# **Probability Basics**

Richard Lockhart

Simon Fraser University

STAT 870 — Summer 2011



## Purposes of Today's Lecture

- Run through basic definitions of probability theory
- Define Probability space, random variables.
- Define expected value, moments.
- Present basic convergence theorems.
- Discuss conditional expectation.



## **Probability Definitions**

**Probability Space** (or **Sample Space**): ordered triple  $(\Omega, \mathcal{F}, P)$ .

- $\Omega$  is a set (of **elementary** outcomes).
- $\mathcal{F}$  is a family of subsets (**events**) of  $\Omega$  which is a  $\sigma$ -field (or Borel field or  $\sigma$ -algebra):
  - **1** Empty set  $\emptyset$  and  $\Omega$  are members of  $\mathcal{F}$ .
  - 2  $A \in \mathcal{F}$  implies  $A^c = \{\omega \in \Omega : \omega \notin A\} \in \mathcal{F}$
  - $\bullet$   $A_1, A_2, \cdots$  all in  $\mathcal{F}$  implies

$$A=\bigcup_{i=1}^{\infty}A_{i}\in\mathcal{F}.$$



# Probability Measure Defined

- P a function, domain  $\mathcal{F}$ , range a subset of [0,1] satisfying:

  - **2** Countable additivity:  $A_1, A_2, \cdots$  pairwise disjoint  $(j \neq k \implies A_i A_k = \emptyset)$

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

 Axioms guarantee can compute probabilities by usual rules, including approximation, without contradiction.



### Consequences

**1 Finite additivity**  $A_1, \dots, A_n$  pairwise disjoint:

$$P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i).$$

- 2 For any event  $A P(A^c) = 1 P(A)$ .
- **3** If  $A_1 \subset A_2 \subset \cdots$  are events then

$$P(\bigcup_{1}^{\infty}A_{i})=\lim_{n\to\infty}P(A_{n}).$$

 $\bullet$  If  $A_1 \supset A_2 \supset \cdots$  then

$$P(\bigcap_{1}^{\infty}A_{i})=\lim_{n\to\infty}P(A_{n}).$$



### Consequences

- Most subtle point is  $\sigma$ -field,  $\mathcal{F}$ .
- Needed to avoid some contradictions which arise if you try to define P(A) for every subset A of  $\Omega$  when  $\Omega$  is a set with uncountably many elements.
- Classic example uses unform distribution and axiom of choice.



### Random Variables

• Vector valued random variable: function X, domain  $\Omega$ , range in  $\mathbb{R}^p$  such that

$$P(X_1 \leq x_1, \dots, X_p \leq x_p)$$

is defined for any constants  $(x_1, \ldots, x_p)$ .

• Notation:  $X = (X_1, \dots, X_p)$  and

$$X_1 \leq x_1, \ldots, X_p \leq x_p$$

is shorthand for an event:

$$\{\omega \in \Omega : X_1(\omega) \leq x_1, \ldots, X_p(\omega) \leq x_p\}$$

X function on Ω so  $X_1$  function on Ω.



# For this course I assume you know

- Definitions and uses of joint, marginal and conditional densities and probability mass functions or discrete densities.
- Definitions and uses of joint and marginal distribution functions.
- How to go back and forth between distributions and densities.
- Change of variables formula.



### **Densities**

• If X takes values in  $\mathbb{R}^p$  then X has density f if and only if

$$P(X \in A) = \int_A f(x) dx.$$

We say X has an absolutely continuous distribution.

• If there is a countable set  $C = \{x_1, x_2, \dots\}$  such that

$$P(X \in C) = 1$$

then we say X has a *discrete* distribution.

• In this case we define the discrete density of X by

$$f(x) = P(X = x).$$



### Independence

• Events A and B independent if

$$P(AB) = P(A)P(B).$$

• Events  $A_i$ , i = 1, ..., p are **independent** if

$$P(A_{i_1}\cdots A_{i_r})=\prod_{j=1}^r P(A_{i_j})$$

for any set of distinct indices  $i_1, \ldots, i_r$  between 1 and p.

• Example: p = 3

$$P(A_1A_2A_3) = P(A_1)P(A_2)P(A_3)$$

$$P(A_1A_2) = P(A_1)P(A_2)$$

$$P(A_1A_3) = P(A_1)P(A_3)$$

$$P(A_2A_3) = P(A_2)P(A_3)$$

Need all equations to be true for independence!



### Example

- Toss a coin twice.
- A<sub>1</sub> is the event that the first toss is a Head
- A<sub>2</sub> is the event that the second toss is a Head
- $\bullet$   $A_3$  is the event that the first toss and the second toss are different.
- then  $P(A_i) = 1/2$  for each i and for  $i \neq j$

$$P(A_i \cap A_j) = \frac{1}{4}$$

but

$$P(A_1 \cap A_2 \cap A_3) = 0 \neq P(A_1)P(A_2)P(A_3)$$
.



### Indepence extended

**Def'n**: Rvs  $X_1, \ldots, X_p$  are **independent** if

$$P(X_1 \in A_1, \cdots, X_p \in A_p) = \prod P(X_i \in A_i)$$

for any choice of  $A_1, \ldots, A_p$ .

**Def'n**: We say  $\sigma$ -fields  $\mathcal{F}_1,\ldots,\mathcal{F}_p$  are independent if and only if

$$P(A_1 \cdots A_p) = P(A_1) \cdots P(A_p)$$

for all  $A_i \in \mathcal{F}_i$ .

**Def'n**: These definitions extend to infinite collections of events and  $\sigma$ -fields by requiring them to hold for each finite sub-collection.



# Conditions for independence of rvs

#### **Theorem**

• If X and Y are independent and discrete then

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

for all x, y

If X and Y are discrete and

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

for all x, y then X and Y are independent.

#### **Theorem**

If  $X_1, \ldots, X_p$  are independent and  $Y_i = g_i(X_i)$  then  $Y_1, \ldots, Y_p$  are independent. Moreover,  $(X_1, \ldots, X_q)$  and  $(X_{q+1}, \ldots, X_p)$  are independent.

# Conditional probability

- Important modeling and computation technique:
- **Def'n**: P(A|B) = P(AB)/P(B) if  $P(B) \neq 0$ .
- Def'n: For discrete rvs X, Y conditional pmf of Y given X is

$$f_{Y|X}(y|x) = P(Y = y|X = x)$$
  
=  $f_{X,Y}(x,y)/f_X(x)$   
=  $f_{X,Y}(x,y)/\sum_t f_{X,Y}(x,t)$ 

- IDEA: used as both computational tool and modelling tactic.
- Specify joint distribution by specifying "marginal" and "conditional".



# Modelling

- Assume  $X \sim \text{Poisson}(\lambda)$ .
- Assume  $Y|X \sim \text{Binomial}(X, p)$ .
- Let Z = X Y.
- Joint law of Y, Z?

$$P(Y = y, Z = z)$$
=  $P(Y = y, X - Y = z)$   
=  $P(Y = y, X = z + y)$   
=  $P(Y = y | X = y + z)P(X = y + z)$   
=  ${z + y \choose y}p^{y}(1 - p)^{z}e^{-\lambda}\lambda^{z+y}/(z + y)!$   
=  $\exp\{-p\lambda\}\frac{(p\lambda)^{y}}{y!}\exp\{(1 - p)\lambda\}\frac{\{(1 - p)\lambda\}^{z}}{z!}$ 

• So: Y, Z independent Poissons.



### Expected Value – simple rvs

- Undergraduate definition of E: integral for absolutely continuous X, sum for discrete.
- But: ∃ rvs which are neither absolutely continuous nor discrete.
- General definition of E.
- A random variable X is **simple** if we can write

$$X(\omega) = \sum_{1}^{n} a_{i} 1(\omega \in A_{i})$$

for some constants  $a_1, \ldots, a_n$  and events  $A_i$ .

• **Def'n**: For a simple rv X we define

$$E(X) = \sum a_i P(A_i)$$



# Expected value – non-negative rvs

- For positive random variables which are not simple we extend our definition by approximation:
- **Def'n**: If  $X \ge 0$  (almost surely,  $P(X \ge 0) = 1$ ) then

$$E(X) = \sup\{E(Y) : 0 \le Y \le X, Y \text{ simple}\}\$$

• **Def'n**: We call *X* **integrable** if

$$E(|X|)<\infty$$
.

In this case we define

$$E(X) = E(\max(X,0)) - E(\max(-X,0))$$



# Properties of *E*

Facts: *E* is a linear, monotone, positive operator:

- **1. Linear**: E(aX + bY) = aE(X) + bE(Y) provided X and Y are integrable.
- **2** Positive:  $P(X \ge 0) = 1$  implies  $E(X) \ge 0$ .
- **Monotone**:  $P(X \ge Y) = 1$  and X, Y integrable implies  $E(X) \ge E(Y)$ .

**Jargon**: If P(A)=1 we say A happens almost surely. Almost everywhere is the corresponding concept for Lebesgue measure. A measure  $\nu$  is like a probability but  $\nu(\Omega)$  might not be 1.



## Major technical theorems

• Monotone Convergence: If  $0 \le X_1 \le X_2 \le \cdots$  a.s. and  $X = \lim X_n$  (which exists a.s.) then

$$E(X) = \lim_{n \to \infty} E(X_n)$$

● **Dominated Convergence**: If  $|X_n| \le Y_n$  and  $\exists$  rv X st  $X_n \to X$  a.s. and rv Y st  $Y_n \to Y$  with  $E(Y_n) \to E(Y) < \infty$  then

$$E(X_n) \rightarrow E(X)$$

Often used with all  $Y_n$  the same rv Y.

• **Fatou's Lemma**: If  $X_n \ge 0$  then

$$E(\liminf X_n) \leq \liminf E(X_n)$$



# Conditions for independence of rvs

#### **Theorem**

• If X and Y are independent and (X,Y) has density f(x,y) then X has a density, say g and Y has a density, say h and for all x,y

$$f(x,y) = g(x)h(y)$$
$$g(x) = \int f(x,y)dy$$
$$h(y) = \int f(x,y)dx.$$

- ② If X and Y are independent and have densities g and h respectively then (X, Y) has a density f(x, y) = g(x)h(y).
- If there are functions g(x) and h(y) which have the property that f(x,y) = g(x)h(y) is a density of (X,Y) then X and Y are independent and both X and Y have densities given by multiples of g and g are the property of g are the property of g and g are the prop

# Relation to undergraduate definitions

#### **Theorem**

**Theorem**: With this definition of E if X has density f(x) (even in  $\mathbb{R}^p$  say) and Y = g(X) then

$$E(Y) = \int g(x)f(x)dx.$$

(This could be a multiple integral.)

• Works even if X has density but Y doesn't.

#### **Theorem**

If X has pmf f then

$$E(Y) = \sum_{x} g(x)f(x).$$



### **Moments**

**Def'n**:  $r^{\text{th}}$  moment (about origin) of a real rv X is  $\mu'_r = E(X^r)$  (provided it exists).

• Generally use  $\mu$  for E(X). The  $r^{\rm th}$  central moment is

$$\mu_r = E[(X - \mu)^r]$$

• Call  $\sigma^2 = \mu_2$  the variance.

**Def'n**: For an  $\mathbb{R}^p$  valued rv X  $\mu_X = E(X)$  is the vector whose  $i^{\text{th}}$  entry is  $E(X_i)$  (provided all entries exist).



### Variance-covariance matrices

• **Def'n**: The  $(p \times p)$  variance covariance matrix of X is

$$Var(X) = E\left[(X - \mu)(X - \mu)^T\right]$$

- this exists provided each component  $X_i$  has a finite second moment.
- More generally if  $X \in \mathbb{R}^p$  and  $Y \in \mathbb{R}^q$  both have all components with finite second moments then

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)^T]$$

We have

$$Cov(AX + a, BY + b) = ACov(X, Y)B^T$$

for general (conforming) matrices A, B and vectors a and b.



### Inequalities

- Moments and probabilities of rare events are closely connected.
- Markov's inequality (r = 2 is Chebyshev's inequality):

$$P(|X - \mu| \ge t) = E[1(|X - \mu| \ge t)]$$

$$\le E\left[\frac{|X - \mu|^r}{t^r}1(|X - \mu| \ge t)\right]$$

$$\le \frac{E[|X - \mu|^r]}{t^r}$$

 Intuition: if moments are small then large deviations from average are unlikely.



# Moments and independence

#### **Theorem**

If  $X_1, \ldots, X_p$  are independent and each  $X_i$  is integrable then  $X = X_1 \cdots X_p$  is integrable and

$$E(X_1 \cdots X_p) = E(X_1) \cdots E(X_p)$$



### Iterated integrals - Tonelli's Theorem

- Multiple Integration: Lebesgue integrals over  $\mathbb{R}^p$  defined using Lebesgue measure on  $\mathbb{R}^p$ .
- ullet Iterated integrals wrt Lebesgue measure on  $\mathbb{R}^1$  give same answer.

### Theorem (Tonelli)

If  $f: \mathbb{R}^{p+q} \mapsto \mathbb{R}$  is Borel and  $f \geq 0$  almost everywhere then for almost every  $x \in \mathbb{R}^p$  the integral

$$g(x) \equiv \int f(x,y) dy$$

exists and

$$\int g(x)dx = \int f(x,y)dxdy$$

RHS denotes p + q dimensional integral defined previously.



### Fubini's Theorem

### Theorem (Fubini)

If  $f: \mathbb{R}^{p+q} \mapsto \mathbb{R}$  is Borel and integrable then for almost every  $x \in \mathbb{R}^p$  the integral

$$g(x) \equiv \int f(x,y) dy$$

exists and is finite. Moreover g is integrable and

$$\int g(x)dx = \int f(x,y)dxdy.$$

Results true for measures other than Lebesgue.



### Conditional distributions, expectations

• When X and Y are discrete we have

$$E(Y|X=x) = \sum_{y} yP(Y=y|X=x)$$

for any x for which P(X = x) is positive.

- Defines a function of x.
- This function evaluated at X gives rv which is ftn of X denoted

$$\mathrm{E}(Y|X)$$
.

•  $Y|X = x \sim \text{Binomial}(x, p)$ . Since mean of a Binomial(n, p) is np we find

$$E(Y|X=x)=px$$

and

$$E(Y|X) = pX$$

Notice you simply replace x by X.



# Properties of conditional expectation

Here are some properties of the function

$$\mathrm{E}(Y|X=x)$$

lacktriangle Suppose A is a function defined on the range of X. Then

$$E(A(X)Y|X=x) = A(x)E(Y|X=x)$$

and so

$$E(A(X)Y|X) = A(X)E(Y|X)$$

$$E \{E(Z|X, Y)|X\} = E(Z|X)$$
$$E \{E(Y|X)\} = E(Y)$$



# Properties of conditional expectation

Additivity

$$\mathrm{E}(Y+Z|X)=\mathrm{E}(Y|X)+\mathrm{E}(Z|X)$$

• Putting the first two items together gives

$$E \{E(A(X)Y|X)\} =$$

$$E \{A(X)E(Y|X)\} = E(A(X)Y)$$
(1)



# General conditional expectations

- Definition of E(Y|X) when X and Y are not assumed to discrete:
- E(Y|X) is rv which is measurable function of X satisfying (1).
- Existence is measure theory problem.
- Properties: all 4 properties still hold.



## Relation to undergraduate ideas

#### **Theorem**

If X and Y have joint density and f(y|x) is conditional density then

$$E\{g(Y)|X=x\} = \int g(y)f(y|x)dy$$

provided  $E(g(Y)) < \infty$ .

#### **Theorem**

If X is rv and  $X^* = g(X)$  is a one to one transformation of X then

$$\mathrm{E}(Y|X=x)=\mathrm{E}(Y|X^*=g(x))$$

and

$$\mathrm{E}(Y|X)=\mathrm{E}(Y|X^*)$$



### Interpretation

- Formula is "obvious".
- Toss coin n = 20 times. Y is indicator of first toss is a heads. X is number of heads and  $X^*$  number of tails.
- Formula says:

$$E(Y|X = 17) = E(Y|X^* = 3)$$



### Interpretation

In fact for a general k and n

$$E(Y|X=k)=\frac{k}{n}$$

SO

$$E(Y|X) = \frac{X}{n}$$

At the same time

$$E(Y|X^*=j)=\frac{n-j}{n}$$

SO

$$\mathrm{E}(Y|X^*) = \frac{n-X^*}{n}$$

• But of course  $X = n - X^*$  so these are just two ways of describing the same random variable.