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Purposes of These Notes

Introduce Loss, Risk, prior, Bayes risk, posterior.

Discuss admissibility.
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Example: how to get to work

Have 4 modes of transportation to work:
◮ B = Ride my bike.
◮ C = Take the car.
◮ T = Use public transit.
◮ H = Stay home.

Costs depend on weather: R = Rain or S = Sun.
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Ingredients of Decision Problem: No data case

Decision space D = {B ,C ,T ,H} of possible actions.

Parameter space Θ = {R ,S} of possible “states of nature”.

Loss function L = L(d , θ) loss incurred if do d and θ is true state of
nature.
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Example

In the example we might use the following table for L:

C B T H

R 3 8 5 25
S 5 0 2 25

Notice that if it rains I will be glad if I drove.

If it is sunny I will be glad if I rode my bike.

In any case staying at home is expensive.

In general we study this problem by comparing various functions of θ.

In this problem a function of θ has only two values, one for rain and
one for sun and we can plot any such function as a point in the plane.

We do so to indicate the geometry of the problem before stating the
general theory.
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Losses for deterministic strategies

•

•

•

•

Losses of deterministic rules
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Statistical Decision Theory

Statistical problems have another ingredient, the data.

We observe X a random variable taking values in say X .

We may make our decision d depend on X . A decision rule is a
function δ(X ) from X to D.

We will want L(δ(X ), θ) to be small for all θ.

Since X is random we quantify this by averaging over X and compare
procedures δ in terms of the risk function

Rδ(θ) = Eθ(L(δ(X ), θ))

To compare two procedures we must compare two functions of θ and
pick “the smaller one”.

But typically the two functions will cross each other and there won’t
be a unique ‘smaller one’.
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Estimation

Example: In estimation theory to estimate a real parameter θ we
used D = Θ,

L(d , θ) = (d − θ)2

and find that the risk of an estimator θ̂(X ) is

Rθ̂(θ) = E [(θ̂ − θ)2]

which is just the Mean Squared Error of θ̂.

We have already seen that there is no unique best estimator in the
sense of MSE.

How do we compare risk functions in general?
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Minimax methods

Minimax methods choose δ to minimize the worst case risk:

sup{Rδ(θ); θ ∈ Θ)}.

We call δ∗ minimax if

sup
θ

Rδ∗(θ) = inf
δ
sup
θ

Rδ(θ)

Usually the sup and inf are achieved and we write max for sup and
min for inf.

This is the source of “minimax”.

Bayes methods choose δ to minimize an average

rπ(δ) =

∫
Rδ(θ)π(θ)dθ

for a suitable density π.

We call π a prior density and r the Bayes risk of δ for the prior π.
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Example

Example: Transport problem has no data so the only possible
(non-randomized) decisions are the four possible actions B ,C ,T ,H.

For B and T the worst case is rain.

For C the worst case is sun.

For H Rain and Sun are equivalent.

We have the following table:

C B T H

R 3 8 5 25
S 5 0 2 25

Maximum 5 8 5 25

Smallest maximum: take car, or transit.

Minimax action: take car or public transit.
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Randomized strategies

Now imagine: toss coin with probability λ of getting Heads, take my
car if Heads, otherwise take transit.

Long run average daily loss would be 3λ+ 5(1− λ) when it rains and
5λ+ 2(1 − λ) when it is Sunny.

Call this procedure dλ; add it to graph for each value of λ.

Varying λ from 0 to 1 gives a straight line running from (3, 5) to
(5, 2). The two losses are equal when λ = 3/5.

For smaller λ worst case risk is for sun; for larger λ worst case risk is
for rain.

Added to graph: loss functions for each dλ, (straight line) and set of
(x , y) pairs for which min(x , y) = 3.8 — worst case risk for dλ when
λ = 3/5.
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Losses for randomized procedures
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The figure then shows that d3/5 is actually the minimax procedure
when randomized procedures are permitted.

In general we might consider using a 4 sided coin where we took
action B with probability λB , C with probability λC and so on.

The loss function of such a procedure is a convex combination of the
losses of the four basic procedures making the set of risks achievable
with the aid of randomization look like the following:
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Losses for randomized procedures
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Convexity

Randomization in decision problems permits assumption that set of
possible risk functions is convex — an important technical conclusion
used to prove many basic decision theory results.

Graph shows many points in the picture correspond to bad decision
procedures.

Rain or not taking my car to work has a lower loss than staying home;
the decision to stay home is inadmissible.

Definition: decision rule δ is inadmissible if there is a rule δ∗ such
that

Rδ∗(θ) ≤ Rδ(θ)

for all θ and there is at least one value of θ where the inequality is
strict.

A rule which is not inadmissible is called admissible.

Admissible procedures have risks on lower left of graphs, i.e., lines
connecting B to T and T to C are the admissible procedures.
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Connection between Bayes procedures and admissible

procedures

Prior distribution in example specified by two probabilities, πS and πR
which add up to 1.

If L = (LS , LR) is the risk function for some procedure then the Bayes
risk is

rπ = πRLR + πSLS .

Consider set of L such that this Bayes risk is equal to some constant.

On picture this is line with slope −πS/πR .
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Three priors

Consider three priors: π1 = (0.9, 0.1), π2 = (0.5, 0.5) and
π3 = (0.1, 0.9).

For π1: imagine a line with slope -9 =0.9/0.1 starting on the far left
of the picture and sliding right until it bumps into the convex set of
possible losses in the previous picture.

It does so at point B as shown in the next graph.

Sliding this line to the right corresponds to making rπ larger and
larger so that when it just touches the convex set we have found the
Bayes procedure.
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Bayes procedures graphically
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Bayes procedures graphically
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Bayes procedures graphically
Bayes procedure for π1 (you’re pretty sure it will be sunny) is to ride your
bike. If it’s a toss up between R and S you take the bus. If R is very likely
you take your car. Prior (0.6, 0.4) produces the line shown here:
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Summary for no-data case

Decision space is the set of possible actions I might take. We assume
that it is convex, typically by expanding a basic decision space D to
the space D of all probability distributions on D.

Parameter space Θ of possible “states of nature”.

Loss function L = L(d , θ) which is the loss I incur if I do d and θ is
the true state of nature.

We call δ∗ minimax if

max
θ

L(δ∗, θ) = min
δ

max
θ

L(δ, θ) .
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Summary for no-data case continued

A prior is a probability distribution π on Θ,.

The Bayes risk of a decision δ for a prior π is

rπ(δ) = Eπ(L(δ, θ)) =

∫
L(δ, θ)π(θ)dθ

if the prior has a density. For finite parameter spaces Θ the integral is
a sum.

A decision δ∗ is Bayes for a prior π if

rπ(δ
∗) ≤ rπ(δ)

for any decision δ.
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Summary for no-data case continued

For infinite parameter spaces: π(θ) > 0 on Θ is a proper prior if∫
π(θ)dθ < ∞; divide π by integral to get a density. If∫
π(θ)dθ = ∞ π is an improper prior density.

Decision δ is inadmissible if there is δ∗ such that

L(δ∗, θ) ≤ L(δ, θ)

for all θ and there is at least one value of θ where the inequality is
strict. A decision which is not inadmissible is called admissible.

Every admissible procedure is Bayes, perhaps only for an improper
prior. (Proof uses the Separating Hyperplane Theorem in Functional
Analysis.)
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Summary for no-data case continued

Every Bayes procedure with finite Bayes risk (for prior with density
> 0 for all θ) is admissible.

Proof: If δ is Bayes for π but not admissible there is a δ∗ such that

L(δ∗, θ) ≤ L(δ, θ)

Multiply by the prior density; integrate:

rπ(δ
∗) ≤ rπ(δ)

If there is a θ for which the inequality involving L is strict and if the
density of π is positive at that θ then the inequality for rπ is strict
which would contradict the hypothesis that δ is Bayes for π.

Notice: theorem actually requires the extra hypotheses: positive
density, and risk functions of δ and δ∗ continuous.
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Summary for no-data case continued

A minimax procedure is admissible. (Actually there can be several
minimax procedures and the claim is that at least one of them is
admissible. When the parameter space is infinite it might happen that
set of possible risk functions is not closed; if not then we have to
replace the notion of admissible by some notion of nearly admissible.)

The minimax procedure has constant risk. Actually the admissible
minimax procedure is Bayes for some π and its risk is constant on the
set of θ for which the prior density is positive.
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Summary for data case

Decision space is the set of possible actions I might take. We assume
that it is convex, typically by expanding a basic decision space D to
the space D of all probability distributions on D.

Parameter space Θ of possible “states of nature”.

Loss function L = L(d , θ): loss I incur if I do d and θ is true state of
nature.

Add data X ∈ X with model {Pθ; θ ∈ Θ}: model density is f (x |θ).

A procedure is a map δ : X 7→ D.

The risk function for δ is the expected loss:

Rδ(θ) = R(δ, θ) = E [L{δ(X ), θ}] .
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Summary for data case continued

We call δ∗ minimax if

max
θ

R(δ∗, θ) = min
δ

max
θ

R(δ, θ) .

A prior is a probability distribution π on Θ,.

Bayes risk of decision δ for prior π is

rπ(δ) = Eπ(R(δ, θ))

=

∫
L(δ(x), θ)f (x |θ)π(θ)dxdθ

if the prior has a density. For finite parameter spaces Θ the integral is
a sum.

A decision δ∗ is Bayes for a prior π if

rπ(δ
∗) ≤ rπ(δ)

for any decision δ.
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Summary for data case continued

For infinite parameter spaces: π(θ) > 0 on Θ is a proper prior if∫
π(θ)dθ < ∞; divide π by integral to get a density.

If
∫
π(θ)dθ = ∞ π is an improper prior density.

Decision δ is inadmissible if there is δ∗ such that

R(δ∗, θ) ≤ R(δ, θ)

for all θ and there is at least one value of θ where the inequality is
strict.

A decision which is not inadmissible is called admissible.

Every admissible procedure is Bayes, perhaps only for an improper
prior.
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Summary for data case continued

If every risk function is continuous then every Bayes procedure with
finite Bayes risk (for prior with density > 0 for all θ) is admissible.

A minimax procedure is admissible.

The minimax procedure has constant risk.

The admissible minimax procedure is Bayes for some π; its risk is
constant on the set of θ for which the prior density is positive.
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