Queuing Theory

Richard Lockhart

Simon Fraser University

STAT 870 — Summer 2013

Purposes of Today's Lecture

- Describe general queuing theory jargon.
- Establish relation of some queues to Markov Chains.

Queuing Theory

- Ingredients of Queuing Problem:
 - Queue input process.
 - Number of servers
 - Queue discipline: first come first serve? last in first out? pre-emptive priorities?
 - Service time distribution.
- Example: Imagine customers arriving at a facility at times of a Poisson Process N with rate λ .
- This is the input process, denoted M (for Markov) in queuing literature.

3 / 15

Single server case

- Service distribution: exponential service times, rate μ .
- Queue discipline: first come first serve.
- X(t) = number of customers in line at time t.
- X is a Markov process called M/M/1 queue:

$$\mathbf{P}_{ij} = egin{aligned} & v_i = \lambda + \mu \mathbf{1}(i > 0) \ & & \\ \mathbf{P}_{ij} = egin{cases} & rac{\mu}{\mu + \lambda} & j = i - 1 \geq 0 \ & rac{\lambda}{\mu + \lambda} & j = i + 1, i > 0 \ & & \\ 1 & j = 1, i = 0 \ & \\ 0 & & \text{otherwise} \end{aligned}$$

Example: $M/M/\infty$ queue

- Customers arrive according to PP rate λ .
- Each customer begins service immediately.
- X(t) is number being served at time t.
- X is a birth and death process with

$$v_n = \lambda + n\mu$$

and

$$\mathbf{P}_{ij} = egin{cases} rac{i\mu}{i\mu+\lambda} & j=i-1 \geq 0 \ rac{\lambda}{i\mu+\lambda} & j=i+1 \ 0 & ext{otherwise} \end{cases}$$

Stationary distributions

- For M/M/1 queue:
- Solve

$$\{\lambda + \mu \mathbf{1}(n > 0)\}\pi_n = \mu \pi_{n+1} + \lambda \mathbf{1}(n > 0)\pi_{n-1}$$

• Just use general birth and death process formulation:

$$\lambda_n = \lambda \quad \mu_n = \mu 1 (n > 0)$$

SO

$$\frac{\lambda_0 \cdots \lambda_{n-1}}{\mu_1 \cdots \mu_n} = (\lambda/\mu)^n$$

and

$$\sum_{n=0}^{\infty} (\lambda/\mu)^n = 1/(1-\lambda/\mu)$$

SO

$$\pi_n = \frac{(\lambda/\mu)^n}{1 + 1/(1 - \lambda/\mu) - 1} = (1 - \lambda/\mu)(\lambda/\mu)^n$$

which is Geometric.

• Exists only if $\lambda < \mu$.

For $M/M/\infty$ queue

$$\pi_{n} \propto rac{\lambda^{n}}{\mu^{n} n!}$$

and

•

$$\sum_{n=0}^{\infty} \frac{\lambda^n}{\mu^n n!} = \exp(\lambda/\mu)$$

SO

$$\pi_n = \exp(-\lambda/\mu) \frac{\lambda^n}{\mu^n n!}$$

• Notice this exists for all $\lambda > 0$ and all $\mu > 0$.

Scope of Queuing Theory

- M/M/k queues.
 - ightharpoonup X(t) is number queued or in service.
 - ▶ Birth and Death process; death rate maxes out at $k\mu$.
 - Stationary distribution exists if $\lambda < k\mu$.
- Same input / service processes as M/M/k but customers not served leave.
- Question of interest: customers lost per time unit?
- Take X to be number in service. $(0 \le X(t) \le k)$.
- Find stationary distribution.
- Fraction of time spent in state k is π_k .
- During time in state k lose customers at rate λ .
- So lost $\pi_k \lambda$ customers per unit time.

More Queues

- **③** G/M/1 queue. General distribution of interarrival times for input. Input is a **renewal process**. Not Markov.
- M/G/1 and others.
- Networks: output of 1 queue is input of next; feedback . . .
- Quantities of potential interest:
 - Average fraction of time server idle.
 - ▶ Average time in system for customer.
 - Average wait to see server.

One example calculation: in G/M/1 queue

- Compute long run fraction time system is idle.
- Idea: interarrival times are iid with cdf G.
- Service rate μ .
- Let X_n be number of customers in service / in line when nth customer arrives.
- Claim X_n is a Markov chain.
- Example of general tactic: find simple process buried within process of interest.

Example Continued

- Notation: T_1, T_2, \cdots iid interarrival times.
- Given $X_n = i$ and $T_{n+1} = t$ number served between nth arrival and n + 1st arrival is

$$\min\{\mathsf{Poisson}(\mu t), i+1\}$$

• So: if $X_n = i$ and the Poisson variable above is j then

$$X_{n+1} = i + 1 - \min\{j, i + 1\}$$

• Now to compute prob of j served must average over T_{n+1} :

$$P(j ext{ served}) = \int e^{-\mu t} \frac{(\mu t)^j}{j!} dG(t) \equiv a_j$$

for $j \leq i + 1$.

• This gives:

$$P_{ik} = egin{cases} a_{i+1-k} & 1 \leq k \leq i+1 \ 1 - \sum_0^i a_j & k = 0 \ 0 & ext{otherwise} \end{cases}$$

Computing stationary distribution

- No particularly trivial way to compute this.
- Solve equations. For $k \ge 1$:

$$\pi_{k} = \sum_{j} \pi_{j} P_{jk}$$

$$= \sum_{j} \pi_{j} a_{j+1-k} 1 (k \le j+1)$$

$$= \int_{0}^{\infty} e^{-\mu t} \left\{ \sum_{j=k-1}^{\infty} \frac{\pi_{j} (\mu t)^{j-(k-1)}}{(j-(k-1))!} \right\} dG(t)$$

• Note that if π_i is a *j*th power the infinite sum has a closed form.

Stationary Initial Distributions Continued

- So try $\pi_i = c\beta^j$.
- Inside sum is

$$c\beta^{k-1} \times \exp{\{\beta\mu t\}}$$

so the RHS is

$$c\beta^{k-1}\int_0^\infty e^{-\mu t}e^{\mu\beta t}dG(t)$$

while the LHS is

$$c\beta^k$$

These two are equal if

$$\beta = \int_0^\infty e^{\mu t(\beta - 1)} dG(t)$$

• The LHS is a function of β which is increasing and runs from 0 to as β runs from 0 to 1.

Stationary Initial Distributions Continued

ullet The RHS is a convex function of eta and runs from

$$\int_0^\infty e^{-\mu t} dG(t)$$

at $\beta = 0$ to 1 at $\beta = 1$.

- RHS(β) is positive at $\beta = 0$ (so above the line β) and 1 at $\beta = 1$.
- If slope of RHS at 1 is more than 1 there is unique root $\beta \in (0,1)$.
- The slope at 1 is

$$\mu \int_0^\infty t dG(t)$$

which is more than 1 if the mean interarrival time

$$\int_0^\infty t dG(t)$$

is more than $1/\mu$ which is the mean service time.

• In this case there is a unique β solving the equation and we get $c=1-\beta$.

Busy and idle periods

- Renewals at times when customer arrives to find no-one in line or in service.
- Time between successive renewals called a cycle.
- Cycle composed of busy period followed by idle period.
- Want to compute fraction of time system idle.
- Want to compute fraction of time system is in state k.
- Use renewal theory ideas.

