Probability Basics

Richard Lockhart

Simon Fraser University

STAT 870 — Summer 2013

Purposes of Today's Lecture

- Run through basic definitions of probability theory
- Define Probability space, random variables.
- Define expected value, moments.
- Present basic convergence theorems.
- Discuss conditional expectation.

Probability Definitions

Probability Space (or **Sample Space**): ordered triple (Ω, \mathcal{F}, P) .

- Ω is a set (of **elementary** outcomes).
- \mathcal{F} is a family of subsets (**events**) of Ω which is a σ -field (or Borel field or σ -algebra):
 - **1** Empty set \emptyset and Ω are members of \mathcal{F} .
 - 2 $A \in \mathcal{F}$ implies $A^c = \{\omega \in \Omega : \omega \notin A\} \in \mathcal{F}$
 - \bullet A_1, A_2, \cdots all in $\mathcal F$ implies

$$A=\bigcup_{i=1}^{\infty}A_{i}\in\mathcal{F}.$$

Probability Measure Defined

- P a function, domain \mathcal{F} , range a subset of [0,1] satisfying:

 - **2** Countable additivity: A_1, A_2, \cdots pairwise disjoint $(j \neq k \implies A_i A_k = \emptyset)$

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

 Axioms guarantee can compute probabilities by usual rules, including approximation, without contradiction.

Consequences

1 Finite additivity A_1, \dots, A_n pairwise disjoint:

$$P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i).$$

- ② For any event $A P(A^c) = 1 P(A)$.
- **3** If $A_1 \subset A_2 \subset \cdots$ are events then

$$P(\bigcup_{1}^{\infty}A_{i})=\lim_{n\to\infty}P(A_{n}).$$

$$P(\bigcap_{1}^{\infty}A_{i})=\lim_{n\to\infty}P(A_{n}).$$

Consequences

- Most subtle point is σ -field, \mathcal{F} .
- Needed to avoid some contradictions which arise if you try to define P(A) for every subset A of Ω when Ω is a set with uncountably many elements.
- Classic example uses unform distribution and axiom of choice.

Random Variables

• Vector valued random variable: function X, domain Ω , range in \mathbb{R}^p such that

$$P(X_1 \leq x_1, \ldots, X_p \leq x_p)$$

is defined for any constants (x_1, \ldots, x_p) .

• Notation: $X = (X_1, \dots, X_p)$ and

$$X_1 \leq x_1, \ldots, X_p \leq x_p$$

is shorthand for an event:

$$\{\omega \in \Omega : X_1(\omega) \leq x_1, \ldots, X_p(\omega) \leq x_p\}$$

X function on Ω so X_1 function on Ω.

For this course I assume you know

- Definitions and uses of joint, marginal and conditional densities and probability mass functions or discrete densities.
- Definitions and uses of joint and marginal distribution functions.
- How to go back and forth between distributions and densities.
- Change of variables formula.

Densities

• If X takes values in \mathbb{R}^p then X has density f if and only if

$$P(X \in A) = \int_A f(x) dx.$$

We say X has an absolutely continuous distribution.

• If there is a countable set $C = \{x_1, x_2, \dots\}$ such that

$$P(X \in C) = 1$$

then we say X has a *discrete* distribution.

• In this case we define the discrete density of X by

$$f(x) = P(X = x).$$

Independence

• Events A and B independent if

$$P(AB) = P(A)P(B)$$
.

• Events A_i , i = 1, ..., p are **independent** if

$$P(A_{i_1}\cdots A_{i_r})=\prod_{j=1}^r P(A_{i_j})$$

for any set of distinct indices i_1, \ldots, i_r between 1 and p.

• Example: p = 3

$$P(A_1A_2A_3) = P(A_1)P(A_2)P(A_3)$$

$$P(A_1A_2) = P(A_1)P(A_2)$$

$$P(A_1A_3) = P(A_1)P(A_3)$$

$$P(A_2A_3) = P(A_2)P(A_3)$$

Need all equations to be true for independence!

Example

- Toss a coin twice.
- A₁ is the event that the first toss is a Head
- A₂ is the event that the second toss is a Head
- \bullet A_3 is the event that the first toss and the second toss are different.
- then $P(A_i) = 1/2$ for each i and for $i \neq j$

$$P(A_i \cap A_j) = \frac{1}{4}$$

but

$$P(A_1 \cap A_2 \cap A_3) = 0 \neq P(A_1)P(A_2)P(A_3)$$
.

Indepence extended

Def'n: Rvs X_1, \ldots, X_p are **independent** if

$$P(X_1 \in A_1, \cdots, X_p \in A_p) = \prod P(X_i \in A_i)$$

for any choice of A_1, \ldots, A_p .

Def'n: We say σ -fields $\mathcal{F}_1,\ldots,\mathcal{F}_p$ are independent if and only if

$$P(A_1 \cdots A_p) = P(A_1) \cdots P(A_p)$$

for all $A_i \in \mathcal{F}_i$.

Def'n: These definitions extend to infinite collections of events and σ -fields by requiring them to hold for each finite sub-collection.

Conditions for independence of rvs

Theorem

If X and Y are independent and discrete then

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

for all x, y

2 If X and Y are discrete and

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

for all x, y then X and Y are independent.

Theorem

If X_1, \ldots, X_p are independent and $Y_i = g_i(X_i)$ then Y_1, \ldots, Y_p are independent. Moreover, (X_1, \ldots, X_q) and (X_{q+1}, \ldots, X_p) are independent.

Conditions for independence of (absolutely continuous) rvs

Theorem

• If X and Y are independent and (X,Y) has density f(x,y) then X has a density, say g and Y has a density, say h and for all x,y

$$f(x,y) = g(x)h(y)$$
$$g(x) = \int f(x,y)dy$$
$$h(y) = \int f(x,y)dx.$$

- ② If X and Y are independent and have densities g and h respectively then (X, Y) has a density f(x, y) = g(x)h(y).
- If there are functions g(x) and h(y) which have the property that f(x,y) = g(x)h(y) is a density of (X,Y) then X and Y are independent and both X and Y have densities given by multiples of g and g are the property of g are the property of g and g are the prop

Conditional probability

- Important modeling and computation technique:
- **Def'n**: P(A|B) = P(AB)/P(B) if $P(B) \neq 0$.
- **Def'n**: For discrete rvs X, Y conditional pmf of Y given X is

$$f_{Y|X}(y|x) = P(Y = y|X = x)$$

= $f_{X,Y}(x,y)/f_X(x)$
= $f_{X,Y}(x,y)/\sum_t f_{X,Y}(x,t)$

- IDEA: used as both computational tool and modelling tactic.
- Specify joint distribution by specifying "marginal" and "conditional".

Modelling

- Assume $X \sim \text{Poisson}(\lambda)$.
- Assume $Y|X \sim \text{Binomial}(X, p)$.
- Let Z = X Y.
- Joint law of Y, Z?

$$P(Y = y, Z = z)$$
= $P(Y = y, X - Y = z)$
= $P(Y = y, X = z + y)$
= $P(Y = y | X = y + z)P(X = y + z)$
= ${z + y \choose y}p^{y}(1 - p)^{z}e^{-\lambda}\lambda^{z+y}/(z + y)!$
= $\exp\{-p\lambda\}\frac{(p\lambda)^{y}}{y!}\exp\{(1 - p)\lambda\}\frac{\{(1 - p)\lambda\}^{z}}{z!}$

• So: Y, Z independent Poissons.

Expected Value – simple rvs

- Undergraduate definition of E: integral for absolutely continuous X, sum for discrete.
- But: ∃ rvs which are neither absolutely continuous nor discrete.
- General definition of E.
- A random variable X is **simple** if we can write

$$X(\omega) = \sum_{1}^{n} a_{i} 1(\omega \in A_{i})$$

for some constants a_1, \ldots, a_n and events A_i .

• **Def'n**: For a simple rv X we define

$$E(X) = \sum a_i P(A_i)$$

Expected value – non-negative rvs

- For positive random variables which are not simple we extend our definition by approximation:
- **Def'n**: If $X \ge 0$ (almost surely, $P(X \ge 0) = 1$) then

$$E(X) = \sup\{E(Y) : 0 \le Y \le X, Y \text{ simple}\}\$$

• **Def'n**: We call *X* **integrable** if

$$E(|X|)<\infty$$
.

In this case we define

$$E(X) = E(\max(X,0)) - E(\max(-X,0))$$

Properties of E

Facts: *E* is a linear, monotone, positive operator:

- **1** Linear: E(aX + bY) = aE(X) + bE(Y) provided X and Y are integrable.
- **2** Positive: $P(X \ge 0) = 1$ implies $E(X) \ge 0$.
- **Monotone**: $P(X \ge Y) = 1$ and X, Y integrable implies $E(X) \ge E(Y)$.

Jargon: If P(A)=1 we say A happens almost surely. Almost everywhere is the corresponding concept for Lebesgue measure. A measure ν is like a probability but $\nu(\Omega)$ might not be 1.

Major technical theorems

• Monotone Convergence: If $0 \le X_1 \le X_2 \le \cdots$ a.s. and $X = \lim X_n$ (which exists a.s.) then

$$E(X) = \lim_{n \to \infty} E(X_n)$$

● **Dominated Convergence**: If $|X_n| \le Y_n$ and \exists rv X st $X_n \to X$ a.s. and rv Y st $Y_n \to Y$ with $E(Y_n) \to E(Y) < \infty$ then

$$E(X_n) \rightarrow E(X)$$

Often used with all Y_n the same rv Y.

• Fatou's Lemma: If $X_n \ge 0$ then

$$E(\liminf X_n) \leq \liminf E(X_n)$$

Conditions for independence of rvs

Theorem

• If X and Y are independent and (X,Y) has density f(x,y) then X has a density, say g and Y has a density, say h and for all x,y

$$f(x,y) = g(x)h(y)$$
$$g(x) = \int f(x,y)dy$$
$$h(y) = \int f(x,y)dx.$$

- ② If X and Y are independent and have densities g and h respectively then (X, Y) has a density f(x, y) = g(x)h(y).
- If there are functions g(x) and h(y) which have the property that f(x,y) = g(x)h(y) is a density of (X,Y) then X and Y are independent and both X and Y have densities given by multiples of g and g are the property of g are the property of g and g are the prop

Relation to undergraduate definitions

Theorem

Theorem: With this definition of E if X has density f(x) (even in \mathbb{R}^p say) and Y = g(X) then

$$E(Y) = \int g(x)f(x)dx.$$

(This could be a multiple integral.)

• Works even if X has density but Y doesn't.

Theorem

If X has pmf f then

$$E(Y) = \sum_{x} g(x)f(x).$$

Moments

Def'n: r^{th} moment (about origin) of a real rv X is $\mu'_r = E(X^r)$ (provided it exists).

• Generally use μ for E(X). The $r^{\rm th}$ central moment is

$$\mu_r = E[(X - \mu)^r]$$

• Call $\sigma^2 = \mu_2$ the variance.

Def'n: For an \mathbb{R}^p valued rv X $\mu_X = E(X)$ is the vector whose i^{th} entry is $E(X_i)$ (provided all entries exist).

Variance-covariance matrices

• **Def'n**: The $(p \times p)$ variance covariance matrix of X is

$$Var(X) = E\left[(X - \mu)(X - \mu)^T\right]$$

- this exists provided each component X_i has a finite second moment.
- More generally if $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}^q$ both have all components with finite second moments then

$$Cov(X, Y) = E\left[(X - \mu_X)(Y - \mu_Y)^T\right]$$

We have

$$Cov(AX + a, BY + b) = ACov(X, Y)B^T$$

for general (conforming) matrices A, B and vectors a and b.

Inequalities

- Moments and probabilities of rare events are closely connected.
- Markov's inequality (r = 2 is Chebyshev's inequality):

$$P(|X - \mu| \ge t) = E[1(|X - \mu| \ge t)]$$

$$\le E\left[\frac{|X - \mu|^r}{t^r}1(|X - \mu| \ge t)\right]$$

$$\le \frac{E[|X - \mu|^r]}{t^r}$$

• Intuition: if moments are small then large deviations from average are unlikely.

Moments and independence

Theorem

If X_1, \ldots, X_p are independent and each X_i is integrable then $X = X_1 \cdots X_p$ is integrable and

$$E(X_1 \cdots X_p) = E(X_1) \cdots E(X_p)$$

Iterated integrals - Tonelli's Theorem

- Multiple Integration: Lebesgue integrals over \mathbb{R}^p defined using Lebesgue measure on \mathbb{R}^p .
- ullet Iterated integrals wrt Lebesgue measure on \mathbb{R}^1 give same answer.

Theorem (Tonelli)

If $f: \mathbb{R}^{p+q} \mapsto \mathbb{R}$ is Borel and $f \geq 0$ almost everywhere then for almost every $x \in \mathbb{R}^p$ the integral

$$g(x) \equiv \int f(x,y) dy$$

exists and

$$\int g(x)dx = \int f(x,y)dxdy$$

RHS denotes p + q dimensional integral defined previously.

Fubini's Theorem

Theorem (Fubini)

If $f: \mathbb{R}^{p+q} \mapsto \mathbb{R}$ is Borel and integrable then for almost every $x \in \mathbb{R}^p$ the integral

$$g(x) \equiv \int f(x,y) dy$$

exists and is finite. Moreover g is integrable and

$$\int g(x)dx = \int f(x,y)dxdy.$$

Results true for measures other than Lebesgue.

Conditional distributions, expectations

• When X and Y are discrete we have

$$E(Y|X=x) = \sum_{y} yP(Y=y|X=x)$$

for any x for which P(X = x) is positive.

- Defines a function of x.
- This function evaluated at X gives rv which is ftn of X denoted

$$\mathrm{E}(Y|X)$$
.

• $Y|X = x \sim \text{Binomial}(x, p)$. Since mean of a Binomial(n, p) is np we find

$$\mathrm{E}(Y|X=x)=px$$

and

$$E(Y|X) = pX$$

Notice you simply replace x by X.

Properties of conditional expectation

Here are some properties of the function

$$E(Y|X=x)$$

lacktriangle Suppose A is a function defined on the range of X. Then

$$E(A(X)Y|X=x) = A(x)E(Y|X=x)$$

and so

$$E(A(X)Y|X) = A(X)E(Y|X)$$

$$E \{E(Z|X, Y)|X\} = E(Z|X)$$
$$E \{E(Y|X)\} = E(Y)$$

Properties of conditional expectation

Additivity

$$\mathrm{E}(Y+Z|X)=\mathrm{E}(Y|X)+\mathrm{E}(Z|X)$$

• Putting the first two items together gives

$$E \{E(A(X)Y|X)\} =$$

$$E \{A(X)E(Y|X)\} = E(A(X)Y)$$
(1)

General conditional expectations

- Definition of E(Y|X) when X and Y are not assumed to discrete:
- E(Y|X) is rv which is measurable function of X satisfying (1).
- Existence is measure theory problem.
- Properties: all 4 properties still hold.

Relation to undergraduate ideas

Theorem

If X and Y have joint density and f(y|x) is conditional density then

$$E\{g(Y)|X=x\} = \int g(y)f(y|x)dy$$

provided $E(g(Y)) < \infty$.

Theorem

If X is rv and $X^* = g(X)$ is a one to one transformation of X then

$$\mathrm{E}(Y|X=x)=\mathrm{E}(Y|X^*=g(x))$$

and

$$\mathrm{E}(Y|X)=\mathrm{E}(Y|X^*)$$

Interpretation

- Formula is "obvious".
- Toss coin n = 20 times. Y is indicator of first toss is a heads. X is number of heads and X^* number of tails.
- Formula says:

$$E(Y|X = 17) = E(Y|X^* = 3)$$

Interpretation

In fact for a general k and n

$$E(Y|X=k)=\frac{k}{n}$$

SO

$$E(Y|X) = \frac{X}{n}$$

At the same time

$$E(Y|X^*=j)=\frac{n-j}{n}$$

SO

$$\mathrm{E}(Y|X^*) = \frac{n-X^*}{n}$$

• But of course $X = n - X^*$ so these are just two ways of describing the same random variable.