Metric Spaces

Definition: A *metric space* is an ordered pair (S,d) where S is a set and d a function on $S \times S$ with the properties of a *metric*, namely:

1.
$$d(x,y) = d(y,x) \ge 0$$
.

2.
$$d(x,y) = 0$$
 iff $x = y$.

3. The triangle inequality holds:

$$d(x,z) \le d(x,y) + d(y,z)$$

for all x, y, z in S.

Definition: For r > 0 the set

$$B_r(x) = \{ y \in S : d(x, y) < r \}$$

is the *open ball* of radius r centered at x.

Definition: A subset O of S is *open* if, for every $x \in O$ there is a r > 0 such that $B_r(x) \subset O$.

Notice that the empty set \emptyset and S are open.

Definition: A subset C of S is *closed* if its complement C^c is open.

Notice that the empty set \emptyset and S are closed.

Fact: an arbitrary union of open sets is open; an arbitrary intersection of closed sets is closed.

Definition: The closure in S of a set A (denoted \overline{A}) is the intersection of all closed subsets of S containing A.

Definition: A set D is dense in S if $\overline{D} = S$.

Definition: A metric space S, d is *separable* if it has a countable dense subset.

Limits

Definition: We say

$$\lim_{x \to y} f(x) = a$$

if, for each $\epsilon > 0$ there exists $\delta > 0$ such that

$$d_1(x,y) \le \delta \Rightarrow d_2(f(x),a) \le \epsilon$$

Closed is equivalent to containing all its *limit* points.

Definition: We say x is a limit point of A if there is a sequence x_n of points in A converging to x.

Continuous Functions on Metric Spaces

In the following S_1, d_1 and S_2, d_2 are two metric spaces.

Definition: A function $f: S_1 \mapsto S_2$ is *continuous* if whenever O_2 is open in S_2 the inverse image

$$f^{-1}(O_2) = \{x \in S_1 : f(x) \in O_2\}$$

is open in S_1 .

Theorem 1 A map $f: S_1 \mapsto S_2$ is continuous iff

$$\lim_{x \to y} f(x) = f(y)$$

for all $y \in S_1$.

Proof of Theorem: Suppose f is continuous. Fix y and $\epsilon > 0$. Take $O_2 = B_{f(y)}(\epsilon)$. Then $O_1 = f^{-1}(O_2)$ is an open set containing y. This means there is a $\delta > 0$ such that $d_1(x,y) \leq \delta$ implies $x \in O_1$ which means $f(x) \in O_2$.

Conversely suppose f satisfies the given condition. Suppose O_2 is open in S_2 and let $y \in f^{-1}(O_2)$. Let z denote f(y) and note $z \in O_2$. As such there exists $\epsilon > 0$ such that $d_2(v,z) \le \epsilon$ implies $v \in O_2$. Let δ_y be the corresponding δ from the condition.

Notice that if $x \in B_{\delta_y}(y)$ then $f(x) \in O_2$. That is $x \in f^{-1}(O_2)$. Thus

$$f^{-1}(O_2) = \bigcup_{y \in f^{-1}(O_2)} \{y\}$$

$$\subset \bigcup_{y \in f^{-1}(O_2)} B_{\delta_y}(y)$$

$$\subset f^{-1}(O_2)$$

Thus $f^{-1}(O_2) = \bigcup_{y \in f^{-1}(O_2)} B_{\delta_y}(y)$ is a union of open balls, so open.

Compactness

Definition: A family $\{O_{\alpha}; \alpha \in A\}$ of open subsets of S is an *open cover* of a set K if

$$K \subset \cup_{\alpha} O_{\alpha}$$

Definition: A subset K of S is compact if every open cover of K has a finite sub cover.

Every compact set is closed.

Example proof: Suppose $x \notin K$. For each y in K let $O_y = B_{\epsilon}(y)$ with $\epsilon = d(x,y)/2$. The family $O_y, y \in K$ is an open cover of K. Let O_{y_1}, \ldots, O_{y_n} be a finite subcover. Let

$$\epsilon = \min\{d(x, y_j); 1 \le j \le n\}$$

and see that $B_{\epsilon}(x)$ has an empty intersection with each O_{y_i} by the triangle inequality. So $K \cap B_{\epsilon} = \emptyset$. The union of all these B_{ϵ} is the complement of K.

Definition: A subset K is totally bounded if, for each $\epsilon > 0$, K is contained in a finite union of balls of radius ϵ .

Theorem 2 K is compact iff K is closed and totally bounded.

Homework Problem: If f is a continuous map between S_1 and S_2 then the image f(K) of a compact set K in S_1 is compact in S_2 .

Definition: A norm, usually written $||\cdot||$ is a function on a vector space such that

1. For all
$$x$$
, $||x|| \ge 0$

2.
$$||x|| = 0$$
 iff $x = 0$.

3. ||ax|| = |a| ||x|| for each x and scalar a.

4.
$$||x + y|| \le ||x|| + ||y||$$
.

Example: The set $S = \mathbb{R}^p$ with

$$d(x,y) = ||x - y||,$$

the usual Euclidean norm, is a separable metric space.

Every closed bounded set in \mathbb{R}^p is compact.

Example: The set $\mathcal C$ consisting of all continuous functions from [0,1] to $\mathbb R$ can be made into a metric space by taking

$$d(x,y) = \sup\{|x(t) - y(t)|; t \in [0,1]\}$$

 \mathcal{C} is separable.

Use Weierstrass theorem to show that the set of polynomials is dense in C.

Then show that polynomials with rational coefficients are dense in the set of all polynomials.

Definition: A sequence x_n is **Cauchy** in S,d if: for each $\epsilon > 0$ there is an N such that $n \geq N$ and $m \geq N$ implies

$$d(x_n, x_m) \le \epsilon$$

Definition: A metric space S, d is **complete** if every Cauchy sequence in S has a limit in S.

Fact: Ordinary Euclidean spaces \mathbb{R}^p are complete.

Fact: C([0,1]) is complete for the uniform distance.