Probability Definitions

Probability Space (or **Sample Space**): ordered triple (Ω, \mathcal{F}, P) .

- Ω is a set (of **elementary** outcomes).
- \mathcal{F} is a family of subsets (**events**) of Ω which is a σ -field (or Borel field or σ -algebra):
 - 1. Empty set \emptyset and Ω are members of \mathcal{F} .
 - 2. $A \in \mathcal{F}$ implies $A^c = \{\omega \in \Omega : \omega \notin A\} \in \mathcal{F}$
 - 3. A_1, A_2, \cdots all in \mathcal{F} implies

$$A = \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}.$$

- P a function, domain \mathcal{F} , range a subset of [0,1] satisfying:
 - 1. $P(\emptyset) = 0$ and $P(\Omega) = 1$.
 - 2. Countable additivity: A_1, A_2, \cdots pairwise disjoint $(j \neq k \implies A_j A_k = \emptyset)$

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Axioms guarantee can compute probabilities by usual rules, including approximation, without contradiction.

Consequences:

1. Finite additivity A_1, \dots, A_n pairwise disjoint:

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i).$$

- 2. For any event $A P(A^{c}) = 1 P(A)$.
- 3. If $A_1 \subset A_2 \subset \cdots$ are events then

$$P(\bigcup_{1}^{\infty} A_i) = \lim_{n \to \infty} P(A_n).$$

4. If $A_1 \supset A_2 \supset \cdots$ then

$$P(\bigcap_{1}^{\infty} A_i) = \lim_{n \to \infty} P(A_n).$$

Most subtle point is σ -field, \mathcal{F} . Needed to avoid some contradictions which arise if you try to define P(A) for every subset A of Ω when Ω is a set with uncountably many elements.

Random Variables:

Vector valued random variable: function X, domain Ω , range in \mathbb{R}^p such that

$$P(X_1 \le x_1, \dots, X_p \le x_p)$$

is defined for any constants (x_1, \ldots, x_p) . Notation: $X = (X_1, \ldots, X_p)$ and

$$X_1 \le x_1, \dots, X_p \le x_p$$

is shorthand for an event:

$$\{\omega \in \Omega : X_1(\omega) \le x_1, \dots, X_p(\omega) \le x_p\}$$

X function on Ω so X_1 function on Ω .

For this course I assume you know:

Definitions and uses of *joint*, *marginal* and *conditional* densities and probability mass functions or discrete densities.

Definitions and uses of *joint* and *marginal* distribution functions.

How to go back and forth between distributions and densities.

Change of variables formula.

Independence

Events A and B independent if

$$P(AB) = P(A)P(B)$$
.

Events A_i , i = 1, ..., p are **independent** if

$$P(A_{i_1} \cdots A_{i_r}) = \prod_{j=1}^r P(A_{i_j})$$

for any set of distinct indices i_1, \ldots, i_r between 1 and p.

Example: p = 3

$$P(A_1 A_2 A_3) = P(A_1) P(A_2) P(A_3)$$

$$P(A_1 A_2) = P(A_1) P(A_2)$$

$$P(A_1 A_3) = P(A_1) P(A_3)$$

$$P(A_2 A_3) = P(A_2) P(A_3)$$

Need all equations to be true for independence!

Example: Toss a coin twice. If A_1 is the event that the first toss is a Head, A_2 is the event that the second toss is a Head and A_3 is the event that the first toss and the second toss are different. then $P(A_i) = 1/2$ for each i and for $i \neq j$

$$P(A_i \cap A_j) = \frac{1}{4}$$

but

$$P(A_1 \cap A_2 \cap A_3) = 0 \neq P(A_1)P(A_2)P(A_3)$$
.

Def'n: Rvs X_1, \ldots, X_p are **independent** if

$$P(X_1 \in A_1, \dots, X_p \in A_p) = \prod P(X_i \in A_i)$$
 for any choice of A_1, \dots, A_p .

Theorem 1 1. If X and Y are independent and discrete then

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
for all x, y

2. If X and Y are discrete and

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

for all x, y then X and Y are independent.

Theorem 2 If $X_1, ..., X_p$ are independent and $Y_i = g_i(X_i)$ then $Y_1, ..., Y_p$ are independent. Moreover, $(X_1, ..., X_q)$ and $(X_{q+1}, ..., X_p)$ are independent.

Conditional probability

Important modeling and computation technique:

Def'n:
$$P(A|B) = P(AB)/P(B)$$
 if $P(B) \neq 0$.

Def'n: For discrete rvs X, Y conditional pmf of Y given X is

$$f_{Y|X}(y|x) = P(Y = y|X = x)$$

= $f_{X,Y}(x,y)/f_X(x)$
= $f_{X,Y}(x,y)/\sum_t f_{X,Y}(x,t)$

IDEA: used as both computational tool and modelling tactic.

Specify joint distribution by specifying "marginal" and "conditional".

Modelling:

Assume $X \sim \mathsf{Poisson}(\lambda)$.

Assume $Y|X \sim \text{Binomial}(X, p)$.

Let Z = X - Y. Joint law of Y, Z?

$$P(Y = y, Z = z)$$

$$= P(Y = y, X - Y = z)$$

$$= P(Y = y, X = z + y)$$

$$= P(Y = y | X = y + z) P(X = y + z)$$

$$= {z + y \choose y} p^{y} (1 - p)^{z} e^{-\lambda} \lambda^{z+y} / (z + y)!$$

$$= \exp\{-p\lambda\} \frac{(p\lambda)^{y}}{y!} \exp\{(1 - p)\lambda\} \frac{\{(1 - p)\lambda\}^{z}}{z!}$$

So: Y, Z independent Poissons.

Expected Value

Undergraduate definition of E: integral for absolutely continuous X, sum for discrete. But: \exists rvs which are neither absolutely continuous nor discrete.

General definition of E.

A random variable X is **simple** if we can write

$$X(\omega) = \sum_{1}^{n} a_i 1(\omega \in A_i)$$

for some constants a_1, \ldots, a_n and events A_i .

Def'n: For a simple rv X we define

$$E(X) = \sum a_i P(A_i)$$

For positive random variables which are not simple we extend our definition by approximation:

Def'n: If $X \ge 0$ (almost surely, $P(X \ge 0) = 1$) then

$$E(X) = \sup\{E(Y) : 0 \le Y \le X, Y \text{ simple}\}\$$

Def'n: We call X integrable if

$$E(|X|) < \infty$$
.

In this case we define

$$E(X) = E(\max(X,0)) - E(\max(-X,0))$$

Facts: E is a linear, monotone, positive operator:

- 1. **Linear**: E(aX+bY)=aE(X)+bE(Y) provided X and Y are integrable.
- 2. Positive: $P(X \ge 0) = 1$ implies $E(X) \ge 0$.
- 3. Monotone: $P(X \ge Y) = 1$ and X, Y integrable implies $E(X) \ge E(Y)$.

Major technical theorems:

Monotone Convergence: If $0 \le X_1 \le X_2 \le \cdots$ a.s. and $X = \lim X_n$ (which exists a.s.) then

$$E(X) = \lim_{n \to \infty} E(X_n)$$

Dominated Convergence: If $|X_n| \le Y_n$ and \exists rv X st $X_n \to X$ a.s. and rv Y st $Y_n \to Y$ with $E(Y_n) \to E(Y) < \infty$ then

$$E(X_n) \to E(X)$$

Often used with all Y_n the same rv Y.

Fatou's Lemma: If $X_n \ge 0$ then

$$E(\liminf X_n) \leq \liminf E(X_n)$$

Theorem: With this definition of E if X has density f(x) (even in \mathbb{R}^p say) and Y = g(X) then

$$E(Y) = \int g(x)f(x)dx.$$

(This could be a multiple integral.)

Works even if X has density but Y doesn't.

If X has pmf f then

$$E(Y) = \sum_{x} g(x) f(x).$$

Def'n: r^{th} moment (about origin) of a real rv X is $\mu'_r = E(X^r)$ (provided it exists). Generally use μ for E(X). The r^{th} central moment is

$$\mu_r = E[(X - \mu)^r]$$

Call $\sigma^2 = \mu_2$ the variance.

Def'n: For an \mathbb{R}^p valued rv X $\mu_X = E(X)$ is the vector whose i^{th} entry is $E(X_i)$ (provided all entries exist).

Def'n: The $(p \times p)$ variance covariance matrix of X is

$$Var(X) = E\left[(X - \mu)(X - \mu)^t \right]$$

which exists provided each component X_i has a finite second moment. More generally if $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^q$ both have all components with finite second moments then

$$Cov(X,Y) = E[(X - \mu_X)(Y - \mu_Y)^T]$$

We have

$$Cov(AX + a, BY + b) = ACov(X, Y)B^{T}$$

for general (conforming) matrices A, B and vectors a and b.

Moments and probabilities of rare events are closely connected.

Markov's inequality (r = 2 is Chebyshev's inequality):

$$P(|X - \mu| \ge t) = E[\mathbf{1}(|X - \mu| \ge t)]$$

$$\le E\left[\frac{|X - \mu|^r}{t^r}\mathbf{1}(|X - \mu| \ge t)\right]$$

$$\le \frac{E[|X - \mu|^r]}{t^r}$$

Intuition: if moments are small then large deviations from average are unlikely.

Moments and independence

Theorem: If X_1, \ldots, X_p are independent and each X_i is integrable then $X = X_1 \cdots X_p$ is integrable and

$$E(X_1 \cdots X_p) = E(X_1) \cdots E(X_p)$$

Multiple Integration: Lebesgue integrals over \mathbb{R}^p defined using Lebesgue measure on \mathbb{R}^p .

Iterated integrals wrt Lebesgue measure on \mathbb{R}^1 give same answer.

Theorem[Tonelli]: If $f: \mathbb{R}^{p+q} \mapsto \mathbb{R}$ is Borel and $f \geq 0$ almost everywhere then for almost every $x \in \mathbb{R}^p$ the integral

$$g(x) \equiv \int f(x,y)dy$$

exists and

$$\int g(x)dx = \int f(x,y)dxdy$$

RHS denotes p+q dimensional integral defined previously.

Theorem[Fubini] If $f: \mathbb{R}^{p+q} \mapsto \mathbb{R}$ is Borel and integrable then for almost every $x \in \mathbb{R}^p$ the integral

$$g(x) \equiv \int f(x,y)dy$$

exists and is finite. Moreover g is integrable and

$$\int g(x)dx = \int f(x,y)dxdy.$$

Results true for measures other than Lebesgue.

Conditional distributions, expectations

When X and Y are discrete we have

$$\mathsf{E}(Y|X=x) = \sum_{y} y P(Y=y|X=x)$$

for any x for which P(X = x) is positive.

Defines a function of x.

This function evaluated at X gives rv which is ftn of X denoted

$$\mathsf{E}(Y|X)$$
.

Example: $Y|X = x \sim \text{Binomial}(x, p)$. Since mean of a Binomial(n, p) is np we find

$$\mathsf{E}(Y|X=x) = px$$

and

$$\mathsf{E}(Y|X) = pX$$

Notice you simply replace x by X.

Here are some properties of the function

$$\mathsf{E}(Y|X=x)$$

1) Suppose A is a function defined on the range of X. Then

$$\mathsf{E}(A(X)Y|X=x) = A(x)\mathsf{E}(Y|X=x)$$

and so

$$\mathsf{E}(A(X)Y|X) = A(X)\mathsf{E}(Y|X)$$

2) Repeated conditioning: if X, Y and Z discrete then

$$\mathsf{E}\left\{\mathsf{E}(Z|X,Y)|X\right\} = \mathsf{E}(Z|X)$$
$$\mathsf{E}\left\{\mathsf{E}(Y|X)\right\} = \mathsf{E}(Y)$$

3) Additivity

$$E(Y+Z|X) = E(Y|X) + E(Z|X)$$

4) Putting the first two items together gives

$$E\{E(A(X)Y|X)\} = (1)$$

$$E\{A(X)E(Y|X)\} = E(A(X)Y)$$

Definition of $\mathsf{E}(Y|X)$ when X and Y are not assumed to discrete:

 $\mathsf{E}(Y|X)$ is rv which is measurable function of X satisfying (1).

Existence is measure theory problem.

Properties: all 4 properties still hold.

Theorem 3 If X and Y have joint density and f(y|x) is conditional density then

$$E\{g(Y)|X=x\}=\int g(y)f(y|x)dy$$
 provided $E(g(Y))<\infty$.

Theorem 4 If X is rv and $X^* = g(X)$ is a one to one transformation of X then

$$\mathsf{E}(Y|X=x) = \mathsf{E}(Y|X^*=g(x))$$

and

$$\mathsf{E}(Y|X) = \mathsf{E}(Y|X^*)$$

Interpretation.

Formula is "obvious".

Example: Toss coin n = 20 times. Y is indicator of first toss is a heads. X is number of heads and X^* number of tails. Formula says:

$$E(Y|X = 17) = E(Y|X^* = 3)$$

In fact for a general k and n

$$\mathsf{E}(Y|X=k) = \frac{k}{n}$$

SO

$$\mathsf{E}(Y|X) = \frac{X}{n}$$

At the same time

$$\mathsf{E}(Y|X^*=j) = \frac{n-j}{n}$$

SO

$$\mathsf{E}(Y|X^*) = \frac{n - X^*}{n}$$

But of course $X = n - X^*$ so these are just two ways of describing the same random variable.