
STAT 830

Likelihood Methods of Inference

Imagine we toss a coin 6 times and get Heads twice. Let p be the probabil-
ity of getting H on an individual toss and suppose the tosses are independent.
Then the probability of getting exactly 2 heads is

15p2(1− p)4

This function of p is called the likelihood function.

Definition: The likelihood function is the map L whose domain Θ and
whose values are given by

L(θ) = fθ(X)

Key Point: we think about how the density depends on θ not about
how it depends on X. Notice that X, the observed value of the data, has
been plugged into the formula for density. Notice also that the coin tossing
example uses the discrete density for f .

We use likelihood for most inference problems:

1. Point estimation: we must compute an estimate θ̂ = θ̂(X) which lies
in Θ. The maximum likelihood estimate (MLE) of θ is the value
θ̂ which maximizes L(θ) over θ ∈ Θ if such a θ̂ exists.

2. Point estimation of a function of θ: we must compute an estimate
φ̂ = φ̂(X) of φ = g(θ). We use φ̂ = g(θ̂) where θ̂ is the MLE of θ.

3. Interval (or set) estimation. We must compute a set C = C(X) in Θ
which we think will contain θ0. We will use

{θ ∈ Θ : L(θ) > c}

for a suitable c.

4. Hypothesis testing: decide whether or not θ0 ∈ Θ0 where Θ0 ⊂ Θ. We
base our decision on the likelihood ratio

sup{L(θ); θ ∈ Θ \Θ0}
sup{L(θ); θ ∈ Θ0}

.
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Maximum Likelihood Estimation

To find the MLE we maximize L. This is a typical function maximization
problem: Set the gradient of L equal to 0 and check to see that the root you
find is a maximum, not a minimum or a saddle point.

Now let’s examine some likelihood plots in examples:

Example: Cauchy Data
Suppose we have an iid sample X1, . . . , Xn from the Cauchy(θ) density

given by

f(x; θ) =
1

π(1 + (x− θ)2)
The likelihood function is

L(θ) =
n∏
i=1

1

π(1 + (Xi − θ)2)

I want you to notice the following points:

• The likelihood functions have peaks near the true value of θ (which is
0 for the data sets I generated).

• The peaks are narrower for the larger sample size.

• The peaks have a more regular shape for the larger value of n.

• I actually plotted L(θ)/L(θ̂) which has exactly the same shape as L
but runs from 0 to 1 on the vertical scale.

To maximize this likelihood you differentiate L, and set the result equal
to 0. Notice that L is product of n terms; its derivative is

n∑
i=1

∏
j 6=i

1

π(1 + (Xj − θ)2)
2(Xi − θ)

π(1 + (Xi − θ)2)2

which is quite unpleasant. It is much easier to work with the logarithm of L
because the log of a product is a sum and the logarithm function is monotone
increasing.

Definition: The Log Likelihood function is

`(θ) = log{L(θ)} .
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For the Cauchy problem we have

`(θ) = −
∑

log(1 + (Xi − θ)2)− n log(π)

Notice the following points:

• Plots of ` for n = 25 quite smooth, rather parabolic.

• For n = 5 many local maxima and minima of `.

The likelihood tends to 0 as |θ| → ∞ so the maximum of ` occurs at a
root of `′, the derivative of ` with respect to θ.

Definition: The Score Function is the gradient of `

U(θ) =
∂`

∂θ

The MLE θ̂ is usually a root of the Likelihood Equations

U(θ) = 0

In our Cauchy example we find

U(θ) =
∑ 2(Xi − θ)

1 + (Xi − θ)2

[Examine plots of score functions.]
Notice: there are often multiple roots of likelihood equations.

Example: X ∼ Binomial(n, θ)

L(θ) =

(
n
X

)
θX(1− θ)n−X

`(θ) = log

(
n
X

)
+X log(θ) + (n−X) log(1− θ)

U(θ) =
X

θ
− n−X

1− θ
The function L is 0 at θ = 0 and at θ = 1 unless X = 0 or X = n so for
1 ≤ X ≤ n the MLE must be found by setting U = 0 and getting

θ̂ =
X

n
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For X = n the log-likelihood has derivative

U(θ) =
n

θ
> 0

for all θ so that the likelihood is an increasing function of θ which is max-
imized at θ̂ = 1 = X/n. Similarly when X = 0 the maximum is at
θ̂ = 0 = X/n.

The Normal Distribution
Now we have X1, . . . , Xn iid N(µ, σ2). There are two parameters θ =

(µ, σ). We find

L(µ, σ) =
e−

∑
(Xi−µ)2/(2σ2)

(2π)n/2σn

`(µ, σ) = −n
2

log(2π)−
∑

(Xi − µ)2

2σ2
− n log(σ)

and that U is [ ∑
(Xi−µ)
σ2∑

(Xi−µ)2
σ3 − n

σ

]
Notice that U is a function with two components because θ has two compo-
nents.

Setting the likelihood equal to 0 and solving gives

µ̂ = X̄

and

σ̂ =

√∑
(Xi − X̄)2

n

Check this is maximum by computing one more derivative. Matrix H of
second derivatives of ` is[

−n
σ2

−2
∑

(Xi−µ)
σ3

−2
∑

(Xi−µ)
σ3

−3
∑

(Xi−µ)2
σ4 + n

σ2

]

Plugging in the mle gives

H(θ̂) =

[ −n
σ̂2 0
0 −2n

σ̂2

]
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which is negative definite. Both its eigenvalues are negative. So θ̂ must be a
local maximum.

[Examine contour and perspective plots of `.]
Notice that the contours are quite ellipsoidal for the larger sample size.
For X1, . . . , Xn iid log likelihood is

`(θ) =
∑

log(f(Xi, θ)) .

The score function is

U(θ) =
∑ ∂ log f

∂θ
(Xi, θ) .

The MLE θ̂ maximizes `. If the maximum occurs in the interior of the
parameter space and the log likelihood is continuously differentiable then θ̂
solves the likelihood equations

U(θ) = 0 .

Some examples concerning existence of roots:

Solving U(θ) = 0: Examples

Example: N(µ, σ2) In this case the unique root of the likelihood equations
is a global maximum.

Remark: Suppose we called τ = σ2 the parameter. The score function
still has two components: the first component is the same as before but the
second component is

∂

∂τ
` =

∑
(Xi − µ)2

2τ 2
− n

2τ

Setting the new likelihood equations equal to 0 still gives

τ̂ = σ̂2

This is an example of a general invariance (or more properly equivariance)
principal: If φ = g(θ) is some reparametrization of a model (a one to one
relabelling of the parameter values) then φ̂ = g(θ̂). This idea does not apply
to estimators derived from other principles of estimation.]

Example: Cauchy: location θ

17



At least 1 root of likelihood equations but often several more. One root
is a global maximum; others, if they exist may be local minima or maxima.

Example: Binomial(n, θ)
If X = 0 or X = n: no root of likelihood equations; likelihood is mono-

tone. Other values of X: unique root, a global maximum. Global maximum
at θ̂ = X/n even if X = 0 or n.

Example: The 2 parameter exponential
The density is

f(x;α, β) =
1

β
e−(x−α)/β1(x > α)

Log-likelihood is −∞ for α > min{X1, . . . , Xn} and otherwise is

`(α, β) = −n log(β)−
∑

(Xi − α)/β

Increasing function of α till α reaches

α̂ = X(1) = min{X1, . . . , Xn}

which gives mle of α. Now plug in α̂ for α; get so-called profile likelihood for
β:

`profile(β) = −n log(β)−
∑

(Xi −X(1))/β

Set β derivative equal to 0 to get

β̂ =
∑

(Xi −X(1))/n

Notice mle θ̂ = (α̂, β̂) does not solve likelihood equations; we had to look at
the edge of the possible parameter space. α is called a support or truncation
parameter. ML methods behave oddly in problems with such parameters.

Example: Three parameter Weibull
The density in question is

f(x;α, β, γ) =
1

β

(
x− α
β

)γ−1
× exp[−{(x− α)/β}γ]1(x > α)

The log-likelihood is

−n log(β)−
n∑
i=1

(
Xi − α
β

)γ
+ (γ − 1)

n∑
i=1

log((Xi − α)/β).
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There are three likelihood equations:

0 =
∂`

α
=
γ

β

n∑
i=1

(
Xi − α
β

)γ−1 n∑
i=1

γ − 1

Xi − α

0 =
∂`

β
=
nγ

β
+
γ

β

n∑
i=1

(
Xi − α
β

)γ
0 =

∂`

γ
= −

n∑
i=1

log((Xi − α)/β)

(
Xi − α
β

)γ
+

n∑
i=1

log((Xi − α)/β).

First set the β derivative equal to 0 and find

β̂(α, γ) =
[∑

(Xi − α)γ/n
]1/γ

where β̂(α, γ) indicates that the mle of β could be found by finding the mles
of the other two parameters and then plugging into the formula above. It is
not possible to find explicit formulas for the estimates of the remaining two
parameters; numerical methods are needed.

However, putting γ < 1 and letting α→ X(1) will make the log-likelihood
go to ∞. As a result, the MLE is not uniquely defined: any γ < 1 and any
β will do. If the true value of γ is more than 1 then the probability that
there is a root of the likelihood equations is high; in this case there must be
two more roots: a local maximum and a saddle point! For a true value of
γ > 1 the theory we detail below applies to the local maximum and not to
the global maximum of the likelihood equations. You could look at Lockhart
and Stephens (1994, JRSS,B).
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