STAT 890: Assignment 1

Instructions: In the following S, d and any S_i, d_i are separable metric spaces.

- 1. Show that if $f: S_1 \mapsto S_2$ is continuous then
 - (a) For each closed set F in S_2 the inverse image $f^{-1}(K)$ is closed in S_1 .
 - (b) For each compact set K in S_1 the forward image f(K) is compact in S_2 .
- 2. Find a continuous function from \mathbb{R} to \mathbb{R} and an open set O for which f(O) is not open. Do the same for closed.
- 3. Prove that the function

$$d(x,y) = \sup\{|x(t) - y(t)|; t \in [0,1]\}$$

on $\mathcal{C} \times \mathcal{C}$ is a metric.

Due: September 13, 2006.