STAT 830 Likelihood Ratio Tests

Richard Lockhart

Simon Fraser University

STAT 830 — Fall 2020

Purposes of These Notes

- Describe likelihood ratio tests
- Discuss large sample χ^2 approximation.
- Discuss level and power
- Discuss quadratic forms in MVN vectors.

Likelihood Ratio Tests

- For general composite hypotheses optimality theory is not usually successful in producing an optimal test.
- Instead: heuristics
- Consider likelihood ratio

$$\frac{f_{\theta_1}(X)}{f_{\theta_0}(X)}$$

- Choose $\theta_1 \in \Theta_1$ and $\theta_0 \in \Theta_0$
- ullet Estimates of heta assuming respectively the alternative or null hypothesis is true.
- Simplest: each θ_i MLE, maximized only over Θ_i .

Example 1: $N(\mu, 1)$

- Test $\mu \leq 0$ against $\mu > 0$. (Remember UMP test.)
- Log likelihood is

$$-n(\bar{X}-\mu)^2/2$$

- If $\bar{X} > 0$ then global maximum in Θ_1 at \bar{X} .
- If $\bar{X} \leq 0$ global maximum in Θ_1 at 0.
- Thus $\hat{\mu}_1$ which Max $\ell(\mu)$ subject to $\mu > 0$ at $\hat{\mu}_1 = \bar{X}1(\bar{X} > 0)$.
- Similarly, $\hat{\mu}_0$ is \bar{X} if $\bar{X} \leq 0$ and 0 if $\bar{X} > 0$.

One sided normal mean cont'd

Hence

$$\frac{f_{\hat{\theta}_1}(X)}{f_{\hat{\theta}_0}(X)} = \exp\{\ell(\hat{\mu}_1) - \ell(\hat{\mu}_0)\} = \exp\{n\bar{X}|\bar{X}|/2\}$$

- Monotone increasing ftn of \bar{X} : rejection region $\bar{X} > K$.
- To get level α reject if $n^{1/2}\bar{X} > z_{\alpha}$.
- Notice simpler statistic is log likelihood ratio

$$\lambda \equiv 2\log\left(rac{f_{\hat{\mu}_1}(X)}{f_{\hat{\mu}_0}(X)}
ight) = nar{X}|ar{X}|$$

Example 2: $H_o: \mu = 0$ in $N(\mu, 1)$

- Value of $\hat{\mu}_0$ is 0
- Maximum of log-likelihood over alternative $\mu \neq 0$ occurs at \bar{X} .
- This gives

$$\lambda = n\bar{X}^2$$

which has a χ_1^2 distribution.

• This test leads to the rejection region $\lambda > (z_{\alpha/2})^2$ which is the usual (UMPU) z-test.

Example 3: $N(\mu, \sigma^2)$ model, $\mu = 0$ against $\mu \neq 0$

- Must find two estimates of μ , σ^2 .
- Maximum likelihood over alternative occurs at global mle $\bar{X}, \hat{\sigma}^2$.
- We find

$$\ell(\hat{\mu}, \hat{\sigma}^2) = -n/2 - n\log(\hat{\sigma})$$

- Maximize \(\ell \) over null hypothesis.
- Recall

$$\ell(\mu,\sigma) = -\frac{1}{2\sigma^2} \sum_{i} (X_i - \mu)^2 - n \log(\sigma)$$

• On null $\mu = 0$ so find $\hat{\sigma}_0$ by maximizing

$$\ell(0,\sigma) = -\frac{1}{2\sigma^2} \sum X_i^2 - n \log(\sigma)$$

LRT - general description

This leads to

$$\hat{\sigma}_0^2 = \sum X_i^2/n$$

and

$$\ell(0,\hat{\sigma}_0) = -n/2 - n\log(\hat{\sigma}_0)$$

This gives

$$\lambda = -n\log(\hat{\sigma}^2/\hat{\sigma}_0^2)$$

Since

$$\frac{\hat{\sigma}^2}{\hat{\sigma}_0^2} = \frac{\sum (X_i - \bar{X})^2}{\sum (X_i - \bar{X})^2 + n\bar{X}^2}$$

we can write

$$\lambda = n \log(1 + t^2/(n-1))$$

where

$$t=\frac{n^{1/2}\bar{X}}{\varsigma}$$

is the usual t statistic.

• LRT rejects for large values of |t| — the usual test.

Large sample behaviour

• Notice that if *n* is large we have

$$\lambda \approx n[t^2/(n-1) + O_P(n^{-2})] \approx t^2$$
.

• Since t statistic is approximately standard normal if n large we see

$$\lambda = 2[\ell(\hat{\theta}_1) - \ell(\hat{\theta}_0)]$$

has nearly a χ_1^2 distribution.

LRT – general description

- General phenomenon when null hypothesis has form $\phi = 0$.
- Warning: null should not be on edge of Θ .
- ullet Suppose vector heta of p+q parameters partitioned into $heta=(\phi,\gamma)$
- ullet ϕ a vector of ${\it p}$ pars and γ a vector of ${\it q}$ pars.
- To test $\phi = \phi_0$ we find two mles of θ .
- First: global mle $\hat{\theta}=(\hat{\phi},\hat{\gamma})$ maximizes likelihood over $\Theta_1=\{\theta:\phi\neq\phi_0\}$ (typically $P_{\theta}(\hat{\phi}=\phi_0)=0$).

LRT – general description

• Maximize likelihood over null hypothesis, that is find $\hat{\theta}_0 = (\phi_0, \hat{\gamma}_0)$ to maximize

$$\ell(\phi_0,\gamma)$$

• The log-likelihood ratio statistic is

$$2[\ell(\hat{\theta})-\ell(\hat{\theta}_0)]$$

- Suppose true value of θ is ϕ_0, γ_0 (so null hypothesis is true).
- Score function is a vector of length p+q and can be partitioned as $U=(U_{\phi},U_{\gamma}).$
- The Fisher information matrix can be partitioned as

$$\left[egin{array}{cc} {\cal I}_{\phi\phi} & {\cal I}_{\phi\gamma} \ {\cal I}_{\gamma\phi} & {\cal I}_{\gamma\gamma} \end{array}
ight]$$
 .

Large sample theory for LRT

According to our large sample theory for the mle we have

$$\hat{\theta} \approx \theta + \mathcal{I}^{-1}U$$

and

$$\hat{\gamma}_0 \approx \gamma_0 + \mathcal{I}_{\gamma\gamma}^{-1} U_{\gamma}$$

• Two term Taylor expansions of both $\ell(\hat{\theta})$ around θ_0 gives

$$\ell(\hat{ heta}) pprox \ell(heta_0) + U^t \mathcal{I}^{-1} U + rac{1}{2} U^t \mathcal{I}^{-1} V(heta) \mathcal{I}^{-1} U$$

where V is the second derivative matrix of ℓ .

Large sample theory for LRT

• Remember that $V \approx -\mathcal{I}$ and you get

$$2[\ell(\hat{\theta}) - \ell(\theta_0)] \approx U^t \mathcal{I}^{-1} U$$
.

ullet A similar expansion for $\hat{ heta}_0$ gives

$$2[\ell(\hat{\theta}_0) - \ell(\theta_0)] \approx U_{\gamma}^t \mathcal{I}_{\gamma\gamma}^{-1} U_{\gamma}.$$

• Subtract two expansions to write $2[\ell(\hat{\theta}) - \ell(\hat{\theta}_0)]$ in the approximate form

$$U^tMU$$

for a suitable matrix M.

• Use distribution of X^tMX where X is $MVN(0, \Sigma)$.

The theorem: large sample theory of LRT

The ideas above lead to a proof of the following theorem.

Theorem

The log-likelihood ratio statistic

$$\lambda = 2[\ell(\hat{\theta}) - \ell(\hat{\theta}_0)]$$

has, under the null hypothesis, approximately a χ^2_p distribution.

Warning: requires regularity conditions including $\theta_0 = (\phi_0, \psi_0)$ is in the interior of Θ .

Quadratic forms and χ^2

In proving the main theorem we need some facts about quadratic forms.

Theorem

Suppose $X \sim MVN(0, \Sigma)$ with Σ non-singular and M is a symmetric matrix. If $\Sigma M \Sigma M \Sigma = \Sigma M \Sigma$ then $X^t M X$ has a χ^2_{ν} distribution with df $\nu = trace(M \Sigma)$. The condition simplifies to $M \Sigma M = M$

Proof

- We have X = AZ where $AA^t = \Sigma$ and Z is standard multivariate normal.
- So $X^t MX = Z^t A^t MAZ$.
- Let $Q = A^t MA$.
- Since $AA^t = \Sigma$ condition in the theorem is

$$AQQA^t = AQA^t$$

- Since Σ is non-singular so is A.
- Multiply by A^{-1} on left and $(A^t)^{-1}$ on right; get QQ = Q.
- Jargon: Q is idempotent.

Proof

- Q is symmetric so $Q = P\Lambda P^t$ where
 - Λ is diagonal matrix
 - diagonal contains the eigenvalues of Q
 - ▶ P is orthogonal matrix: $P^{\top}P = Id$.
 - columns of P are corresponding orthonormal eigenvectors.
- So

$$Z^t Q Z = (P^t Z)^t \Lambda(PZ).$$

More proof

- $W = P^t Z$ is $MVN(0, P^t P = I)$; i.e. W is standard multivariate normal.
- Now

$$W^t \Lambda W = \sum \lambda_i W_i^2$$

- We have established that the general distribution of any quadratic form X^tMX is a linear combination of χ^2 variables.
- Now go back to the condition QQ = Q.
- If λ is an eigenvalue of Q and $v \neq 0$ is a corresponding eigenvector then $QQv = Q(\lambda v) = \lambda Qv = \lambda^2 v$ but also $QQv = Qv = \lambda v$.
- Thus $\lambda(1-\lambda)v=0$.
- It follows that either $\lambda = 0$ or $\lambda = 1$.

End of proof

- This means that the weights in the linear combination are all 1 or 0 and that X^tMX has a χ^2 distribution with degrees of freedom, ν , equal to the number of λ_i which are equal to 1.
- This is the same as the sum of the λ_i so

$$\nu = trace(\Lambda)$$

But

$$trace(M\Sigma) = trace(MAA^t)$$

 $= trace(A^tMA)$
 $= trace(Q)$
 $= trace(P\Lambda P^t)$
 $= trace(\Lambda P^t P)$
 $= trace(\Lambda)$

Application to LRT

ullet In the application Σ is ${\mathcal I}$ the Fisher information and $M={\mathcal I}^{-1}-J$ where

$$J = \left[\begin{array}{cc} 0 & 0 \\ 0 & \mathcal{I}_{\gamma\gamma}^{-1} \end{array} \right]$$

• It is easy to check that $M\Sigma$ becomes

$$\left[egin{array}{ccc} I & 0 \ -\mathcal{I}_{\gamma\phi}\mathcal{I}_{\phi\phi} & 0 \end{array}
ight]$$

where I is a $p \times p$ identity matrix.

• It follows that $\Sigma M \Sigma M \Sigma = \Sigma M \Sigma$ and $trace(M \Sigma) = p$.