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Purposes of These Notes

Define convergence in distribution
State central limit theorem
Discuss Edgeworth expansions

Discuss extensions of the central limit theorem

e © © ¢ ¢

Discuss Slutsky’s theorem and the § method.
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Convergence in Distribution p 72

@ Undergraduate version of central limit theorem:
Theorem

If X1,..., X, are iid fro_m a population with mean p and standard
deviation o then n'/?(X — i)/o has approximately a normal distribution.

@ Also Binomial(n, p) random variable has approximately a
N(np, np(1 — p)) distribution.

@ Precise meaning of statements like “X and Y have approximately the
same distribution”?

s
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Towards precision

@ Desired meaning: X and Y have nearly the same cdf.
@ But care needed.

@ QI: If nis a large number is the N(0,1/n) distribution close to the
distribution of X = 07

@ Q2: Is N(0,1/n) close to the N(1/n,1/n) distribution?
@ Q3: Is N(0,1/n) close to N(1/+/n,1/n) distribution?
@ Q4: If X, =27 " is the distribution of X, close to that of X = 07?
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Some numerical examples?

@ Answers depend on how close close needs to be so it's a matter of
definition.

@ In practice the usual sort of approximation we want to make is to say
that some random variable X, say, has nearly some continuous
distribution, like N(0, 1).

@ So: want to know probabilities like P(X > x) are nearly
P(N(0,1) > x).

@ Real difficulty: case of discrete random variables or infinite
dimensions: not done in this course.

@ Mathematicians' meaning of close: Either they can provide an upper

bound on the distance between the two things or they are talking
about taking a limit.

@ In this course we take limits.
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The definition p 75

@ Definition: A sequence of random variables X, converges in
distribution to a random variable X if

E(g(Xn)) = E(g(X))
for every bounded continuous function g.
Theorem
The following are equivalent:
O X, converges in distribution to X.
Q P(X, < x) = P(X < x) for each x such that P(X = x) = 0.

© The limit of the characteristic functions of X, is the characteristic
function of X: for every real t

E(e™) — E(e™).

These are all implied by Mx, (t) — Mx(t) < oo for all |t| < € for some
positive e.

4
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Answering the questions
@ X, ~ N(0,1/n) and X =0. Then

1 x>0
P(Xp<x)—< 0 x<0
1/2 x=0

@ Now the limit is the cdf of X = 0 except for x = 0 and the cdf of X is
not continuous at x = 0 so yes, X, converges to X in distribution.

o | asked if X, ~ N(1/n,1/n) had a distribution close to that of
Yn ~ N(0,1/n).

@ The definition | gave really requires me to answer by finding a limit X
and proving that both X, and Y, converge to X in distribution.

@ Take X =0. Then

E(etX,,) — ef/n+t2/(2n) 1= E(etX)

and
E(et™) = et/2n) 1
so that both X,, and Y,, have the same limit in distribution.
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First graph
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Second graph

N(1/n,1/n) vs N(0,1/n); n=10000
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Scaling matters

@ Multiply both X, and Y,, by n'/? and let X ~ N(0,1). Then
VX, ~ N(n=Y/2.1) and \/nY, ~ N(0,1).

@ Use characteristic functions to prove that both \/nX, and \/nY,,
converge to N(0,1) in distribution.

o If you now let X, ~ N(n=/2,1/n) and Y, ~ N(0,1/n) then again
both X, and Y, converge to 0 in distribution.

o If you multiply X, and Y, in the previous point by n'/2 then
n'/2X, ~ N(1,1) and n*/2Y, ~ N(0,1) so that n*/?X, and n'/2Y,
are not close together in distribution.

@ You can check that 27" — 0 in distribution.
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Third graph
N(1/sqrt(n),1/n) vs N(0,1/n); n=10000

—— N(O,Un)
2 == N(Usqrt(n),1/n)
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Summary

To derive approximate distributions:

Show sequence of rvs X, converges to some X.

The limit distribution (i.e. dstbn of X) should be non-trivial, like say
N(0,1).

Don't say: X, is approximately N(1/n,1/n).
Do say: n'/2(X, — 1/n) converges to N(0,1) in distribution.

=
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The Central Limit Theorem pp 77-79

Theorem

If X1, X, are iid with mean 0 and variance 1 then n*/2X converges in
distribution to N(0,1). That is,

_ 1 X 2
P(n'/2X < x —>—/ e Y /2dy .
( <x) T ) ly
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Proof of CLT

@ As before ~
E(eitnl/zX) N e—t2/2'
This is the characteristic function of N(0,1) so we are done by our
theorem.

@ This is the worst sort of mathematics — much beloved of statisticians
— reduce proof of one theorem to proof of much harder theorem.

@ Then let someone else prove that.

s
=
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Edgeworth expansions
o In fact if v = E(X3) then
p(t)~1—t)2 —int3 )6+ -
keeping one more term.

@ Then
log(¢(t)) = log(1 + u)

where
u=—t2/2 —iyt3/6 4+ .

o Use log(l+u) =u—u?/2+--- to get
log(6(t)) ~ [~t2/2 = iyt® /6 + -] = [ ]2/2+ -+
which rearranged is

log(o(t)) = —t2/2 — int3 /6 + - - - .
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Edgeworth Expansions
@ Now apply this calculation to
log(o7(t)) =~ —t2/2 — iE(T3)t3/6 + - - - .
@ Remember E(T3) = v/y/n and exponentiate to get
or(t) ~ e P ep{—int®/(6v/n) + -}

@ You can do a Taylor expansion of the second exponential around 0
because of the square root of n and get

o7(t) ~ e F/2(1 — int3/(6V/n))

neglecting higher order terms.

@ This approximation to the characteristic function of T can be
inverted to get an Edgeworth approximation to the density (or
distribution) of T which looks like

fr(x) ~ %/ 170 = 3)/(6V/m) + -]
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Remarks

@ The error using the central limit theorem to approximate a density or
a probability is proportional to n=1/2.

This is improved to n™! for symmetric densities for which v = 0.
These expansions are asymptotic.

This means that the series indicated by - - - usually does not converge.

e © ¢ ¢

When n = 25 it may help to take the second term but get worse if
you include the third or fourth or more.

@ You can integrate the expansion above for the density to get an
approximation for the cdf.
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Multivariate convergence in distribution

@ Definition: X, € RP converges in distribution to X € RP if
E(g(Xn)) — E(g(X))

for each bounded continuous real valued function g on RP.

@ This is equivalent to either of
» Cramér Wold Device: aX, converges in distribution to a'X for each

ae€ RP. or
» Convergence of characteristic functions:

E(eia‘X,,) - E(eia‘X)

for each a € RP.

s
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Extensions of the CLT

9 Y, Y2_,--- iid in RP, mean u, variance covariance ¥ then
nY/2(Y — i) converges in distribution to MVN(0, ).
© Lyapunov CLT: for each n X,1,..., Xy, independent rvs with

EXni) =0 Var()_Xp)=1 > E(|Xn’) >0

then >, Xy converges to N(0,1).
© Lindeberg CLT: 1st two conds of Lyapunov and

" E(G1(Xn] > ) >0

each e > 0. Then ). X,; converges in distribution to N(0, 1).
(Lyapunov's condition implies Lindeberg's.)

© Non-independent rvs: m-dependent CLT, martingale CLT, CLT for
mixing processes.

© Not sums: Slutsky's theorem, § method.
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Slutsky's Theorem p 75

Theorem

If X, converges in distribution to X and Y, converges in distribution (or in
probability) to c, a constant, then X, + Y, converges in distribution to

X + c. More generally, if f(x,y) is continuous then f(X,, Y,) = f(X, c).

@ Warning: the hypothesis that the limit of Y}, be constant is essential.

]

=
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The delta method pp 79-80, 131-135

Theorem
Suppose:

@ Sequence Y, of rvs converges to some y, a constant.

@ X, = an(Yn—y) then X, converges in distribution to some random
variable X.

o f is differentiable ftn on range of Y,.

Then a,(f(Yn) — f(y)) converges in distribution to f'(y)X.

If X, € RP and f : RP — R9 then f’ is g x p matrix of first derivatives of
components of f.

=
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Example

@ Suppose Xi,..., X, are a sample from a population with mean g,
variance o2, and third and fourth central moments ;3 and 4.

@ Then
n/2(s? — 62) = N(0, pg — o)

where = is notation for convergence in distribution.

o For simplicity | define s2 = X2 — X2
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How to apply 6 method

© Write statistic as a function of averages:

» Define )
X
w= %]
» See that L
_ X2
Wn = J—
k1
» Define

» See that s? = f(W,).

© Compute mean of your averages:

pw = E(W,) = [ EE(())?)) ]

]
e

© In 6 method theorem take Y, = W, and y = E(Yn).

=

23 /31

Richard Lockhart (Simon Fraser University) STAT 830 Convergence in Distribution

STAT 830 — Fall 2013



Delta Method Continues
Q@ Take a, = nt/2,

Q Use central limit theorem:
n*2(Y, — y) = MVN(0,X)

where ¥ = Var(W;).
© To compute X take expected value of

(W — pw)(W — pw)*
There are 4 entries in this matrix. Top left entry is
(X2 — 12 — g2)?2
This has expectation:

E{(XZ _M2 _0,2)2} — E(X4) _ (///2 +0,2)2 .
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Delta Method Continues
@ Using binomial expansion:
E(X*) = E{(X — pu+ n)*}
= pi4 + Az + 6p°0% + 4PE(X — 1) + pt

® So XYq1 =g — ot + dpps + 4M20'2.
@ Top right entry is expectation of

(X2 = p? = 0?)(X — p)
which is
E(X?) - E(X?)
@ Similar to 4th moment get

u3 + 2,uc72

@ Lower right entry is 2.

o So

s _ [ ma- ot + 4z + 4pPo® s+ 2uo?
- 2

ps + 2po? o
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Delta Method Continues

@ Compute derivative (gradient) of f: has components (1, —2xy).

Evaluate at y = (u? + 02, 1) to get

at = (1,-2pu).

@ This leads to

X2 (12 1 2
n2(s? — 0?) ~ n'/?[1, —24] X2 = (i +o)

X—p
which converges in distribution to

(1, —2) MVN(0, ) .

@ This rvis N(0,atxa) = N(0, ug — 0*).
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Alternative approach

@ Suppose c is constant. Define X = X; — c.
@ Sample variance of X is same as sample variance of X;.
@ All central moments of X same as for X; so no loss in = 0.

@ In this case:

4
at: 1’0 z:|:M4_J /-1'3:|
(1.0 Tk

@ Notice that

a'y = [us — o 3] a'Ya=ps—o*.

s
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Special Case: N(u,0?)

@ Then pu3z =0 and pg4 = 30*.
@ Our calculation has

n*?(s? — 6%) = N(0,20%)
@ You can divide through by ¢ and get
n*2(s?/o? — 1) = N(0,2)

@ In fact nsz/a2 has X%—l distribution so usual CLT shows

(n—1)"Y2[ns? /o2 — (n —1)] = N(0,2)

(using mean of x? is 1 and variance is 2).
@ Factor out n to get

[T o1 02

which is § method calculation except for some constants.
@ Difference is unimportant: Slutsky's theorem.
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Example — median

e © 6 ¢ ¢ ¢

Many, many statistics which are not explicitly functions of averages
can be studied using averages.

Later we will analyze MLEs and estimating equations this way.
Here is an example which is less obvious.

Suppose X1, ..., X, are iid cdf F, density f, median m.

We study M, the sample median.

If n =2k — 1 is odd then M is the kth largest.

If n = 2k then there are many potential choices for m between the
kth and k + 1th largest.

@ | do the case of kth largest.

@ The event m < x is the same as the event that the number of X; < x
is at least k.

That is
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The median

o So

P(h < x) =P _1(X; < x) > k)

1

= P (Va(Falx) = F(x)) = Vl(k/n = F()))
@ From Central Limit theorem this is approximately

Lo ( Va(k/n — F(x) ) |
VR~ F()

@ Notice k/n — 1/2.
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Median

o If we put x = m+ y//n (where m is true median) we find
F(x) = F(m)=1/2.

o Also \/n(F(x) —1/2) — f(m) where f is density of F (if f exists).
@ So
P(Vn(rf —m) < y) = 1= &(=2f(m)y)

@ That is,

Vn(m —1/2) — N(0,1/(4f%(m))).
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