Basic Probability Modelling

Richard Lockhart

Simon Fraser University

STAT 870 — Summer 2011

Purposes of Today's Lecture

- Illustrate modelling process.
- Show some probabilistic notation.
- Review role of independence in modelling
- Compare equally likely outcomes and so on.

Models for coin tossing

- Toss coin *n* times.
- On trial k write down a 1 for heads and 0 for tails.
- Typical outcome is $\omega = (\omega_1, \dots, \omega_n)$ a sequence of zeros and ones.
- **Example**: n = 3 gives 8 possible outcomes

$$\begin{split} \Omega &= \{(0,0,0), (0,0,1), (0,1,0), (0,1,1), \\ &\quad (1,0,0), (1,0,1), (1,1,0), (1,1,1)\} \,. \end{split}$$

- General case: set of all possible outcomes is $\Omega = \{0,1\}^n$; $\operatorname{Card}(\Omega) = 2^n$.
- Meaning of random not defined here.
- Interpretation of probability is usually long run limiting relative frequency
- but then we deduce existence of long run limiting relative frequency from axioms of probability.

Probability measures

Probability measure: function P defined on the set of all subsets of Ω such that: with the following properties:

- For each $A \subset \Omega$, $P(A) \in [0,1]$.
- ② If A_1, \ldots, A_k are pairwise disjoint (meaning that for $i \neq j$ the intersection $A_i \cap A_j$ which we usually write as $A_i A_j$ is the empty set \emptyset) then

$$P(\cup_1^k A_j) = \sum_1^k P(A_j)$$

 $P(\Omega) = 1.$

Probability Modelling

- Probability modelling: select family of possible probability measures.
- Make best match between mathematics, real world.
- interpretation of probability: long run limiting relative frequency
- ullet Coin tossing problem: many possible probability measures on Ω .
- For n = 3, Ω has 8 elements and $2^8 = 256$ subsets.
- To specify P: specify 256 numbers. Generally impractical.
- Instead: model by listing some assumptions about P.

From modelling assumptions to probabilities

Then deduce what P is, or how to calculate P(A)Three approaches to modelling coin tossing:

Counting model:

$$P(A) = \frac{\text{number of elements in } A}{\text{number of elements in } \Omega}$$
 (1)

Disadvantage: no insight for other problems.

2 Equally likely elementary outcomes: if $A = \{\omega_1\}$ and $B = \{\omega_2\}$ are two singleton sets in Ω then P(A) = P(B). If $\operatorname{Card}(\Omega) = m$, say $\Omega = (\omega_1, \dots, \omega_m)$ then

$$P(\Omega) = P(\bigcup_{1}^{m} \{\omega_{j}\})$$

$$= \sum_{1}^{m} P(\{\omega_{j}\})$$

$$= mP(\{(\omega_{1}\}))$$

So $P(\{\omega_i\}) = 1/m$ and (1) holds.

Infinite sample spaces

- Defect of models: infinite Ω not easily handled.
- Toss coin till first head.
- Natural Ω is set of all sequences of k zeros followed by a one.
- OR: $\Omega = \{0, 1, 2, \ldots\}.$
- Can't assume all elements equally likely.
- Third approach: model using **independence**:

Coin tossing example: n = 3

Define
$$A=\{\omega:\omega_1=1,\omega_2=0,\omega_3=1\}$$
 and
$$A_1=\{\omega:\omega_1=1\}$$

$$A_2=\{\omega:\omega_2=0\}$$

$$A_3=\{\omega:\omega_3=1\}\,.$$

Then $A = A_1 \cap A_2 \cap A_3$

- Note P(A) = 1/8, $P(A_i) = 1/2$.
- So: $P(A) = \prod P(A_i)$

General case

- General case: n tosses. $B_i \subset \{0,1\}$; $i = 1, \ldots, n$
- Define

$$A_i = \{\omega : \omega_i \in B_i\}$$
 $A = \cap A_i$.

• It is possible to prove that

$$P(A) = \prod P(A_i)$$

- Jargon to come later: random variables X_i defined by $X_i(\omega) = \omega_i$ are independent.
- Basis of most common modelling tactic.

Independence

Assume

$$P(\{\omega : \omega_i = 1\}) = P(\{\omega : \omega_i = 0\}) = 1/2$$
 (2)

and for any set of events of form given above

$$P(A) = \prod P(A_i). \tag{3}$$

- Motivation: long run rel freq interpretation plus assume outcome of one toss of coin incapable of influencing outcome of another toss.
- Advantages: generalizes to infinite Ω .

Infinite Ω

Toss coin infinite number of times:

$$\Omega = \{\omega = (\omega_1, \omega_2, \cdots)\}$$

is an uncountably infinite set. Model assumes for any n and any event of the form $A = \bigcap_{i=1}^{n} A_i$ with each $A_i = \{\omega : \omega_i \in B_i\}$ we have

$$P(A) = \prod_{i=1}^{n} P(A_i) \tag{4}$$

For a fair coin add the assumption that

$$P(\{\omega : \omega_i = 1\}) = 1/2.$$
 (5)

Did we use assume enough? too much?

- Is P(A) determined by these assumptions??
- Consider $A = \{ \omega \in \Omega : (\omega_1, \dots, \omega_n) \in B \}$ where $B \subset \Omega_n = \{0, 1\}^n$.
- Our assumptions guarantee

$$P(A) = \frac{\text{number of elements in } B}{\text{number of elements in } \Omega_n}$$

- In words, our model specifies that the first *n* of our infinite sequence of tosses behave like the equally likely outcomes model.
- Define C_k to be the event first head occurs after k consecutive tails:

$$C_k = A_1^c \cap A_2^c \cdots \cap A_k^c \cap A_{k+1}$$

where $A_i = \{\omega : \omega_i = 1\}$; A^c means complement of A.

Our assumption guarantees

$$P(C_k) = P(A_1^c \cap A_2^c \cdots \cap A_k^c \cap A_{k+1})$$

= $P(A_1^c) \cdots P(A_k^c) P(A_{k+1})$
= $2^{-(k+1)}$

Complicated Events: examples

$$\begin{split} A_1 &\equiv \{\omega: \lim_{n \to \infty} (\omega_1 + \dots + \omega_n)/n \text{ exists } \} \\ A_2 &\equiv \{\omega: \lim_{n \to \infty} (\omega_1 + \dots + \omega_n)/n = 1/2 \} \\ A_3 &\equiv \{\omega: \lim_{n \to \infty} \sum_1^n (2\omega_k - 1)/k \text{ exists } \} \end{split}$$

- Strong Law of Large Numbers: for our model $P(A_2) = 1$.
- In fact, $A_3 \subset A_2 \subset A_1$.
- If $P(A_2) = 1$ then $P(A_1) = 1$.
- In fact $P(A_3) = 1$ so $P(A_2) = P(A_1) = 1$.

Mathematical Questions

Some mathematical questions to answer:

- **1** Do (4) and (5) determine P(A) for every $A \subset \Omega$? [NO]
- ② Do (4) and (5) determine $P(A_i)$ for i = 1, 2, 3? [YES]
- Are (4) and (5) logically consistent? [YES]

