is, X ∈ Rφ.

Definition: Type II error is the error made when θ = θ1 but we choose H0.

Definition: The level of a simple versus simple test is

α = Pθ0(We make a Type I error)

or
α = Pθ0(X ∈ Rφ) = Eθ0(φ(X))

The other error probability, denoted β, is

β = Pθ1(X 6∈ Rφ) = Eθ1(1− φ(X)).

To illustrate a general strategy I now minimize α + β, the total error probability, which
is given by

α+ β = Eθ0(φ(X)) + Eθ1(1− φ(X))

=

∫

[φ(x)f0(x) + (1− φ(x))f1(x)]dx

The problem is to choose, for each x, either the value 0 or the value 1, in such a way as
to minimize the integral. But for each x the quantity

φ(x)f0(x) + (1− φ(x))f1(x)

is between f0(x) and f1(x). To make it small we take φ(x) = 1 if f1(x) > f0(x) and φ(x) = 0
if f1(x) < f0(x). It makes no difference what we do for those x for which f1(x) = f0(x).
Notice that we can divide both sides of the inequalities to express our condition in terms of
the likelihood ratio f1(x)/f0(x).

Theorem 22 For each fixed λ the quantity β + λα is minimized by any φ which has

φ(x) =

{

1 f1(x)
f0(x)

> λ

0 f1(x)
f0(x)

< λ
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Neyman and Pearson suggested that in practice the two kinds of errors might well have
unequal consequences. They suggested that rather than minimize any quantity of the form
above you pick the more serious kind of error, label it Type I and require your rule to hold
the probability α of a Type I error to be no more than some prespecified level α0. (This
value α0 is typically 0.05 these days, chiefly for historical reasons.)

The Neyman and Pearson approach is then to minimize β subject to the constraint
α ≤ α0. Usually this is really equivalent to the constraint α = α0 (because if you use α < α0

you could make the rejection region R larger and keep α ≤ α0 but make β smaller. For
discrete models, however, this may not be possible.

Example: Suppose X is Binomial(n, p) and either p = p0 = 1/2 or p = p1 = 3/4. (It might
be possible to conjure up some genetics problem in which this was vaguely realistic but I
think it would be a stretch.)

If R is any critical region (so R is a subset of {0, 1, . . . , n}) then

P1/2(X ∈ R) =
k

2n

for some integer k. For example, try to get α0 = 0.05 with n = 5. The possible values of
α are 0, 1/32 = 0.03125, 2/32 = 0.0625, etc. Here are all the rejection regions which are
possible for α0 = 0.05:

Region α β
R1 = ∅ 0 1

R2 = {x = 0} 0.03125 1− (1/4)5

R3 = {x = 5} 0.03125 1− (3/4)5

So R3 minimizes β subject to α < 0.05.
Now raise α0 slightly to 0.0625; the possible rejection regions are R1, R2, R3 and R4 =

R2 ∪R3. The first three have the same α and β as before while R4 has α = α0 = 0.0625 and
β = 1− (3/4)5 − (1/4)5. Thus R4 is the best rejection region!

The problem is that if all trials are failures this “optimal” R chooses p = 3/4 rather than
p = 1/2. But p = 1/2 makes 5 failures much more likely than p = 3/4 so it seems clear
there must be a flaw in the theory; R4 cannot really be the optimal way of doing hypothesis
testing.

The real problem is discreteness. Here is a solution to the problem: Expand the set of
possible values of φ to [0, 1]. Values of φ(x) between 0 and 1 represent the chance that we
choose H1 given that we observe x; the idea is that we actually toss a (biased) coin to decide!
This tactic will show us the kinds of rejection regions which are sensible.

In practice we actually restrict our attention to levels α0 for which the best φ is always
either 0 or 1. In the binomial example we will insist that the value of α0 be either 0 or
Pθ0(X ≥ 5) or Pθ0(X ≥ 4) or . . ..

Example: For a smaller example I consider the case of n = 3 so that the random variable
X has 4 possible values; there are then 24 possible rejection regions (subsets of {0, 1, 2, 3}).
Here is a table of the levels for each possible rejection region R:
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R α
∅ 0

{3}, {0} 1/8
{0,3} 2/8

{1}, {2} 3/8
{0,1}, {0,2}, {1,3}, {2,3} 4/8

{0,1,3}, {0,2,3} 5/8
{1,2} 6/8

{0,1,2}, {1,2,3} 7/8
{0,1,2,3} 1

The best level 2/8 test has rejection region {0, 3}, β = 1 − [(3/4)3 + (1/4)3] = 36/64.
The best level 2/8 test using randomization rejects when X = 3 and, when X = 2 tosses
a coin with P (H) = 1/3, then rejects if you get H. The level of this randomized test is
1/8 + (1/3)(3/8) = 2/8; the probability of a Type II error is

β = 1− [(3/4)3 + (1/3)(3)(3/4)2(1/4)] = 28/64.

Definition: A hypothesis test is a function φ(x) whose values are always in [0, 1]. If we
observe X = x then we choose H1 with conditional probability φ(x). In this case we have

π(θ) = Eθ(φ(X))

α = E0(φ(X)) and

β = 1−E1(φ(X))

Note that a test using a rejection region C is equivalent to

φ(x) = 1(x ∈ C)

Theorem 23 (The Neyman Pearson Lemma) In testing f0 against f1 the probability β
of a type II error is minimized, subject to α ≤ α0 by the test function:

φ(x) =











1 f1(x)
f0(x)

> λ

γ f1(x)
f0(x)

= λ

0 f1(x)
f0(x)

< λ

where λ is the largest constant such that

P0(
f1(X)

f0(X)
≥ λ) ≥ α0

and

P0(
f1(X)

f0(X)
≤ λ) ≥ 1− α0
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and where γ is any number chosen so that

E0(φ(X)) = P0(
f1(X)

f0(X)
> λ)

+ γP0(
f1(X)

f0(X)
= λ)

= α0

The value of γ is unique if P0(
f1(X)
f0(X)

= λ) > 0.

Example: Consider again the Binomial(n, p) problem with p0 = 1/2 and p1 = 3/4. The
ratio f1/f0 is

3x2−n.

If n = 5 this ratio is one of the numbers 1, 3, 9, 27, 81, 243 divided by 32.
Suppose we have α = 0.05. Then λ must be one of the possible values of f1/f0. If we try

λ = 243/32 then

P0(3
X2−5 ≥ 243/32) = P0(X = 5)

= 1/32 < 0.05

and

P0(3
X2−5 ≥ 81/32) = P0(X ≥ 4)

= 6/32 > 0.05

So λ = 81/32. Since

P0(3
X2−5 > 81/32) = P0(X = 5) = 1/32

we must solve

P0(X = 5) + γP0(X = 4) = 0.05

for γ and find

γ =
0.05− 1/32

5/32
= 0.12

Note: No-one ever uses this procedure. Instead the value of α0 used in discrete problems
is chosen to be a possible value of the rejection probability corresponding to γ = 0 (or
γ = 1). When the sample size is large you can come very close to any desired α0 with a
non-randomized test, that is, a test for which the function φ takes no values other than 0 or
1.

In our example, if α0 = 6/32 then we can either take λ to be 243/32 and γ = 1 or
λ = 81/32 and γ = 0. However, our definition of λ in the theorem makes λ = 81/32 and
γ = 0.
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When the theorem is used for continuous distributions it can be the case that the cdf
of f1(X)/f0(X) has a flat spot where it is equal to 1 − α0. This is the point of the word
“largest” in the theorem.

Example: : If X1, . . . , Xn are iid N(µ, 1) and we have µ0 = 0 and µ1 > 0 then

f1(X1, . . . , Xn)

f0(X1, . . . , Xn)
= exp{µ1

∑

Xi − nµ2
1/2− µ0

∑

Xi + nµ2
0/2}

which simplifies to

exp{µ1

∑

Xi − nµ2
1/2}

Now choose λ so that

P0(exp{µ1

∑

Xi − nµ2
1/2} > λ) = α0

Can make it equal because f1(X)/f0(X) has a continuous distribution. Rewrite probability
as

P0(
∑

Xi > [log(λ) + nµ2
1/2]/µ1) = 1− Φ

(

log(λ) + nµ2
1/2

n1/2µ1

)

Let zα be the upper α critical point of N(0, 1); then

zα0
= [log(λ) + nµ2

1/2]/[n
1/2µ1] .

Solve this equation to get a formula for λ in terms of zα0
, n and µ1.

The rejection region looks complicated: reject if a complicated statistic is larger than λ
which has a complicated formula. But in calculating λ we re-expressed the rejection region
in terms of

∑

Xi√
n

> zα0

The key feature is that this rejection region is the same for any µ1 > 0. [WARNING: in the
algebra above I used µ1 > 0.] This is why the Neyman Pearson lemma is a lemma!

Definition: In the general problem of testing Θ0 against Θ1 the level of a test function φ is

α = sup
θ∈Θ0

Eθ(φ(X))

The power function is

π(θ) = Eθ(φ(X))

A test φ∗ is a Uniformly Most Powerful level α0 test if

1. φ∗ has level α ≤ αo

2. If φ has level α ≤ α0 then for every θ ∈ Θ1 we have

Eθ(φ(X)) ≤ Eθ(φ
∗(X))
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Proof of Neyman Pearson lemma: Given a test φ with level strictly less than α0 we can
define the test

φ∗(x) =
1− α0

1− α
φ(x) +

α0 − α

1− α

has level α0 and β smaller than that of φ. Hence we may assume without loss that α = α0

and minimize β subject to α = α0. However, the argument which follows doesn’t actually
need this.

8.0.3 Lagrange Multipliers

Suppose you want to minimize f(x) subject to g(x) = 0. Consider first the function

hλ(x) = f(x) + λg(x)

If xλ minimizes hλ then for any other x

f(xλ) ≤ f(x) + λ[g(x)− g(xλ)]

Now suppose you can find a value of λ such that the solution xλ has g(xλ) = 0. Then for
any x we have

f(xλ) ≤ f(x) + λg(x)

and for any x satisfying the constraint g(x) = 0 we have

f(xλ) ≤ f(x)

This proves that for this special value of λ the quantity xλ minimizes f(x) subject to g(x) = 0.
Notice that to find xλ you set the usual partial derivatives equal to 0; then to find the

special xλ you add in the condition g(xλ) = 0.

8.0.4 Return to proof of NP lemma

For each λ > 0 we have seen that φλ minimizes λα + β where φλ = 1(f1(x)/f0(x) ≥ λ).
As λ increases the level of φλ decreases from 1 when λ = 0 to 0 when λ = ∞. There is

thus a value λ0 where for λ > λ0 the level is less than α0 while for λ < λ0 the level is at least
α0. Temporarily let δ = P0(f1(X)/f0(X) = λ0). If δ = 0 define φ = φλ. If δ > 0 define

φ(x) =











1 f1(x)
f0(x)

> λ0

γ f1(x)
f0(x)

= λ0

0 f1(x)
f0(x)

< λ0

where P0(f1(X)/f0(X) > λ0) + γδ = α0. You can check that γ ∈ [0, 1].
Now φ has level α0 and according to the theorem above minimizes lambda0α+β. Suppose

φ∗ is some other test with level α∗ ≤ α0. Then

λ0αφ + βφ ≤ λ0αφ∗ + βφ∗
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We can rearrange this as
βφ∗ ≥ βφ + (αφ − αφ∗)λ0

Since
αφ∗ ≤ α0 = αφ

the second term is non-negative and
βφ∗ ≥ βφ

which proves the Neyman Pearson Lemma.
Example application of NP: Again consider the Binomial(n, p) problem. In order to test
p = p0 versus p1 for a p1 > p0 the NP test is of the form

φ(x) = 1(X > k) + γ1(X = k)

where we choose k so that

Pp0(X > k) ≤ α0 < Pp0(X ≥ k)

and γ ∈ [0, 1) so that
α0 = Pp0(X > k) + γPp0(X = k)

This rejection region depends only on p0 and not on p1 so that this test is UMP for p = p0
against p > p0. Since this test has level α0 even for the larger null hypothesis p ≤ p0, it is
also UMP for p ≤ p0 against p > p0.
Application of the NP lemma: In the N(µ, 1) model consider Θ1 = {µ > 0} and
Θ0 = {0} or Θ0 = {µ ≤ 0}. The UMP level α0 test of H0 : µ ∈ Θ0 against H1 : µ ∈ Θ1 is

φ(X1, . . . , Xn) = 1(n1/2X̄ > zα0
)

Proof: For either choice of Θ0 this test has level α0 because for µ ≤ 0 we have

Pµ(n
1/2X̄ > zα0

)

= Pµ(n
1/2(X̄ − µ) > zα0

− n1/2µ)

= P (N(0, 1) > zα0
− n1/2µ)

≤ P (N(0, 1) > zα0
)

= α0

(Notice the use of µ ≤ 0. The central point is that the critical point is determined by the
behaviour on the edge of the null hypothesis.) Now if φ is any other level α0 test then we
have

E0(φ(X1, . . . , Xn)) ≤ α0

Fix a µ > 0. According to the NP lemma

Eµ(φ(X1, . . . , Xn)) ≤ Eµ(φµ(X1, . . . , Xn))

where φµ rejects if
fµ(X1, . . . , Xn)/f0(X1, . . . , Xn) > λ
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for a suitable λ. But we just checked that this test had a rejection region of the form

n1/2X̄ > zα0

which is the rejection region of φ∗. The NP lemma produces the same test for every µ > 0
chosen as an alternative. So we have shown that φµ = φ∗ for any µ > 0.

This is a fairly general phenomenon: for any µ > µ0 the likelihood ratio fµ/f0 is an
increasing function of

∑

Xi. The rejection region of the NP test is thus always a region of
the form

∑

Xi > k. The value of the constant k is determined by the requirement that the
test have level α0 and this depends on µ0 not on µ1.
Definition: The family fθ; θ ∈ Θ ⊂ R has monotone likelihood ratio with respect to a
statistic T (X) if for each θ1 > θ0 the likelihood ratio fθ1(X)/fθ0(X) is a monotone increasing
function of T (X).

Theorem 24 For a monotone likelihood ratio family the Uniformly Most Powerful level α
test of θ ≤ θ0 (or of θ = θ0) against the alternative θ > θ0 is

φ(x) =







1 T (x) > tα
γ T (X) = tα
0 T (x) < tα

where
Pθ0(T (X) > tα) + γPθ0(T (X) = tα) = α0 .

A typical family where this works is a one parameter exponential family. Usually there
is no UMP test.

Example: test µ = µ0 against the two sided alternative µ 6= µ0 in the N(µ, 1) model. There
is no UMP level α test.

If there were such a test its power at µ > µ0 would have to be as high as that of the
one sided level α test and so its rejection region would have to be the same as that test,
rejecting for large positive values of X̄−µ0. But it also has to have power as good as the one
sided test for the alternative µ < µ0 and so would have to reject for large negative values of
X̄ − µ0. This would make its level too large.

Everybody’s favourite test is the usual 2 sided z-test which rejects for large values of
|X̄ − µ0|. This test maximizes power subject to two constraints: first, that the test have
level α; second, that the power function is minimized at µ = µ0. The second condition means
that the power on alternative is larger than the power on the null.

8.1 Likelihood ratio tests

Likelihood Ratio tests

For general composite hypotheses optimality theory is not usually successful in producing
an optimal test. instead we look for heuristics to guide our choices. The simplest approach
is to consider the likelihood ratio

fθ1(X)

fθ0(X)
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and choose values of θ1 ∈ Θ1 and θ0 ∈ Θ0 which are reasonable estimates of θ assuming
respectively the alternative or null hypothesis is true. The simplest method is to make each
θi a maximum likelihood estimate, but maximized only over Θi.
Example 1: Consider a sample of size n from the N(µ, 1) model and test µ ≤ 0 against
µ > 0. (Remember the uniformly most powerful test.) The log-likelihood is

−n(X̄ − µ)2/2

If X̄ > 0 then the global maximum in Θ1 at X̄ . If X̄ ≤ 0 the global maximum in Θ1 is at
0. Thus µ̂1 which maximizes ℓ(µ) subject to µ > 0 is X̄ if X̄ > 0 and 0 if X̄ ≤ 0. Similarly,
µ̂0 is X̄ if X̄ ≤ 0 and 0 if X̄ > 0. Hence

fθ̂1(X)

fθ̂0(X)
= exp{ℓ(µ̂1)− ℓ(µ̂0)}

which simplifies to
exp{nX̄|X̄|/2}

This is a monotone increasing function of X̄ so the rejection region will be of the form
X̄ > K. To get level α we must reject if n1/2X̄ > zα. Notice that a simpler statistic with
the same rejection region is the log-likelihood ratio

λ ≡ 2 log

(

fµ̂1
(X)

fµ̂0
(X)

)

= nX̄|X̄|

Example 2: In the N(µ, 1) problem suppose we make the null µ = 0. Then the value of µ̂0

is simply 0 while the maximum of the log-likelihood over the alternative µ 6= 0 occurs at X̄ .
This gives

λ = nX̄2

which has a χ2
1 distribution. This test leads to the rejection region λ > (zα/2)

2 which is the
usual two sided t-test.
Example 3: For the N(µ, σ2) problem testing µ = 0 against µ 6= 0 we must find two
estimates of µ, σ2. The maximum of the likelihood over the alternative occurs at the global
mle X̄, σ̂2. We find

ℓ(µ̂, σ̂2) = −n/2− n log(σ̂)

First we maximize ℓ over the null hypothesis. Recall that

ℓ(µ, σ) = − 1

2σ2

∑

(Xi − µ)2 − n log(σ)

On the null µ = 0 so find we σ̂0 by maximizing

ℓ(0, σ) = − 1

2σ2

∑

X2
i − n log(σ)

This leads to
σ̂2
0 =

∑

X2
i /n



8.1. LIKELIHOOD RATIO TESTS 129

and
ℓ(0, σ̂0) = −n/2 − n log(σ̂0)

This gives
λ = −n log(σ̂2/σ̂2

0)

Since
σ̂2

σ̂2
0

=

∑

(Xi − X̄)2
∑

(Xi − X̄)2 + nX̄2

we can write
λ = n log(1 + t2/(n− 1))

where

t =
n1/2X̄

s

is the usual t statistic. Thus the likelihood ratio test rejects for large values of |t| — the
usual test. Notice that if n is large we have

λ ≈ n[1 + t2/(n− 1) +O(n−2)] ≈ t2 .

Since the t statistic is approximately standard normal if n is large we see that

λ = 2[ℓ(θ̂1)− ℓ(θ̂0)]

has nearly a χ2
1 distribution.

This is a general phenomenon when the null hypothesis being tested is of the form φ = 0.
Here is the general theory. Suppose that the vector of p+ q parameters θ can be partitioned
into θ = (φ, γ) with φ a vector of p parameters and γ a vector of q parameters. To test
φ = φ0 we find two mles of θ. First the global mle θ̂ = (φ̂, γ̂) maximizes the likelihood over
Θ1 = {θ : φ 6= φ0} (because typically the probability that φ̂ is exactly φ0 is 0).

Now we maximize the likelihood over the null hypothesis, that is we find θ̂0 = (φ0, γ̂0) to
maximize

ℓ(φ0, γ)

The log-likelihood ratio statistic is

2[ℓ(θ̂)− ℓ(θ̂0)]

Now suppose that the true value of θ is φ0, γ0 (so that the null hypothesis is true). The
score function is a vector of length p+ q and can be partitioned as U = (Uφ, Uγ). The Fisher
information matrix can be partitioned as

[

Iφφ Iφγ

Iγφ Iγγ

]

.

According to our large sample theory for the mle we have

θ̂ ≈ θ + I−1U
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and
γ̂0 ≈ γ0 + I−1

γγ Uγ

If you carry out a two term Taylor expansion of both ℓ(θ̂) and ℓ(θ̂0) around θ0 you get

ℓ(θ̂) ≈ ℓ(θ0) + U tI−1U +
1

2
U tI−1V (θ)I−1U

where V is the second derivative matrix of ℓ. Remember that V ≈ −I and you get

2[ℓ(θ̂)− ℓ(θ0)] ≈ U tI−1U .

A similar expansion for θ̂0 gives

2[ℓ(θ̂0)− ℓ(θ0)] ≈ U t
γI−1

γγ Uγ .

If you subtract these you find that

2[ℓ(θ̂)− ℓ(θ̂0)]

can be written in the approximate form

U tMU

for a suitable matrix M . It is now possible to use the general theory of the distribution of
X tMX where X is MVN(0,Σ) to demonstrate that

Theorem 25 The log-likelihood ratio statistic

λ = 2[ℓ(θ̂)− ℓ(θ̂0)]

has, under the null hypothesis, approximately a χ2
p distribution.

Aside:

Theorem 26 Suppose X ∼MVN(0,Σ) with Σ non-singular andM is a symmetric matrix.
If ΣMΣMΣ = ΣMΣ then X tMX has a χ2

ν distribution with df ν = trace(MΣ).

Proof: We have X = AZ where AAt = Σ and Z is standard multivariate normal. So
X tMX = ZtAtMAZ. Let Q = AtMA. Since AAt = Σ condition in the theorem is

AQQAt = AQAt

Since Σ is non-singular so is A. Multiply by A−1 on the left and by (At)−1 on the right to
get the identity QQ = Q.

The matrix Q is symmetric so Q = PΛP t where Λ is a diagonal matrix containing the
eigenvalues of Q and P is orthogonal matrix whose columns are the corresponding orthonor-
mal eigenvectors. So rewrite

ZtQZ = (P tZ)tΛ(PZ) .
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Notice that W = P tZ is MVN(0, P tP = I); i.e. W is standard multivariate normal. Now

W tΛW =
∑

λiW
2
i

We have established that the general distribution of any quadratic formX tMX is a linear
combination of χ2 variables. Now go back to the condition QQ = Q. If λ is an eigenvalue
of Q and v 6= 0 is a corresponding eigenvector then QQv = Q(λv) = λQv = λ2v but also
QQv = Qv = λv. Thus λ(1−λ)v = 0. It follows that either λ = 0 or λ = 1. This means that
the weights in the linear combination are all 1 or 0 and that X tMX has a χ2 distribution
with degrees of freedom, ν, equal to the number of λi which are equal to 1. This is the same
as the sum of the λi so

ν = trace(Λ)

But

trace(MΣ) = trace(MAAt)

= trace(AtMA)

= trace(Q)

= trace(PΛP t)

= trace(ΛP tP )

= trace(Λ)

In the application Σ is I the Fisher information and M = I−1 − J where

J =

[

0 0
0 I−1

γγ

]

It is easy to check that MΣ becomes

[

I 0
−IγφIφφ 0

]

where I is a p× p identity matrix. It follows that ΣMΣMΣ = ΣMΣ and trace(MΣ) = p.

8.2 Optimal Unbiased Tests

Definition: A test φ of Θ0 against Θ1 is unbiased level α if it has level α and, for every
θ ∈ Θ1 we have

π(θ) ≥ α .

When testing a point null hypothesis like µ = µ0 this requires that the power function
be minimized at µ0. If π is differentiable then this will imply

π′(µ0) = 0
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Example: Consider data X = (X1, . . . , Xn), a sample from the N(µ, 1) distribution. If φ is
any test function then

π′(µ) =
∂

∂µ

∫

φ(x)f(x, µ)dx

Differentiate under the integral and use

∂f(x, µ)

∂µ
=
∑

(xi − µ)f(x, µ)

to get the condition
∫

φ(x)x̄f(x, µ0)dx = µ0α0

We now minimize β(µ) subject to the two constraints

Eµ0
(φ(X)) = α0

and
Eµ0

(X̄φ(X)) = µ0α0.

As in the proof of the Neyman-Pearson Lemma we use Lagrange multipliers. With two
constraints we have two multipliers. So fix two values λ1 > 0 and λ2 and minimize

λ1α + λ2Eµ0
[(X̄ − µ0)φ(X)] + β

The quantity in question is just
∫

[φ(x)f0(x)(λ1 + λ2(x̄− µ0)) + (1− φ(x))f1(x)]dx .

As in the proof of the Neyman-Pearson Lemma this is minimized by

φ(x) =

{

1 f1(x)
f0(x)

> λ1 + λ2(x̄− µ0)

0 f1(x)
f0(x)

< λ1 + λ2(x̄− µ0)

The likelihood ratio f1/f0 is simply

exp{n(µ1 − µ0)X̄ + n(µ2
0 − µ2

1)/2}

and this exceeds the linear function

λ1 + λ2(X̄ − µ0)

for all X̄ sufficiently large or small. That is,

λ1α + λ2Eµ0
[(X̄ − µ0)φ(X)] + β

is minimized by a rejection region of the form

{X̄ > KU} ∪ {X̄ < KL}
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Now we use the constraints of level α and unbiasedness to find KU and KL. That is, to
satisfy the constraints we adjust KU and KL to get level α and π′(µ0) = 0. The second of
these conditions shows that the rejection region is symmetric about µ0. So the test rejects
for √

n|X̄ − µ0| > zα/2.

Mimic the Neyman Pearson lemma proof to check that if λ1 and λ2 are adjusted so that
the unconstrained problem has the rejection region given then the resulting test minimizes
β subject to the two constraints.

8.2.1 Lagrange Multipliers

In this little subsection I want to review the scope of the Lagrange multipliers tactic. Sup-
pose we want to maximize some function f(x) subject to some constraint like h1(x) =
0, . . . , hp(x) = 0 over all x belonging to some set A. Fix multipliers λ1, . . . , λp and suppose
x∗ maximizes

Gλ(x) = f(x)−
p
∑

1

λihi(x)

Suppose that x∗ satisfies the constraints, that is, hi(x
∗) = 0 for each 1 ≤ i ≤ p. Then x∗

maximizes f(x) subject to the constraints.

Proof: If we have any other x which satisfies the constraints then

f(x) = f(x)−
∑

i

λihi(x)

= Gλ(x)

≤ Gλ(x
∗)

= f(x∗)−
∑

i

λihi(x
∗)

= f(x∗)

In the Neyman Pearson lemma and the result in the previous sub-section the constraint
that the test have level α is an inequality constraint and the result above assumes equality
constraints. If some constraint, say constraint i is an inequality hi(x) ≤ 0, and if the special
point x∗ actually satisfies the equality hi(x

∗) = 0 and if the value of λi is non-negative then
the chain of inequalities in the proof above remains correct except that the very first line
becomes

f(x) ≤ f(x)−
∑

i

λihi(x).

The conclusion remains the same.
In the Neyman Pearson Lemma case the role of x is played by the test function φ and the

function f is the power corresponding to the test φ. The optimal level α test described in
the lemma satisfies the equality constraint and the resulting λ is non-negative so this more
general argument is relevant.
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8.2.2 Uniformly Most Powerful Unbiased Tests

Definition: A test φ∗ is a Uniformly Most Powerful Unbiased (UMPU) level α0 test if

1. φ∗ has level α ≤ α0.

2. φ∗ is unbiased.

3. If φ has level α ≤ α0 and φ is unbiased then for every θ ∈ Θ1 we have

Eθ(φ(X)) ≤ Eθ(φ
∗(X))

Conclusion: The two sided z test which rejects if

|Z| > zα/2

where
Z = n1/2(X̄ − µ0)

is the uniformly most powerful unbiased test of µ = µ0 against the two sided alternative
µ 6= µ0.

8.2.3 Nuisance Parameters

In this section I will show that the usual t-test is UMPU. The conclusion applies to both the
one-sided and two-sided tests.

Suppose X1, . . . , Xn iid N(µ, σ2). Consider the problem of testing µ = µ0 or µ ≤ µ0

against µ > µ0. The parameter space is two dimensional; the boundary between the null
and alternative is

{(µ, σ);µ = µ0, σ > 0}
If a test has π(µ, σ) ≤ α for all µ ≤ µ0 and π(µ, σ) ≥ α for all µ > µ0 then π(µ0, σ) = α
for all σ because the power function of any test must be continuous. (This assertion uses
the dominated convergence theorem; the power function is an integral and the assertion of
continuity amounts to taking a limit inside the integral.)

Think of {(µ, σ);µ = µ0} as the parameter space for a model (it is a submodel of our
original model). For this parameter space

S =
∑

(Xi − µ0)
2

is complete and sufficient. Remember that the definitions of both completeness and suffi-
ciency depend on the parameter space.

Now suppose φ(
∑

Xi, S) is an unbiased level α test. Then we have

Eµ0,σ(φ(
∑

Xi, S)) = α

for all σ. Condition on S and get

Eµ0,σ[E(φ(
∑

Xi, S)|S)] = α



8.2. OPTIMAL UNBIASED TESTS 135

for all σ. Sufficiency guarantees that

g(S) = E(φ(
∑

Xi, S)|S)

is a statistic and completeness guarantees that

g(S) ≡ α.

Now let us fix a single value of σ and a value µ1 > µ0. To make our notation simpler I
take µ0 = 0. Our observations above permit us to condition on S = s. Given S = s we have
a level α test which is a function of X̄.

If we maximize the conditional power of this test for each s then we will maximize its
power. What is the conditional model given S = s? That is, what is the conditional
distribution of X̄ given S = s? The answer is that the joint density of X̄, S is of the form

fX̄,S(t, s) = h(s, t) exp{θ1t+ θ2s+ c(θ1, θ2)}

where θ1 = nµ/σ2 and θ2 = −1/σ2.

This makes the conditional density of X̄ given S = s of the form

fX̄|s(t|s) = h(s, t) exp{θ1t+ c∗(θ1, s)}

Note the disappearance of θ2. Also note that the null is θ1 = 0. This permits application of
the NP lemma to the conditional family to prove that UMP unbiased test has form

φ(X̄, S) = 1(X̄ > K(S))

where K(S) is chosen to make the conditional level exactly α. The function x 7→ x/
√
a− x2

is increasing in x for each a so that we can rewrite φ in the form

φ(X̄, S) =

1(n1/2X̄/
√

n[S/n− X̄2]/(n− 1) > K∗(S))

for some K∗. The quantity

T =
n1/2X̄

√

n[S/n− X̄2]/(n− 1)

is the usual t statistic and is exactly independent of S (see Theorem 6.1.5 on page 262 in
Casella and Berger). This guarantees that

K∗(S) = tn−1,α

and makes our UMPU test the usual t test.
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8.2.4 Summary commentary on optimal tests

• A good test has π(θ) large on the alternative and small on the null.

• For one sided one parameter families with monotone likelihood ratio a UMP test exists.

• For two sided or multiparameter families the best to be hoped for is UMP Unbiased
or Invariant or Similar. I have not described “Invariant” or “Similar”; if you want to
see them consult the bible of testing, (?).

• Good tests are found as follows:

1. Use the NP lemma to determine a good rejection region for a simple alternative.

2. Try to express that region in terms of a statistic whose definition does not depend
on the specific alternative.

3. If this fails impose an additional criterion such as unbiasedness. Then mimic the
NP lemma and again try to simplify the rejection region.
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Confidence Sets

Definition: A level β confidence set for a parameter φ(θ) is a random subset, C, of the set
of possible values of φ such that for each θ

Pθ(φ(θ) ∈ C) ≥ β

Confidence sets are very closely connected with hypothesis tests:

From confidence sets to tests

Suppose C is a level β = 1− α confidence set for φ. Then we may convert C to a family
of hypothesis tests. To test φ = φ0: reject if φ0 6∈ C. This test has level α.

From tests to confidence sets

Conversely, suppose that for each φ0 we have available a level α test of φ = φ0 who
rejection region is say Rφ0

. Define C = {φ0 : φ = φ0 is not rejected}; this set C is a level
1− α confidence set for φ.

Example: The usual t test gives rise in this way to the usual t confidence intervals

X̄ ± tn−1,α/2
s√
n
.

Conversely µ0 is in the usual confidence interval if and only if the t-statistic for testing µ = µ0

is smaller than the corresponding t critical value.

Confidence sets from Pivots

137
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Definition: A pivot (or pivotal quantity) is a function g(θ,X) whose distribution is the
same for all θ. (The θ in pivot is same θ as being used to calculate the distribution of g(θ,X).

We can use pivots to generate confidence sets as follows: Pick a set A in the space of
possible values for g. Let β = Pθ(g(θ,X) ∈ A); since g is pivotal β is the same for all θ.
Now given data X solve the relation

g(θ,X) ∈ A

to get
θ ∈ C(X,A) .

Then C(X,A) is a level β confidence set.

Example: In the N(µ, σ2) model the quantity (n − 1)s2/σ2 ∼ χ2
n−1 is a pivot. It leads to

confidence intervals for σ as follows. Given β = 1− α consider the two points

χ2
n−1,1−α/2 and χ2

n−1,α/2.

Then
P (χ2

n−1,1−α/2 ≤ (n− 1)s2/σ2 ≤ χ2
n−1,α/2) = β

for all µ, σ. Now solve this relation to get a set of values for σ:

P (
(n− 1)1/2s

χn−1,α/2

≤ σ ≤ (n− 1)1/2s

χn−1,1−α/2

) = β;

thus the interval
[

(n− 1)1/2s

χn−1,α/2
,
(n− 1)1/2s

χn−1,1−α/2

]

is a level β = 1− α confidence interval.
In the same model we also have

P (χ2
n−1,1−α ≤ (n− 1)s2/σ2) = β

which can be solved to get

P (σ ≤ (n− 1)1/2s

χn−1,1−α
) = β

This gives a level 1− α interval

(0, (n− 1)1/2s/χn−1,1−α) .

The right hand end of this interval is usually called a confidence upper bound.
In general the interval from

(n− 1)1/2s/χn−1,α1
to (n− 1)1/2s/χn−1,1−α2

has level β = 1 − α1 − α2. For fixed β it is possible to minimize the length of the resulting
interval numerically — this procedure is rarely used. See the homework for an example.
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Decision Theory and Bayesian
Methods

Decision Theory and Bayesian Methods

Example: Decide between 4 modes of transportation to work:

• B = Ride my bike.

• C = Take the car.

• T = Use public transit.

• H = Stay home.

Costs depend on weather: R = Rain or S = Sun.

10.0.5 Ingredients of Decision Problem in the no data case

• Decision space D = {B,C, T,H} of possible actions.

• Parameter space Θ = {R, S} of possible “states of nature”.

• Loss function L = L(d, θ) loss incurred if do d and θ is true state of nature.

In the example we might use the following table for L:

C B T H
R 3 8 5 25
S 5 0 2 25

Notice that if it rains I will be glad if I drove. If it is sunny I will be glad if I rode my
bike. In any case staying at home is expensive.

In general we study this problem by comparing various functions of θ. In this problem
a function of θ has only two values, one for rain and one for sun and we can plot any such

139



140 CHAPTER 10. DECISION THEORY AND BAYESIAN METHODS

function as a point in the plane. We do so to indicate the geometry of the problem before
stating the general theory.
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Statistical Decision Theory

Statistical problems have another ingredient, the data. We observe X a random variable
taking values in say X . We may make our decision d depend on X . A decision rule is
a function δ(X) from X to D. We will want L(δ(X), θ) to be small for all θ. Since X is
random we quantify this by averaging over X and compare procedures δ in terms of the risk
function

Rδ(θ) = Eθ(L(δ(X), θ))

To compare two procedures we must compare two functions of θ and pick “the smaller
one”. But typically the two functions will cross each other and there won’t be a unique
‘smaller one’.
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Example: In estimation theory to estimate a real parameter θ we used D = Θ,

L(d, θ) = (d− θ)2

and find that the risk of an estimator θ̂(X) is

Rθ̂(θ) = E[(θ̂ − θ)2]

which is just the Mean Squared Error of θ̂. We have already seen that there is no unique
best estimator in the sense of MSE. How do we compare risk functions in general?

• Minimax methods choose δ to minimize the worst case risk:

sup{Rδ(θ); θ ∈ Θ)}.

We call δ∗ minimax if
sup
θ
Rδ∗(θ) = inf

δ
sup
θ
Rδ(θ)

Usually the sup and inf are achieved and we write max for sup and min for inf. This
is the source of “minimax”.

• Bayes methods choose δ to minimize an average

rπ(δ) =

∫

Rδ(θ)π(θ)dθ

for a suitable density π. We call π a prior density and r the Bayes risk of δ for the
prior π.

Example: My transportation problem has no data so the only possible (non-randomized)
decisions are the four possible actions B,C, T,H . For B and T the worst case is rain. For
the other two actions Rain and Sun are equivalent. We have the following table:

C B T H
R 3 8 5 25
S 5 0 2 25

Maximum 5 8 5 25

To get the smallest maximum: take car, or transit. Thus the minimax action is either to
take the car or to take public transit.

Now imagine I toss a coin with probability λ of getting Heads and take my car if I get
Heads, otherwise take transit. The long run average daily loss would be 3λ+5(1− λ) when
it rains and 5λ+ 2(1− λ) when it is Sunny. Call this procedure dλ; add it to graph for each
value of λ. Varying λ from 0 to 1 gives a straight line running from (3, 5) to (5, 2). The two
losses are equal when λ = 3/5. For smaller λ worst case risk is for sun; for larger λ worst
case risk is for rain.
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Added to graph: loss functions for each dλ, (straight line) and set of (x, y) pairs for which
min(x, y) = 3.8 — worst case risk for dλ when λ = 3/5.
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The figure then shows that d3/5 is actually the minimax procedure when randomized
procedures are permitted.

In general we might consider using a 4 sided coin where we took action B with probability
λB, C with probability λC and so on. The loss function of such a procedure is a convex
combination of the losses of the four basic procedures making the set of risks achievable with
the aid of randomization look like the following:
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Randomization in decision problems permits the assumption that the set of possible risk
functions is convex — an important technical conclusion used to prove many basic decision
theory results.

The graph shows that many points in the picture correspond to bad decision procedures.
Rain or shine not taking my car to work has a lower loss than staying home; the decision to
stay home is inadmissible.

Definition: A decision rule δ is inadmissible if there is a rule δ∗ such that

Rδ∗(θ) ≤ Rδ(θ)

for all θ and there is at least one value of θ where the inequality is strict. A rule which is
not inadmissible is called admissible.

Admissible procedures have risks on lower left of graphs, i.e., lines connecting B to T and
T to C are the admissible procedures.
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10.0.6 Connection between Bayes procedures and admissible pro-
cedures

A prior distribution in the example is specified by two probabilities, πS and πR which add
up to 1. If L = (LS , LR) is the risk function for some procedure then the Bayes risk is

rπ = πRLR + πSLS.

Consider the set of L such that this Bayes risk is equal to some constant. On our picture
this is a line with slope −πS/πR.

Now consider three priors: π1 = (0.9, 0.1), π2 = (0.5, 0.5) and π3 = (0.1, 0.9). For π1:
imagine a line with slope -9 =0.9/0.1 starting on the far left of the picture and sliding right
until it bumps into the convex set of possible losses in the previous picture. It does so at
point B as shown in the next graph.

Sliding this line to the right corresponds to making rπ larger and larger so that when it
just touches the convex set we have found the Bayes procedure.
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Here is a picture showing the same lines for the three priors above.
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The Bayes procedure for π1 (a prior which says you’re pretty sure it will be sunny) is to
ride your bike. If it’s a toss up between R and S you take the bus. If R is very likely you
take your car. Prior (0.6, 0.4) produces the line shown here:
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Any point on line BT is Bayes for this prior.

Decision Theory and Bayesian Methods
Summary for no data case

• Decision space is the set of possible actions I might take. We assume that it is convex,
typically by expanding a basic decision space D to the space D of all probability
distributions on D.

• Parameter space Θ of possible “states of nature”.

• Loss function L = L(d, θ) which is the loss I incur if I do d and θ is the true state of
nature.

• We call δ∗ minimax if
max

θ
L(δ∗, θ) = min

δ
max

θ
L(δ, θ) .
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• A prior is a probability distribution π on Θ,.

• The Bayes risk of a decision δ for a prior π is

rπ(δ) = Eπ(L(δ, θ)) =

∫

L(δ, θ)π(θ)dθ

if the prior has a density. For finite parameter spaces Θ the integral is a sum.

• A decision δ∗ is Bayes for a prior π if

rπ(δ
∗) ≤ rπ(δ)

for any decision δ.

• For infinite parameter spaces: π(θ) > 0 on Θ is a proper prior if
∫

π(θ)dθ <∞; divide
π by integral to get a density. If

∫

π(θ)dθ = ∞ π is an improper prior density.

• Decision δ is inadmissible if there is δ∗ such that

L(δ∗, θ) ≤ L(δ, θ)

for all θ and there is at least one value of θ where the inequality is strict. A decision
which is not inadmissible is called admissible.

• Every admissible procedure is Bayes, perhaps only for an improper prior. (Proof uses
the Separating Hyperplane Theorem in Functional Analysis.)

• Every Bayes procedure with finite Bayes risk (for prior with density > 0 for all θ) is
admissible.

Proof: If δ is Bayes for π but not admissible there is a δ∗ such that

L(δ∗, θ) ≤ L(δ, θ)

Multiply by the prior density; integrate:

rπ(δ
∗) ≤ rπ(δ)

If there is a θ for which the inequality involving L is strict and if the density of π
is positive at that θ then the inequality for rπ is strict which would contradict the
hypothesis that δ is Bayes for π.

Notice: the theorem actually requires the extra hypotheses: positive density, and risk
functions of δ and δ∗ continuous.

• A minimax procedure is admissible. (Actually there can be several minimax procedures
and the claim is that at least one of them is admissible. When the parameter space is
infinite it might happen that set of possible risk functions is not closed; if not then we
have to replace the notion of admissible by some notion of nearly admissible.)
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• The minimax procedure has constant risk. Actually the admissible minimax procedure
is Bayes for some π and its risk is constant on the set of θ for which the prior density
is positive.

Decision Theory and Bayesian Methods
Summary when there is data

• Decision space is the set of possible actions I might take. We assume that it is convex,
typically by expanding a basic decision space D to the space D of all probability
distributions on D.

• Parameter space Θ of possible “states of nature”.

• Loss function L = L(d, θ): loss I incur if I do d and θ is true state of nature.

• Add data X ∈ X with model {Pθ; θ ∈ Θ}: model density is f(x|θ).

• A procedure is a map δ : X 7→ D.

• The risk function for δ is the expected loss:

Rδ(θ) = R(δ, θ) = E [L{δ(X), θ}] .

• We call δ∗ minimax if
max

θ
R(δ∗, θ) = min

δ
max

θ
R(δ, θ) .

• A prior is a probability distribution π on Θ,.

• Bayes risk of decision δ for prior π is

rπ(δ) = Eπ(R(δ, θ))

=

∫

L(δ(x), θ)f(x|θ)π(θ)dxdθ

if the prior has a density. For finite parameter spaces Θ the integral is a sum.

• A decision δ∗ is Bayes for a prior π if

rπ(δ
∗) ≤ rπ(δ)

for any decision δ.

• For infinite parameter spaces: π(θ) > 0 on Θ is a proper prior if
∫

π(θ)dθ <∞; divide
π by integral to get a density. If

∫

π(θ)dθ = ∞ π is an improper prior density.

• Decision δ is inadmissible if there is δ∗ such that

R(δ∗, θ) ≤ R(δ, θ)

for all θ and there is at least one value of θ where the inequality is strict. A decision
which is not inadmissible is called admissible.
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• Every admissible procedure is Bayes, perhaps only for an improper prior.

• If every risk function is continuous then every Bayes procedure with finite Bayes risk
(for prior with density > 0 for all θ) is admissible.

• A minimax procedure is admissible.

• The minimax procedure has constant risk. The admissible minimax procedure is Bayes
for some π; its risk is constant on the set of θ for which the prior density is positive.

10.1 Bayesian Estimation

In this section I will focus on the problem of estimation of a 1 dimensional parameter, θ.
Earlier we discussed comparing estimators in terms of Mean Squared Error. In the language
of decision theory Mean Squared Error corresponds to using

L(d, θ) = (d− θ)2

which is called squared error loss. The multivariate version would be

L(d, θ) = ||d− θ||2

or possibly the more general formula

L(d, θ) = (d− θ)TQ(d− θ)

for some positive definite symmetric matrix Q. The risk function of a procedure (estimator)
θ̂ is

Rθ̂(θ) = Eθ[(θ̂ − θ)2].

Now consider prior with density π(θ). The Bayes risk of θ̂ is

rπ =

∫

Rθ̂(θ)π(θ)dθ

=

∫ ∫

(θ̂(x)− θ)2f(x; θ)π(θ)dxdθ

For a Bayesian the problem is then to choose θ̂ to minimize rπ? This problem will turn out
to be analogous to the calculations I made when I minimized β + λα in hypothesis testing.
First recognize that f(x; θ)π(θ) is really a joint density

∫ ∫

f(x; θ)π(θ)dxdθ = 1

For this joint density: conditional density ofX given θ is just the model f(x; θ). This justifies
the standard notation f(x|θ) for f(; θ)¿ Now I will compute rπ a different way by factoring
the joint density a different way:

f(x|θ)π(θ) = π(θ|x)f(x)
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where now f(x) is the marginal density of x and π(θ|x) denotes the conditional density of θ
given X . We call π(θ|x) the posterior density of θ given the data X = x. This posterior
density may be found via Bayes’ theorem (which is why this is Bayesian statistics):

π(θ|x) = f(x|θ)π(θ)
∫

f(x|φ)π(φ)dφ

With this notation we can write

rπ(θ̂) =

∫
[
∫

(θ̂(x)− θ)2π(θ|x)dθ
]

f(x)dx

[REMEMBER the meta-theorem: when you see a double integral it is always written in the
wrong order. Change the order of integration to learn something useful.] Notice that by
writing the integral in this order you see that you can choose θ̂(x) separately for each x to
minimize the quantity in square brackets (as in the NP lemma).

The quantity in square brackets is a quadratic function of θ̂(x); it is minimized by

θ̂(x) =

∫

θπ(θ|x)dθ

which is
E(θ|X)

and is called the posterior expected mean of θ.

Example: estimating normal mean µ.
Imagine, for example that µ is the true speed of sound.
I think this is around 330 metres per second and am pretty sure that I am within 30

metres per second of the truth with that guess. I might summarize my opinion by saying
that I think µ has a normal distribution with mean ν =330 and standard deviation τ = 10.
That is, I take a prior density π for µ to be N(ν, τ 2).

Before I make any measurements my best guess of µ minimizes
∫

(µ̂− µ)2
1

τ
√
2π

exp{−(µ− ν)2/(2τ 2)}dµ

This quantity is minimized by the prior mean of µ, namely,

µ̂ = Eπ(µ) =

∫

µπ(µ)dµ = ν .

Now collect 25 measurements of the speed of sound. Assume: the relationship between
the measurements and µ is that the measurements are unbiased and that the standard
deviation of the measurement errors is σ = 15 which I assume that we know. So model is:
given µ, X1, . . . , Xn are iid N(µ, σ2) variables.

The joint density of the data and µ is then

(2π)−n/1σ−n exp{−
∑

(Xi − µ)2/(2σ2)} × (2π)−1/2τ−1 exp{−(µ− ν)2/τ 2}.
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Thus (X1, . . . , Xn, µ) ∼ MVN . Conditional distribution of θ given X1, . . . , Xn is normal.
We can now use standard MVN formulas to calculate conditional means and variances.

Alternatively: the exponent in joint density has the form

−1

2

[

µ2/γ2 − 2µψ/γ2
]

plus terms not involving µ where

1

γ2
=

(

n

σ2
+

1

τ 2

)

and
ψ

γ2
=

∑

Xi

σ2
+

ν

τ 2

So: the conditional distribution of µ given the data is N(ψ, γ2). In other words the posterior
mean of µ is

n
σ2 X̄ + 1

τ2
ν

n
σ2 +

1
τ2

which is a weighted average of the prior mean ν and the sample mean X̄.
Notice: the weight on the data is large when n is large or σ is small (precise measurements)

and small when τ is small (precise prior opinion).

Improper priors: When the density does not integrate to 1 we can still follow the machinery
of Bayes’ formula to derive a posterior.

Example: N(µ, σ2); consider prior density

π(µ) ≡ 1.

This “density” integrates to ∞; using Bayes’ theorem to compute the posterior would give

π(µ|X) =
(2π)−n/2σ−n exp{−∑(Xi − µ)2/(2σ2)}
∫

(2π)−n/2σ−n exp{−∑(Xi − ξ)2/(2σ2)}dξ

It is easy to see that this cancels to the limit of the case previously done when τ → ∞ giving
a N(X̄, σ2/n) density. That is, the Bayes estimate of µ for this improper prior is X̄.

Admissibility: Bayes procedures corresponding to proper priors are admissible. It follows
that for each w ∈ (0, 1) and each real ν the estimate

wX̄ + (1− w)ν

is admissible. That this is also true for w = 1, that is, that X̄ is admissible is much harder
to prove.
Minimax estimation: The risk function of X̄ is simply σ2/n. That is, the risk function is
constant since it does not depend on µ. Were X̄ Bayes for a proper prior this would prove
that X̄ is minimax. In fact this is also true but hard to prove.
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Example: Given p, X has a Binomial(n, p) distribution.
Give p a Beta(α, β) prior density

π(p) =
Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1

The joint “density” of X and p is

(

n

X

)

pX(1− p)n−X Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1 ;

posterior density of p given X is of the form

cpX+α−1(1− p)n−X+β−1

for a suitable normalizing constant c.
This is Beta(X + α, n−X + β) density. Mean of Beta(α, β) distribution is α/(α + β).
So Bayes estimate of p is

X + α

n+ α + β
= wp̂+ (1− w)

α

α+ β

where p̂ = X/n is the usual mle.
Notice: again weighted average of prior mean and mle.
Notice: prior is proper for α > 0 and β > 0.
To get w = 1 take α = β = 0; use improper prior

1

p(1− p)

Again: each wp̂+ (1− w)po is admissible for w ∈ (0, 1).
Again: it is true that p̂ is admissible but our theorem is not adequate to prove this fact.
The risk function of wp̂+ (1− w)p0 is

R(p) = E[(wp̂+ (1− w)p0 − p)2]

which is

w2Var(p̂) + (wp+ (1− w)p− p)2 = w2p(1− p)/n+ (1− w)2(p− p0)
2.

Risk function constant if coefficients of p2 and p in risk are 0.
Coefficient of p2 is

−w2/n+ (1− w)2

so w = n1/2/(1 + n1/2).
Coefficient of p is then

w2/n− 2p0(1− w)2

which vanishes if 2p0 = 1 or p0 = 1/2.
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Working backwards: to get these values for w and p0 require α = β. Moreover

w2/(1− w)2 = n

gives
n/(α+ β) =

√
n

or α = β =
√
n/2. Minimax estimate of p is

√
n

1 +
√
n
p̂+

1

1 +
√
n

1

2

Example: X1, . . . , Xn iid MVN(µ,Σ) with Σ known.
Take improper prior for µ which is constant.
Posterior of µ given X is then MV N(X̄,Σ/n).
Multivariate estimation: common to extend the notion of squared error loss by defining

L(θ̂, θ) =
∑

(θ̂i − θi)
2 = (θ̂ − θ)t(θ̂ − θ) .

For this loss risk is sum of MSEs of individual components.
Bayes estimate is again posterior mean. Thus X̄ is Bayes for an improper prior in this

problem.
It turns out that X̄ is minimax; its risk function is the constant trace(Σ)/n.
If the dimension p of θ is 1 or 2 then X̄ is also admissible but if p ≥ 3 then it is

inadmissible.
Fact first demonstrated by James and Stein who produced an estimate which is better,

in terms of this risk function, for every µ.
So-called James Stein estimator is essentially never used.

10.2 Bayesian Hypothesis Testing

Hypothesis Testing and Decision Theory

Decision analysis of hypothesis testing takes D = {0, 1} and

L(d, θ) = 1(make an error)

or more generally L(0, θ) = ℓ11(θ ∈ Θ1) and L(1, θ) = ℓ21(θ ∈ Θ0) for two positive constants
ℓ1 and ℓ2. We make the decision space convex by allowing a decision to be a probability
measure on D. Any such measure can be specified by δ = P (reject) so D = [0, 1]. The loss
function of δ ∈ [0, 1] is

L(δ, θ) = (1− δ)ℓ11(θ ∈ Θ1) + δℓ01(θ ∈ Θ0) .

Definition: Simple hypotheses: Prior is π0 > 0 and π1 > 0 with π0 + π1 = 1.
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Definition: Procedure: map from sample space to D – a test function.
Risk function of procedure φ(X) is a pair of numbers:

Rφ(θ0) = E0(L(δ, θ0))

and
Rφ(θ1) = E1(L(δ, θ1))

We find
Rφ(θ0) = ℓ0E0(φ(X)) = ℓ0α

and
Rφ(θ1) = ℓ1E1(1− φ(X)) = ℓ1β

The Bayes risk of φ is
π0ℓ0α + π1ℓ1β

We saw in the hypothesis testing section that this is minimized by

φ(X) = 1(f1(X)/f0(X) > π0ℓ0/(π1ℓ1))

which is a likelihood ratio test. These tests are Bayes and admissible. The risk is constant
if βℓ1 = αℓ0; you can use this to find the minimax test in this context.

10.3 Optimal Estimation Theory

10.4 Unbiased Estimation Theory

The Binomial problem we considered shows a general phenomenon, namely, an estimator
can be good for some values of θ and bad for others. To compare θ̂ and θ̃, two estimators of
θ we way θ̂ is better than θ̃ if it has uniformly smaller MSE:

MSEθ̂(θ) ≤MSEθ̃(θ)

for all θ. Normally we also require that the inequality be strict for at least one θ.

Warning: Of course we could measure the quality of an estimator in some way other than
MSE!

Question is there a best estimate – one which is better than every other estimator?

Answer NO. Suppose θ̂ were such a best estimate. Fix a θ∗ in Θ and let θ̃ ≡ θ∗. [This is a
crazy estimator – it just ignores the data and guesses θ̂∗. But consider for a minute tossing
an ordinary coin to estimate the probability, p, that it lands Heads up. How many tosses
would it take to convince you that you should use the traditional estimator of p instead of
just assuming the coin is fair and estimating that p is 1/2?] Then the MSE of θ̃ is 0 when
θ = θ∗. Since θ̂ is better than θ̃ we must have

MSEθ̂(θ
∗) = 0
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so that θ̂ = θ∗ with probability equal to 1 when the true value of θ is θ∗. So θ̂ = θ̃.
[Pedants might need more convincing; I have proved that when the true value of θ is θ∗

the estimator has variance 0. How do I know this is true for some other value of θ? Let’s
imagine that the data X has density f(x; θ). Then for any set A in the range of X we have

Pθ(X ∈ A) =

∫

A

f(x, θ)dx

I claim that if this integral is 0 when θ = θ∗ then it is 0 for all θ. To see this write

∫

A

f(x, θ)dx =

∫

A

f(x, θ)

f(x, θ∗)
f(x, θ∗)dx

If
∫

A
f(x, θ∗)dx = 0 then the integrand is 0 (technically 0 almost everywhere) on A. That

means that the product
f(x, θ)

f(x, θ∗)
f(x, θ∗) = 0

almost everywhere on A – unless the first term is actually +∞. So I modify my assertion
slightly: if all the different densities f(x, θ) are positive on the same set (jargon – they all
have the same support) then

Pθ∗(X ∈ A) = 0

implies

Pθ(X ∈ A) = 0

for all θ. Letting A be {x : θ̂(x) 6= θ∗} finishes our pedantry.]
If there are actually two different possible values of θ this gives a contradiction; so no

such θ̂ exists.
Principle of Unbiasedness: A good estimate is unbiased, that is,

Eθ(θ̂) ≡ θ .

Warning: In my view the Principle of Unbiasedness is a load of hog wash.
For an unbiased estimate the MSE is just the variance. This means that if we only allow

unbiased estimates we can compare them by comparing their variances. Sometimes this is
enough of a restriction on the set of possible estimators to mean that there is a single overall
best estimator.
Definition: An estimator φ̂ of a parameter φ = φ(θ) is Uniformly Minimum Variance
Unbiased (UMVU) if, whenever φ̃ is an unbiased estimate of φ we have

Varθ(φ̂) ≤ Varθ(φ̃)

We call φ̂ the UMVUE. (‘E’ is for Estimator.)
The point of having φ(θ) is to study problems like estimating µ when you have two

parameters like µ and σ for example.
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10.4.1 Cramér Rao Inequality

If φ(θ) = θ we can derive some information from the identity

Eθ(T ) ≡ θ

When we worked with the score function we derived some information from the identity
∫

f(x, θ)dx ≡ 1

by differentiation and we do the same here. If T = T (X) is some function of the data X
which is unbiased for θ then

Eθ(T ) =

∫

T (x)f(x, θ)dx ≡ θ

Differentiate both sides to get

1 =
d

dθ

∫

T (x)f(x, θ)dx

=

∫

T (x)
∂

∂θ
f(x, θ)dx

=

∫

T (x)
∂

∂θ
log(f(x, θ))f(x, θ)dx

= Eθ(T (X)U(θ))

where U is the score function. Since the score function has mean 0 (at the true parameter
value)

Covθ(T (X), U(θ)) = 1

Remember that correlations are between -1 and 1 so that

1 = |Covθ(T (X), U(θ))|
≤
√

Varθ(T )Varθ(U(θ)) .

Squaring gives the so-called Cramér Rao Lower Bound (often given the acronym CRLB):

Varθ(T ) ≥
1

I(θ)
.

The inequality is strict unless the correlation is ±1 so that

U(θ) = A(θ)T (X) +B(θ)

for non-random constants A and B (which might depend on θ). This would prove that

ℓ(θ) = A∗(θ)T (X) +B∗(θ) + C(X)

for other constants A∗ and B∗ and finally

f(x, θ) = h(x)eA∗(θ)T (x)+B∗(θ)

for h = eC .
Summary of Implications
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• You can recognize a UMVUE sometimes. If Varθ(T (X)) ≡ 1/I(θ) then T (X) is the
UMVUE. In the N(µ, 1) example the Fisher information is n and Var(X) = 1/n so
that X is the UMVUE of µ.

• In an asymptotic sense the MLE is nearly optimal: it is nearly unbiased and (approx-
imate) variance nearly 1/I(θ).

• Good estimates are highly correlated with the score.

• Densities of exponential form (called exponential family) given above are somehow
special.

• Usually inequality is strict — strict unless score is affine function of a statistic T and
T (or T/c for constant c) is unbiased for θ.

What can we do to find UMVUEs when the CRLB is a strict inequality?

Example: Suppose X has a Binomial(n, p) distribution. The score function is

U(p) =
1

p(1− p)
X − n

1− p

The CRLB will be strict unless T = cX for some c. If we are trying to estimate p then
choosing c = n−1 does give an unbiased estimate p̂ = X/n and T = X/n achieves the CRLB
so it is UMVU.

Now here is a different tactic: suppose T (X) is some unbiased function of X . Then we
have

Ep(T (X)−X/n) ≡ 0

because p̂ = X/n is also unbiased. If h(k) = T (k)− k/n then

Ep(h(X)) =
n
∑

k=0

h(k)

(

n

k

)

pk(1− p)n−k ≡ 0.

The left hand side of this equivalence sign is a polynomial function of p as is the right hand
side. Thus if the left hand side is expanded out the coefficient of each power pk is 0. The
constant term occurs only in the term k = 0; its coefficient is

h(0)

(

n

0

)

= h(0) .

Thus h(0) = 0. Now p1 = p occurs only in term k = 1 with coefficient nh(1) so h(1) = 0.
Since terms with k = 0 or 1 are 0 the quantity p2 occurs only in k = 2 term; coefficient is

n(n− 1)h(2)/2

so h(2) = 0. Continue in this way to see that h(k) = 0 for each k.

Conclusion: So the only unbiased estimate which is a function of X is X/n.
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Note: If there is only one unbiased estimate then of course that one estimate is the best
possible unbiased estimate!

A Binomial random variable is a sum of n iid Bernoulli(p) rvs. If Y1, . . . , Yn iid Bernoulli(p)
then X =

∑

Yi is Binomial(n, p). That leads to the question: could we do better than
p̂ = X/n by trying T (Y1, . . . , Yn) for some other function T ?

I am going to try to build some insight by studying small values of n before presenting
the general theory. Try n = 2. There are 4 possible values for Y1, Y2. If h(Y1, Y2) =
T (Y1, Y2)− [Y1 + Y2]/2 then

Ep(h(Y1, Y2)) ≡ 0

and we have

Ep(h(Y1, Y2)) = h(0, 0)(1− p)2

+[h(1, 0) + h(0, 1)]p(1− p)

+h(1, 1)p2 .

This can be rewritten in the form
n
∑

k=0

w(k)

(

n

k

)

pk(1− p)n−k

where

w(0) = h(0, 0)

2w(1) = h(1, 0) + h(0, 1)

w(2) = h(1, 1) .

So, as before w(0) = w(1) = w(2) = 0. This argument can be used to prove:
For any unbiased estimate T (Y1, . . . , Yn): the average value of T (y1, . . . , yn) over those

values y1, . . . , yn which have exactly k 1s and n− k 0s is k/n.
Now let’s look at the variance of T :

Var(T )

= Ep([T (Y1, . . . , Yn)− p]2)

= Ep([T (Y1, . . . , Yn)−X/n+X/n− p]2)

= Ep([T (Y1, . . . , Yn)−X/n]2)+

2Ep([T (Y1, . . . , Yn)−X/n][X/n− p])

+ Ep([X/n− p]2)

I claim the cross product term is 0 which will prove that the variance of T is the variance
of X/n plus a non-negative quantity (which will be positive unless T (Y1, . . . , Yn) ≡ X/n).
Compute the cross product term by writing

Ep([T (Y1, . . . , Yn)−X/n][X/n− p])

=
∑

y1,...,yn

[T (y1, . . . , yn)−
∑

yi/n][
∑

yi/n− p]

× p
∑

yi(1− p)n−
∑

yi
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Sum over those y1, . . . , yn whose sum is an integer x; then sum over x:

Ep([T (Y1, . . . , Yn)−X/n][X/n− p])

=

n
∑

x=0

∑

∑
yi=x

[T (y1, . . . , yn)−
∑

yi/n]

× [
∑

yi/n− p]p
∑

yi(1− p)n−
∑

yi

=

n
∑

x=0





∑

∑
yi=x

[T (y1, . . . , yn)− x/n]



 [x/n− p]

× px(1− p)n−x

We have already shown that the sum in [] is 0! This long, algebraically involved, method
of proving that p̂ = X/n is the UMVUE of p is one special case of a general tactic.

To get more insight rewrite

Ep{T (Y1, . . . , Yn)}

=

n
∑

x=0

∑

∑
yi=x

T (y1, . . . , yn)

× P (Y1 = y1, . . . , Yn = yn)

=
n
∑

x=0

∑

∑
yi=x

T (y1, . . . , yn)

× P (Y1 = y1, . . . , Yn = yn|X = x)P (X = x)

=
n
∑

x=0

∑

∑
yi=x T (y1, . . . , yn)

(

n

x

)

(

n

x

)

px(1− p)n−x

Note: : the large fraction is the average value of T over all those y such that
∑

yi = x.
Notice also that the weights in average do not depend on p. Finally notice that this average
is actually

E{T (Y1, . . . , Yn)|X = x}
=
∑

y1,...,yn

T (y1, . . . , yn)

× P (Y1 = y1, . . . , Yn = yn|X = x)

And then see that the conditional probabilities do not depend on p.
In a sequence of Binomial trials if I tell you that 5 of 17 were heads and the rest tails

the actual trial numbers of the 5 Heads are chosen at random from the 17 possibilities; all
of the 17 choose 5 possibilities have the same chance and this chance does not depend on p.
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Notice: with data Y1, . . . , Yn the log likelihood is

ℓ(p) =
∑

Yi log(p)− (n−
∑

Yi) log(1− p)

and

U(p) =
1

p(1− p)
X − n

1− p

as before. Again the CRLB is strict except for multiples of X . Since the only unbiased
multiple of X is p̂ = X/n the UMVUE of p is p̂.

10.4.2 Sufficiency

In the binomial situation the conditional distribution of the data Y1, . . . , Yn given X is the
same for all values of θ; we say this conditional distribution is free of θ.

Definition: Statistic T (X) is sufficient for the model {Pθ; θ ∈ Θ} if the conditional distri-
bution of the data X given T = t is free of θ (that is, the conditional distribution is the same
for all values of θ.
Intuition: Data tell us about θ if different values of θ give different distributions to X .
If two different values of θ correspond to same density or cdf for X we cannot distinguish
these two values of θ by examining X . As an extension of this notion: if two values of θ give
the same conditional distribution of X given T then observing T in addition to X doesn’t
improve our ability to distinguish the two values.
Mathematically Precise version of this intuition: Suppose T (X) is a sufficient statistic
and S(X) is any estimate or confidence interval or . . .. If you only know the value of T then:

• Generate an observation X∗ (via some sort of Monte Carlo program) from the condi-
tional distribution of X given T .

• Use S(X∗) instead of S(X). Then S(X∗) has the same performance characteristics as
S(X) because the distribution of X∗ is the same as that of X .

You can carry out the first step only if the statistic T is sufficient; otherwise you need
to know the true value of θ to generate X∗.
Example 1: Y1, . . . , Yn iid Bernoulli(p). Given

∑

Yi = y the indexes of the y successes have

the same chance of being any one of the

(

n

y

)

possible subsets of {1, . . . , n}. Chance does

not depend on p so T (Y1, . . . , Yn) =
∑

Yi is sufficient statistic.
Example 2: X1, . . . , Xn iid N(µ, 1). Joint distribution of X1, . . . , Xn, X is MVN. All entries
of mean vector are µ. Variance covariance matrix partitioned as

[

In×n 1n/n
1t
n/n 1/n

]

where 1n is column vector of n 1s and In×n is n× n identity matrix.
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Compute conditional means and variances of Xi given X ; use fact that conditional law
is MVN. Conclude conditional law of data given X = x is MVN. Mean vector has all entries
x. Variance-covariance matrix is In×n − 1n1

t
n/n. No dependence on µ so X is sufficient.

WARNING: Whether or not statistic is sufficient depends on density function and on Θ.
Theorem: [Rao-Blackwell] Suppose S(X) is a sufficient statistic for model {Pθ, θ ∈ Θ}. If
T is an estimate of φ(θ) then:

1. E(T |S) is a statistic.

2. E(T |S) has the same bias as T ; if T is unbiased so is E(T |S).

3. Varθ(E(T |S)) ≤ Varθ(T ) and the inequality is strict unless T is a function of S.

4. MSE of E(T |S) is no more than MSE of T .

Proof: Review conditional distributions: abstract definition of conditional expectation is:
Definition: E(Y |X) is any function of X such that

E [R(X)E(Y |X)] = E [R(X)Y ]

for any function R(X). E(Y |X = x) is a function g(x) such that

g(X) = E(Y |X)

Fact: If X, Y has joint density fX,Y (x, y) and conditional density f(y|x) then

g(x) =

∫

yf(y|x)dy

satisfies these definitions.
Proof:

E(R(X)g(X)) =

∫

R(x)g(x)fX(x)dx

=

∫ ∫

R(x)yfX(x)f(y|x)dydx

=

∫ ∫

R(x)yfX,Y (x, y)dydx

= E(R(X)Y )

Think of E(Y |X) as average Y holding X fixed. Behaves like ordinary expected value
but functions of X only are like constants:

E(
∑

Ai(X)Yi|X) =
∑

Ai(X)E(Yi|X)

Example: Y1, . . . , Yn iid Bernoulli(p). Then X =
∑

Yi is Binomial(n, p). Summary of
conclusions:
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• Log likelihood function of X only not of Y1, . . . , Yn.

• Only function of X which is unbiased estimate of p is p̂ = X/n.

• If T (Y1, . . . , Yn) is unbiased for p then average value of T (y1, . . . , yn) over y1, . . . , yn for
which

∑

yi = x is x/n.

• Distribution of T given
∑

Yi = x does not depend on p.

• If T (Y1, . . . , Yn) is unbiased for p then

Var(T ) = Var(p̂) + E[(T − p̂)2]

• p̂ is the UMVUE of p.

This proof that p̂ = X/n is UMVUE of p is special case of general tactic.
Proof of the Rao Blackwell Theorem
Step 1: The definition of sufficiency is that the conditional distribution of X given S does
not depend on θ. This means that E(T (X)|S) does not depend on θ.
Step 2: This step hinges on the following identity (called Adam’s law by Jerzy Neyman – he
used to say it comes before all the others)

E[E(Y |X)] = E(Y )

which is just the definition of E(Y |X) with R(X) ≡ 1.
From this we deduce that

Eθ[E(T |S)] = Eθ(T )

so that E(T |S) and T have the same bias. If T is unbiased then

Eθ[E(T |S)] = Eθ(T ) = φ(θ)

so that E(T |S) is unbiased for φ.
Step 3: relies on very useful decomposition. (Total sum of squares = regression sum of
squares + residual sum of squares.)

Var(Y) = Var{E(Y |X)}+ E[Var(Y |X)]

The conditional variance means

Var(Y |X) = E[{Y − E(Y |X)}2|X ]

Square out right hand side:

Var(E(Y |X)) = E[{E(Y |X)−E[E(Y |X)]}2]
= E[{E(Y |X)−E(Y )}2]

and
E[Var(Y |X)] = E[{Y − E(Y |X)}2]
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Adding these together gives

E
[

Y 2 − 2Y E[Y |X ] + 2(E[Y |X ])2

−2E(Y )E[Y |X ] + E2(Y )
]

Simplify remembering E(Y |X) is function of X — constant when holding X fixed. So

E[Y |X ]E[Y |X ] = E[Y E(Y |X)|X ]

taking expectations gives

E[(E[Y |X ])2] = E[E[Y E(Y |X)|X ]]

= E[Y E(Y |X)]

So 3rd term above cancels with 2nd term.

Fourth term simplifies

E[E(Y )E[Y |X ]] = E(Y )E[E[Y |X ]] = E2(Y )

so that

Var(E(Y |X)) + E[Var(Y |X)] = E[Y 2]−E2(Y )

Apply to Rao Blackwell theorem to get

Varθ(T ) = Varθ(E(T |S)) + E[(T −E(T |S))2]

Second term ≥ 0 so variance of E(T |S) is no more than that of T ; will be strictly less unless
T = E(T |S). This would mean that T is already a function of S. Adding the squares of the
biases of T (or of E(T |S)) gives the inequality for MSE.

Examples:

In the binomial problem Y1(1− Y2) is an unbiased estimate of p(1− p). We improve this
by computing

E(Y1(1− Y2)|X)

We do this in two steps. First compute

E(Y1(1− Y2)|X = x)

Notice that the random variable Y1(1 − Y2) is either 1 or 0 so its expected value is just the
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probability it is equal to 1:

E(Y1(1− Y2)|X = x)

= P (Y1(1− Y2) = 1|X = x)

= P (Y1 = 1, Y2 = 0|Y1 + Y2 + · · ·+ Yn = x)

=
P (Y1 = 1, Y2 = 0, Y1 + · · ·+ Yn = x)

P (Y1 + Y2 + · · ·+ Yn = x)

=
P (Y1 = 1, Y2 = 0, Y3 + · · ·+ Yn = x− 1)

(

n

x

)

px(1− p)n−x

=

p(1− p)

(

n− 2

x− 1

)

px−1(1− p)(n−2)−(x−1)

(

n

x

)

px(1− p)n−x

=

(

n− 2

x− 1

)

(

n

x

)

=
x(n− x)

n(n− 1)

This is simply np̂(1− p̂)/(n− 1) (can be bigger than 1/4, the maximum value of p(1− p)).
Example: If X1, . . . , Xn are iid N(µ, 1) then X̄ is sufficient and X1 is an unbiased estimate
of µ. Now

E(X1|X̄) = E[X1 − X̄ + X̄|X̄]

= E[X1 − X̄|X̄] + X̄

= X̄

which is the UMVUE.

Finding Sufficient statistics

Binomial(n, θ): log likelihood ℓ(θ) (part depending on θ) is function of X alone, not of
Y1, . . . , Yn as well.

Normal example: ℓ(µ) is, ignoring terms not containing µ,

ℓ(µ) = µ
∑

Xi − nµ2/2 = nµX̄ − nµ2/2 .

Examples of the Factorization Criterion:
Theorem: If the model for data X has density f(x, θ) then the statistic S(X) is sufficient
if and only if the density can be factored as

f(x, θ) = g(S(x), θ)h(x)
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Proof: Find statistic T (X) such that X is a one to one function of the pair S, T . Apply
change of variables to the joint density of S and T . If the density factors then

fS,T (s, t) = g(s, θ)h(x(s, t))J(s, t)

where J is the Jacobian, so conditional density of T given S = s does not depend on θ.
Thus the conditional distribution of (S, T ) given S does not depend on θ and finally the
conditional distribution of X given S does not depend on θ.

Conversely if S is sufficient then the fT |S has no θ in it so joint density of S, T is

fS(s, θ)fT |S(t|s)

Apply change of variables formula to get

fX(x) = fS(S(x), θ)fT |S(t(x)|S(x))J(x)

where J is the Jacobian. This factors.
Example: If X1, . . . , Xn are iid N(µ, σ2) then the joint density is

(2π)−n/2σ−n×
exp{−

∑

X2
i /(2σ

2) + µ
∑

Xi/σ
2 − nµ2/(2σ2)}

which is evidently a function of
∑

X2
i ,
∑

Xi

This pair is a sufficient statistic. You can write this pair as a bijective function of X̄,
∑

(Xi−
X̄)2 so that this pair is also sufficient.
Example: If Y1, . . . , Yn are iid Bernoulli(p) then

f(y1, . . . , yp; p) =
∏

pyi(1− p)1−yi

= p
∑

yi(1− p)n−
∑

yi

Define g(x, p) = px(1−p)n−x and h ≡ 1 to see that X =
∑

Yi is sufficient by the factorization
criterion.

Minimal Sufficiency

In any model S(X) ≡ X is sufficient. (Apply the factorization criterion.) In any iid model
the vector X(1), . . . , X(n) of order statistics is sufficient. (Apply the factorization criterion.)
In N(µ, 1) model we have 3 sufficient statistics:

1. S1 = (X1, . . . , Xn).

2. S2 = (X(1), . . . , X(n)).

3. S3 = X̄.
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Notice that I can calculate S3 from the values of S1 or S2 but not vice versa and that
I can calculate S2 from S1 but not vice versa. It turns out that X̄ is a minimal sufficient
statistic meaning that it is a function of any other sufficient statistic. (You can’t collapse
the data set any more without losing information about µ.)

Recognize minimal sufficient statistics from ℓ:
Fact: If you fix some particular θ∗ then the log likelihood ratio function

ℓ(θ)− ℓ(θ∗)

is minimal sufficient. WARNING: the function is the statistic.
Subtraction of ℓ(θ∗) gets rid of irrelevant constants in ℓ. In N(µ, 1) example:

ℓ(µ) = −n log(2π)/2−
∑

X2
i /2 + µ

∑

Xi − nµ2/2

depends on
∑

X2
i , not needed for sufficient statistic. Take µ∗ = 0 and get

ℓ(µ)− ℓ(µ∗) = µ
∑

Xi − nµ2/2

This function of µ is minimal sufficient. Notice: from
∑

Xi can compute this minimal
sufficient statistic and vice versa. Thus

∑

Xi is also minimal sufficient.

Completeness

In Binomial(n, p) example only one function of X is unbiased. Rao Blackwell shows
UMVUE, if it exists, will be a function of any sufficient statistic.

Q: Can there be more than one such function?
A: Yes in general but no for some models like the binomial.

Definition: A statistic T is complete for a model Pθ; θ ∈ Θ if

Eθ(h(T )) = 0

for all θ implies h(T ) = 0.
We have already seen that X is complete in the Binomial(n, p) model. In the N(µ, 1)

model suppose
Eµ(h(X̄)) ≡ 0 .

Since X̄ has a N(µ, 1/n) distribution we find that

E(h(X̄)) =

√
ne−nµ2/2

√
2π

∫ ∞

−∞
h(x)e−nx2/2enµxdx

so that
∫ ∞

−∞
h(x)e−nx2/2enµxdx ≡ 0 .

Called Laplace transform of h(x)e−nx2/2.
Theorem: Laplace transform is 0 if and only if the function is 0 (because you can invert

the transform).
Hence h ≡ 0.
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How to Prove Completeness

Only one general tactic: suppose X has density

f(x, θ) = h(x) exp{
p
∑

1

ai(θ)Si(x) + c(θ)}

If the range of the function (a1(θ), . . . , ap(θ)) as θ varies over Θ contains a (hyper-) rectangle
in Rp then the statistic

(S1(X), . . . , Sp(X))

is complete and sufficient.
You prove the sufficiency by the factorization criterion and the completeness using the

properties of Laplace transforms and the fact that the joint density of S1, . . . , Sp

g(s1, . . . , sp; θ) = h∗(s) exp{
∑

ak(θ)sk + c∗(θ)}

Example: N(µ, σ2) model density has form

exp
{

(

− 1
2σ2

)

x2 +
(

µ
σ2

)

x− µ2

2σ2 − log σ
}

√
2π

which is an exponential family with

h(x) =
1√
2π

a1(θ) = − 1

2σ2

S1(x) = x2

a2(θ) =
µ

σ2

S2(x) = x

and

c(θ) = − µ2

2σ2
− log σ .

It follows that
(
∑

X2
i ,
∑

Xi)

is a complete sufficient statistic.
Remark: The statistic (s2, X̄) is a one to one function of (

∑

X2
i ,
∑

Xi) so it must be
complete and sufficient, too. Any function of the latter statistic can be rewritten as a function
of the former and vice versa.
FACT: A complete sufficient statistic is also minimal sufficient.

The Lehmann-Scheffé Theorem
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Theorem: If S is a complete sufficient statistic for some model and h(S) is an unbiased
estimate of some parameter φ(θ) then h(S) is the UMVUE of φ(θ).
Proof: Suppose T is another unbiased estimate of φ. According to Rao-Blackwell, T is
improved by E(T |S) so if h(S) is not UMVUE then there must exist another function h∗(S)
which is unbiased and whose variance is smaller than that of h(S) for some value of θ. But

Eθ(h
∗(S)− h(S)) ≡ 0

so, in fact h∗(S) = h(S).
Example: In the N(µ, σ2) example the random variable (n−1)s2/σ2 has a χ2

n−1 distribution.
It follows that

E

[
√
n− 1s

σ

]

=

∫∞
0
x1/2

(

x
2

)(n−1)/2−1
e−x/2dx

2Γ((n− 1)/2)
.

Make the substitution y = x/2 and get

E(s) =
σ√
n− 1

√
2

Γ((n− 1)/2)

∫ ∞

0

yn/2−1e−ydy .

Hence

E(s) = σ

√
2Γ(n/2)√

n− 1Γ((n− 1)/2)
.

The UMVUE of σ is then

s

√
n− 1Γ((n− 1)/2)√

2Γ(n/2)

by the Lehmann-Scheffé theorem.

Criticism of Unbiasedness

• UMVUE can be inadmissible for squared error loss meaning there is a (biased, of
course) estimate whose MSE is smaller for every parameter value. An example is the
UMVUE of φ = p(1− p) which is φ̂ = np̂(1− p̂)/(n− 1). The MSE of

φ̃ = min(φ̂, 1/4)

is smaller than that of φ̂.

• Unbiased estimation may be impossible. Binomial(n, p) log odds is

φ = log(p/(1− p)) .

Since the expectation of any function of the data is a polynomial function of p and
since φ is not a polynomial function of p there is no unbiased estimate of φ

• The UMVUE of σ is not the square root of the UMVUE of σ2. This method of
estimation does not have the parametrization equivariance that maximum likelihood
does.
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• Unbiasedness is irrelevant (unless you average together many estimators).

Property is an average over possible values of the estimate in which positive errors are
allowed to cancel negative errors.

Exception to criticism: if you average a number of estimators to get a single estimator
then it is a problem if all the estimators have the same bias.

See assignment 5, one way layout example: mle of the residual variance averages
together many biased estimates and so is very badly biased. That assignment shows
that the solution is not really to insist on unbiasedness but to consider an alternative
to averaging for putting the individual estimates together.

Linear Algebra

Linear Algebra Review Notes

Notation: We will need the following notation:

• Vectors x ∈ Rn are column vectors

x =







x1
...
xn







• An m× n matrix A has m rows, n columns and entries Aij .

• Matrix and vector addition are defined componentwise:

(A+B)ij = Aij +Bij ; (x+ y)i = xi + yi

• If A is m× n and B is n× r then AB is the m× r matrix

(AB)ij =

n
∑

k=1

AikBkj

• The matrix I or sometimes In×n which is an n × n matrix with Iii = 1 for all i and
Iij = 0 for any pair i 6= j is called the n× n identity matrix.

• The span of a set of vectors {x1, . . . , xp} is the set of all vectors x of the form x =
∑

cixi. It is a vector space. The column space of a matrix, A, is the span of the set
of columns of A. The row space is the span of the set of rows.

• A set of vectors {x1, . . . , xp} is linearly independent if
∑

cixi = 0 implies ci = 0 for
all i. The dimension of a vector space is the cardinality of the largest possible set of
linearly independent vectors.
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Definition: The transpose, AT , of an m× n matrix A is the n×m matrix whose entries
are given by

(AT )ij = Aji

so that AT is n×m. We have
(A +B)T = AT +BT

and
(AB)T = BTAT .

Definition: The rank of a matrix A is the number of linear independent columns of A; we
use rank(A) for notation. We have

rank(A) = dim(column space of A)

= dim(row space of A)

= rank(AT )

If A is m× n then rank(A) ≤ min(m,n).

Matrix inverses

For this little section all matrices are square n× n matrices.
If there is a matrix B such that BA = In×n then we call B the inverse of A. If B exists

it is unique and AB = I and we write B = A−1. The matrix A has an inverse if and only if
rank(A) = n.

Inverses have the following properties:

(AB)−1 = B−1A−1

(if one side exists then so does the other) and

(AT )−1 = (A−1)T

Determinants

Again A is n× n. The determinant if a function on the set of n× n matrices such that:

1. det(I) = 1.

2. If A′ is the matrix A with two columns interchanged then

det(A‘prime) = −det(A) .

(Notice that this means that two equal columns guarantees det(A) = 0.)

3. det(A) is a linear function of each column of A. That is if A = (a1, . . . , an) with ai
denoting the ith column of the matrix then

det(a1, . . . , ai + bi, . . . , an) =det(a1, . . . , ai, . . . , an)

+ det(a1, . . . , bi, . . . , an)



172 CHAPTER 10. DECISION THEORY AND BAYESIAN METHODS

Here are some properties of the determinant:

1. det(AT ) = det(A).

2. det(AB) = det(A)det(B).

3. det(A−1)=1/det(A).

4. A is invertible if and only if det(A) 6= 0 if and only if rank(A) = n.

5. Determinants can be computed (slowly) by expansion by minors.

Special Kinds of Matrices

1. A is symmetric if AT = A.

2. A is orthogonal if AT = A−1 (or AAT = ATA = I).

3. A is idempotent if AA ≡ A2 = A.

4. A is diagonal if i 6= j implies Aij = 0.

Inner Products and orthogonal and orthonormal vectors

Definition: Two vectors x and y are orthogonal if xT y =
∑

xiyi = 0.

Definition: The inner product or dot product of x and y is

< x, y >= xT y =
∑

xiyi

Definition: x and y are orthogonal if xTy = 0.

Definition: The norm (or length) of x is ||x|| = (xtx)1/2 = (
∑

x2i )
1/2

A is orthogonal if each column of A has length 1 and is orthogonal to each other column
of A.

Quadratic Forms

Suppose A is an n× n matrix. The function

g(x) = xTAx

is called a quadratic form. Now

g(x) =
∑

ij

Aijxixj

=
∑

i

Aiix
2
i +

∑

i<j

(Aij + Aji)xixj
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so that g(x) depends only on the total Aij + Aji. In fact

xTAx = xTATx = xT
(

A+ AT

2

)

x

Thus we will assume that A is symmetric.

Eigenvalues and eigenvectors

If A is n× n and v 6= 0 ∈ Rn and λ ∈ R are such that

Av = λv

then we say that λ is an eigenvalue (or characteristic value or latent value) of A and that
v is the corresponding eigenvector. Since Av − λv = (A − λI)v = 0 we find that A − λI
must be singular. Therefore det(A− λI) = 0. Conversely if A− λI is singular then there is
a v 6= 0 such that (A−λI)v = 0. In fact, det(A−λI) is a polynomial function of λ of degree
n. Each root is an eigenvalue. For general A the roots could be multiple roots or complex
valued.

Diagonalization

A matrix A is diagonalized by a non-singular matrix P is P−1AP ≡ D is a diagonal
matrix. If so then AP = PD and each column of P is an eigenvector of A with the ith
column having eigenvalue Dii. Thus to be diagonalizable A must have n linearly independent
eigenvectors.

Symmetric Matrices

If A is symmetric then

1. Every eigenvalue of A is real (not complex).

2. A is diagonalizable and the columns of P may be taken to be orthogonal to each other
and of unit length. In other words, A is diagonalizable by an orthogonal matrix P ; in
symbols P TAP = D. The diagonal entries in D are the eigenvalues of A.

3. If λ1 6= λ2 are two eigenvalues of A and v1 and v2 are corresponding eigenvectors then

vT1 Av2 = vT1 λ2v2 = λ2v
T
1 v2

and

(vT1 Av2) = (vT1 Av2)
T

= v2TATv1

= vT2 Av1

= vT2 λ1v1

= λ1v
T
2 v1

Since (λ1−λ2)v
t
1v2 = 0 and λ1 6= λ2 we see that v

T
1 v2 = 0. In other words eigenvectors

corresponding to distinct eigenvalues are orthogonal.
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Orthogonal Projections

Suppose that S is a vector subspace of Rn and that a1, . . . , am are a basis for S. Given
any x ∈ Rn there is a unique y ∈ S which is closest to x. That is, y minimizes

(x− y)T (X − y)

over y ∈ S. Any y in S is of the form

y = c1a1 + · · ·+ cmam = Ac

where A is the n ×m matrix with columns a1, . . . , am and c is the column vector with ith
entry ci. Define

Q = A(ATA)−1AT

(The fact that A has rank m guarantees that ATA is invertible.) Then

(x− Ac)T (x− Ac) = (x−Qx+Qx− Ac)T (x−Qx+Qx− Ac)

= (x−Qx)T (x−Qx) + (Qx−Ac)T (x−Qx)

+ (x−Qx)T (Qx−Ac) + (Qx− Ac)T (Qx−Ac)

Note that x−Qx = (I −Q)x and that

QAc = A(ATA)−1ATAc = Ac

so that
Qx−Ac = Q(x− Ac)

Then
(Qx−Ac)T (x−Qx) = (x− Ac)TQT (I −Q)x

Since QT = Q we see that

QT (I −Q) = Q(I −Q)

= Q−Q2

= Q−A(ATA)−1ATA(ATA)−1AT

= Q−Q

= 0

This shows that

(x− Ac)T (x− Ac) = (x−Qx)T (x−Qx) + (Qx− Ac)T (Qx− Ac)

Now to choose Ac to minimize this quantity we need only minimize the second term. This
is achieved by making Qx = Ac. Since Qx = A(ATA)−1ATx this can be done by taking
c = (ATA)−1ATx. In summary we find that the closest point y in S is

y = Qx = A(ATA)−1ATx
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We call y the orthogonal projection of x onto S.
Notice that the matrix Q is idempotent:

Q2 = Q

We call Qx the orthogonal projection of x on S because Qx is perpendicular to the residual
x−Qx = (I −Q)x.

Partitioned Matrices

Suppose that A11 is a p × r matrix, A1,2 is p × s, A2,1 is q × r and A2,2 is q × s. Then
we could make a big (p+ q)× (r+ s) matrix by putting together the Aij in a 2 by 2 matrix
giving the following picture:

A =

[

A11 A12

A21 A22

]

For instance if

A11 =

[

1 0
0 1

]

A12 =

[

2
3

]

A21 =
[

4 5
]

and

A22 = [6]

then

A =





1 0 2
0 1 3
4 5 6





where I have drawn in lines to indicate the partitioning.
We can work with partitioned matrices just like ordinary matrices always making sure

that in products we never change the order of multiplication of things.

[

A11 A12

A21 A22

]

+

[

B11 B12

B21 B22

]

=

[

A11 +B11 A12 +B12

A21 +B21 A22 +B22

]

and
[

A11 A12

A21 A22

] [

B11 B12

B21 B22

]

=

[

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

In these formulas the partitioning of A and B must match. For the addition formula the
dimensions of Aij and Bij must be the same. For the multiplication formula A12 must have
as many columns as B21 has rows and so on. In general Aij and Bjk must be of the right
size for AijBjk to make sense for each i, j, k.

The technique can be used with more than a 2 by 2 partitioning.
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Definition: A block diagonal matrix is a partitioned matrix A with pieces Aij for which
Aij = 0 if i 6= j. If

A =

[

A11 0
0 A22

]

then A is invertible if and only if each Aii is invertible and then

A−1 =

[

A−1
11 0
0 A−1

22

]

Moreover det(A) = det(A11)det(A22). Similar formulas work for larger matrices.


