The basic problem of distribution theory is to compute the distribution of statistics when the data come from some model. You start with assumptions about the density f or the cumulative distribution function F of some random vector $X = (X_1, \ldots, X_p)$; typically X is your data and f or F come from your model. If you don't know f you need to try to do this calculation for all the densities which are possible according to your model. So now suppose $Y = g(X_1, \ldots, X_p)$ is some function of X—usually some statistic of interest.

How can we compute the distribution or CDF or density of Y?

0.1 Univariate Techniques

Method 1: our first method is to compute the cumulative distribution function of Y by integration and differentiate to find the density f_Y .

Example: Suppose $U \sim \text{Uniform}[0,1]$ and $Y = -\log U$.

$$F_Y(y) = P(Y \le y) = P(-\log U \le y)$$

= $P(\log U \ge -y) = P(U \ge e^{-y})$
= $\begin{cases} 1 - e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$.

so that Y has a standard exponential distribution.

Example: The χ^2 density. Suppose $Z \sim N(0,1)$, that is, that Z has density

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

and let $Y = Z^2$. Then

$$F_Y(y) = P(Z^2 \le y)$$

$$= \begin{cases} 0 & y < 0 \\ P(-\sqrt{y} \le Z \le \sqrt{y}) & y \ge 0. \end{cases}$$

Now differentiate

$$P(-\sqrt{y} \le Z \le \sqrt{y}) = F_Z(\sqrt{y}) - F_Z(-\sqrt{y})$$

to get

$$f_Y(y) = \begin{cases} 0 & y < 0\\ \frac{d}{dy} \left[F_Z(\sqrt{y}) - F_Z(-\sqrt{y}) \right] & y > 0\\ \text{undefined} & y = 0 \,. \end{cases}$$

Now we differentiate:

$$\frac{d}{dy}F_Z(\sqrt{y}) = f_Z(\sqrt{y})\frac{d}{dy}\sqrt{y}$$

$$= \frac{1}{\sqrt{2\pi}}\exp\left(-\left(\sqrt{y}\right)^2/2\right)\frac{1}{2}y^{-1/2}$$

$$= \frac{1}{2\sqrt{2\pi y}}e^{-y/2}.$$

There is a similar formula for the other derivative. Thus

$$f_Y(y) = \begin{cases} \frac{1}{\sqrt{2\pi y}} e^{-y/2} & y > 0\\ 0 & y < 0\\ \text{undefined} & y = 0. \end{cases}$$

We will find **indicator** notation useful:

$$1(y > 0) = \begin{cases} 1 & y > 0 \\ 0 & y \le 0 \end{cases}$$

which we use to write

$$f_Y(y) = \frac{1}{\sqrt{2\pi y}} e^{-y/2} 1(y > 0).$$

This changes our definition unimportantly at y = 0.

Notice: I never evaluated F_Y before differentiating it. In fact F_Y and F_Z are integrals I can't do but I can differentiate them anyway. Remember the fundamental theorem of calculus:

$$\frac{d}{dx} \int_{a}^{x} f(y) \, dy = f(x)$$

at any x where f is continuous.

This leads to the following summary: for Y=g(X) with X and Y each real valued

$$P(Y \le y) = P(g(X) \le y)$$

= $P(X \in g^{-1}(-\infty, y])$.

Take d/dy to compute the density

$$f_Y(y) = \frac{d}{dy} \int_{\{x:g(x) \le y\}} f_X(x) dx.$$

Often we can differentiate without doing the integral.

Method 2: One general case is handled by the method of change of variables. Suppose that g is one to one. I will do the case where g is increasing and differentiable.

We begin from the interpretation of density (based on the notion that the density is give by F'):

$$f_Y(y) = \lim_{\delta y \to 0} \frac{P(y \le Y \le y + \delta y)}{\delta y}$$
$$= \lim_{\delta y \to 0} \frac{F_Y(y + \delta y) - F_Y(y)}{\delta y}$$

and

$$f_X(x) = \lim_{\delta x \to 0} \frac{P(x \le X \le x + \delta x)}{\delta x}.$$

Now assume y = g(x). Define δy by $y + \delta y = g(x + \delta x)$. Then

$$P(y \le Y \le g(x + \delta x)) = P(x \le X \le x + \delta x).$$

We get

$$\frac{P(y \le Y \le y + \delta y))}{\delta y} = \frac{P(x \le X \le x + \delta x)/\delta x}{\{g(x + \delta x) - y\}/\delta x}.$$

Take the limit as $\delta x \to 0$ to get

$$f_Y(y) = f_X(x)/g'(x)$$
 or $f_Y(g(x))g'(x) = f_X(x)$.

Alternative view: we can now try to look at this calculation in a slightly different way: each probability above is the integral of a density. The first is the integral of f_Y from y = g(x) to $y = g(x + \delta x)$. The interval is narrow so f_Y is nearly constant over this interval and

$$P(y \le Y \le g(x + \delta x)) \approx f_Y(y)(g(x + \delta x) - g(x)).$$

Since g has a derivative $g(x + \delta x) - g(x) \approx \delta x g'(x)$ so we get

$$P(y \le Y \le g(x + \delta x)) \approx f_Y(y)g'(x)\delta x$$
.

The same idea applied to $P(x \le X \le x + \delta x)$ gives

$$P(x \le X \le x + \delta x) \approx f_X(x)\delta x$$

so that

$$f_Y(y)g'(x)\delta x \approx f_X(x)\delta x$$

or, cancelling the δx in the limit

$$f_Y(y)g'(x) = f_X(x)$$
.

If you remember y = g(x) then you get

$$f_X(x) = f_Y(g(x))g'(x).$$

It is often more useful to express the whole formula in terms of the new variable y to get a formula for $f_Y(y)$. We do this by solving y = g(x) to get x in terms of y, that is, find a formula for $x = g^{-1}(y)$ and then see that

$$f_Y(y) = f_X(g^{-1}(y))/g'(g^{-1}(y)).$$

This is just the change of variables formula for doing integrals.

Remark: For g decreasing g' < 0 but then the interval $(g(x), g(x + \delta x))$ is really $(g(x + \delta x), g(x))$ so that $g(x) - g(x + \delta x) \approx -g'(x)\delta x$. In both cases this amounts to the formula

$$f_X(x) = f_Y(g(x))|g'(x)|.$$

This leads to what I think is a very useful **Mnemonic**:

$$f_Y(y)dy = f_X(x)dx$$
.

To use the mnemonic to find a formula for $f_Y(y)$ you solve that equation for $f_Y(y)$. The right hand side will have dx/dy which is the derivative of x with respect to y when you have a formula for x in terms of y. The x is $f_X(x)$ must be replaced by the equivalent formula using y to make sure your formula for $f_Y(y)$ has only y in it – not x.

Example: Suppose $X \sim \text{Weibull}(\text{shape } \alpha, \text{ scale } \beta)$ or

$$f_X(x) = \frac{\alpha}{\beta} \left(\frac{x}{\beta}\right)^{\alpha-1} \exp\left\{-(x/\beta)^{\alpha}\right\} 1(x>0).$$

Let $Y = \log X$ or $g(x) = \log(x)$. Solve $y = \log x$ to get $x = \exp(y)$ or $g^{-1}(y) = e^y$. Then g'(x) = 1/x and $1/g'(g^{-1}(y)) = 1/(1/e^y) = e^y$. Hence

$$f_Y(y) = \frac{\alpha}{\beta} \left(\frac{e^y}{\beta}\right)^{\alpha - 1} \exp\left\{-(e^y/\beta)^\alpha\right\} 1(e^y > 0)e^y.$$

For any y, $e^y > 0$ so the indicator is always just 1. Thus

$$f_Y(y) = \frac{\alpha}{\beta^{\alpha}} \exp \left\{ \alpha y - e^{\alpha y} / \beta^{\alpha} \right\}.$$

Now define $\phi = \log \beta$ and $\theta = 1/\alpha$; this is called a reparametrization. Then

$$f_Y(y) = \frac{1}{\theta} \exp\left\{\frac{y-\phi}{\theta} - \exp\left\{\frac{y-\phi}{\theta}\right\}\right\}.$$

This is the **Extreme Value** density with **location** parameter ϕ and **scale** parameter θ . You should be warned that there are several distributions are called "Extreme Value".

Marginalization. Sometimes we have a few variables which come from many variables and we want the joint distribution of the few. For example we might want the joint distribution of \bar{X} and s^2 when we have a sample of size n from the normal distribution. We often approach this problem in two steps. The first step, which I describe later, involves padding out the list of the few variables to make as many as the number of variables you started with (so padding out the list with n-2 other variables in the normal case). Then the second step is called marginalization: compute the marginal density of the variables of interest by integrating away the others.

Here is the simplest multivariate problem. We begin with

$$X = (X_1, \dots, X_p), \qquad Y = X_1$$

(or in general Y is any X_j). We know the joint density of X and want simply the density of Y. The relevant theorem is one I have already described:

Theorem 1 If X has density $f(x_1, ..., x_p)$ and q < p then $Y = (X_1, ..., X_q)$ has density

$$f_Y(x_1,\ldots,x_q) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1,\ldots,x_p) \, dx_{q+1} \ldots dx_p \, .$$

In fact, $f_{X_1,...,X_q}$ is the **marginal** density of $X_1,...,X_q$ and f_X is the **joint** density of X. Really they are both just densities. "Marginal" just serves to distinguish it from the joint density of X.

Example: The function $f(x_1, x_2) = Kx_1x_21(x_1 > 0, x_2 > 0, x_1 + x_2 < 1)$ is a density provided

$$P(X \in \mathbb{R}^2) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2) \, dx_1 \, dx_2 = 1 \, .$$

The integral is

$$K \int_0^1 \int_0^{1-x_1} x_1 x_2 dx_1 dx_2 = K \int_0^1 x_1 (1-x_1)^2 dx_1 / 2$$
$$= K(1/2 - 2/3 + 1/4)/2 = K/24$$

so K = 24. The marginal density of X_1 is Beta(2, 3):

$$f_{X_1}(x_1) = \int_{-\infty}^{\infty} 24x_1 x_2 1(x_1 > 0, x_2 > 0, x_1 + x_2 < 1) dx_2$$

$$= 24 \int_{0}^{1-x_1} x_1 x_2 1(0 < x_1 < 1) dx_2$$

$$= 12x_1 (1 - x_1)^2 1(0 < x_1 < 1).$$

A more general problem has $Y = (Y_1, \ldots, Y_q)$ with $Y_i = g_i(X_1, \ldots, X_p)$. We distinguish the cases where q > p, q < p and q = p.

Case 1: q > p. In this case Y won't have a density for "smooth" transformations g. In fact Y will have a **singular** or discrete distribution. This problem is rarely of real interest. (But, e.g., the vector of all residuals in a regression problem has a singular distribution.)

Case 2: q = p. In this case we use a multivariate change of variables formula. (See below.)

Case 3: q < p. In this case we pad out Y-add on p - q more variables (carefully chosen) say Y_{q+1}, \ldots, Y_p . We define these extra variables by finding functions g_{q+1}, \ldots, g_p and setting, for $q < i \le p$, $Y_i = g_i(X_1, \ldots, X_p)$ and then let $Z = (Y_1, \ldots, Y_p)$. We need to choose g_i so that we can use the Case 2 change of variables on $g = (g_1, \ldots, g_p)$ to compute f_Z . We then hope to find f_Y by integration:

$$f_Y(y_1,\ldots,y_q) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f_Z(y_1,\ldots,y_q,z_{q+1},\ldots,z_p) dz_{q+1} \ldots dz_p$$

0.2 Multivariate Change of Variables

Suppose $Y = g(X) \in \mathbb{R}^p$ with $X \in \mathbb{R}^p$ having density f_X . Assume g is a one to one ("injective") map, i.e., $g(x_1) = g(x_2)$ if and only if $x_1 = x_2$. Find f_Y using the following steps (sometimes they are easier said than done).

Step 1 : Solve for x in terms of y: $x = g^{-1}(y)$.

Step 2: Use our basic equation

$$f_Y(y)dy = f_X(x)dx$$

and rewrite it in the form

$$f_Y(y) = f_X(g^{-1}(y)) \frac{dx}{dy}.$$

Step 3: Now we need an interpretation of the derivative $\frac{dx}{dy}$ when p > 1:

$$\frac{dx}{dy} = \left| \det \left(\frac{\partial x_i}{\partial y_j} \right) \right|$$

which is the so called **Jacobian**.

• Equivalent formula inverts the matrix:

$$f_Y(y) = \frac{f_X(g^{-1}(y))}{\left|\frac{dy}{dx}\right|}$$

• This notation means

$$\left| \frac{dy}{dx} \right| = \left| \det \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_p} \\ \vdots & \vdots & & \\ \frac{\partial y_p}{\partial x_1} & \frac{\partial y_p}{\partial x_2} & \cdots & \frac{\partial y_p}{\partial x_p} \end{bmatrix} \right|$$

but with x replaced by the corresponding value of y, that is, replace x by $g^{-1}(y)$.

Example: The bivariate normal density. The **standard bivariate normal density** is

 $f_X(x_1, x_2) = \frac{1}{2\pi} \exp\left\{-\frac{x_1^2 + x_2^2}{2}\right\}.$

Let $Y = (Y_1, Y_2)$ where $Y_1 = \sqrt{X_1^2 + X_2^2}$ and $0 \le Y_2 < 2\pi$ is the angle from the positive x axis to the ray from the origin to the point (X_1, X_2) . I.e., Y is X in polar co-ordinates. Solve for x in terms of y to get:

$$X_1 = Y_1 \cos(Y_2)$$
 $X_2 = Y_1 \sin(Y_2)$

This makes

$$g(x_1, x_2) = (g_1(x_1, x_2), g_2(x_1, x_2))$$

$$= (\sqrt{x_1^2 + x_2^2}, \operatorname{argument}(x_1, x_2))$$

$$g^{-1}(y_1, y_2) = (g_1^{-1}(y_1, y_2), g_2^{-1}(y_1, y_2))$$

$$= (y_1 \cos(y_2), y_1 \sin(y_2))$$

$$\left| \frac{dx}{dy} \right| = \left| \det \begin{pmatrix} \cos(y_2) & -y_1 \sin(y_2) \\ \sin(y_2) & y_1 \cos(y_2) \end{pmatrix} \right|$$

$$= y_1.$$

It follows that

$$f_Y(y_1, y_2) = \frac{1}{2\pi} \exp\left\{-\frac{y_1^2}{2}\right\} y_1 1(0 \le y_1 < \infty) 1(0 \le y_2 < 2\pi).$$

It remains to compute the marginal densities of Y_1 and Y_2 . Factor f_Y as $f_Y(y_1, y_2) = h_1(y_1)h_2(y_2)$ where

$$h_1(y_1) = y_1 e^{-y_1^2/2} 1(0 \le y_1 < \infty)$$

and

$$h_2(y_2) = 1(0 \le y_2 < 2\pi)/(2\pi)$$
.

Then

$$f_{Y_1}(y_1) = \int_{-\infty}^{\infty} h_1(y_1) h_2(y_2) \, dy_2 = h_1(y_1) \int_{-\infty}^{\infty} h_2(y_2) \, dy_2$$

so the marginal density of Y_1 is a multiple of h_1 . The multiplier makes $\int f_{Y_1} = 1$ but in this case

$$\int_{-\infty}^{\infty} h_2(y_2) \, dy_2 = \int_{0}^{2\pi} (2\pi)^{-1} dy_2 = 1$$

so that Y_1 has the Weibull or Rayleigh law

$$f_{Y_1}(y_1) = y_1 e^{-y_1^2/2} 1(0 \le y_1 < \infty).$$

Similarly

$$f_{Y_2}(y_2) = 1(0 \le y_2 < 2\pi)/(2\pi)$$

which is the **Uniform** $(0, 2\pi)$ density.

I leave you the following exercise: show that $W = Y_1^2/2$ has a standard exponential distribution. Recall: by definition $U = Y_1^2$ has a χ^2 dist on 2 degrees of freedom. I also leave you the exercise of finding the χ_2^2 density. Notice that $Y_1 \perp \!\!\! \perp Y_2$.