
Lecture 18: Lagrange Multipliers and Neyman-Pearson

I proved that if f and g are functions from a set V to R and there is a
λ > 0 and a v∗ ∈ V such that

v∗ minimizes Hλ(v) ≡ f (v) + λg(v),

and
g(v∗) = c

then for all v ∈ V such that g(v) ≤ c we have

f (v) ≥ f (v∗)

I also proved that if f and g are functions from a set V to R and
there is a λ ∈ R and a v∗ ∈ V such that

v∗ minimizes Hλ(v) ≡ f (v) + λg(v),

and
g(v∗) = c

then for all v ∈ V such that g(v) = c we have

f (v) ≥ f (v∗)
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Neyman Pearson Lemma

I applied this to prove the Neyman Pearson Lemma.

A hypothesis (Θ0 or Θ1) is simple if it contains only one density.

Otherwise it is composite.

For data X with model {f0, f1} with only 2 densities in it the
probability of a Type II error is minimized, subject to a test having
level no more than α by

φλ,γ(x) =











1 f1(x)/f0(x) > λ

0 f1(x)/f0(x) < λ

γ f1(x)/f0(x) = λ

provided that γ and λ are chosen so that the resulting test has level α.
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The Proof

V is the set of functions φ from X to [0,1].

f is β = E0(1− φ(X )) =
∫

[1− φ(x)]f0(x)dx .

g is α = E0(φ(X )) =
∫

φ(x)f0(x)dx .

So Hλ = β + λα.

Parallel to the last lecture this is minimized by any φ of the form

φ(x) =

{

1 fx(x)/f0(x) > λ

0 fx(x)/f0(x) < 1
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Finish the proof

If Y = f1(X )/f0(X ) has a continuous distribution when X has density
f0 then the equation

P0(Y > λ) = α = P(Y ≥ α)

has a solution.

For discrete distributions γ might be needed.

This finishes the proof.

Then I did an example of Lagrange Multipliers.
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Lagrange multipliers example

Maximize f (x) = xTQx subject to xT x = 1.

Lagrangian is Hλ(x) = xT (Q − λI )x .

Take derivative wrt x and solve

(Q − λI )x = 0

If λ is not an eigenvalue of Q then the only critical point is x = 0
which does not satisfy the constraint.

So assume λ is an eigenvalue and x is not 0.

So x must be an eigenvector of Q and Hλ(x) = 0.
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Example continued

To satisfy the constraint we must simply divide x by its length so x

will be a unit length eigenvector.

The second derivative matrix of Hλ is Q − λI .

Let λ1 > · · · > λp be the distinct eigenvalues of Q.

The eigenvalues of Hλ1
are

0 > λ2 − λ1 > · · · > λp − λ1

So Hλ1
has a non-positive definite, constant, Hessian.

So any unit length eigenvector x for λ1 maximizes Hλ1
.

Any such x maximizes xTQx subject to xT x = 1.

The maximized value is λ1.
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Coverage in the text

Chapter 10.

Course slides “Hypothesis Tests”: 1-9, 13, 14, 18-24, 26, 27

See “course notes” on web pages 130-131.
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