Probability Definitions

Probability Space: ordered triple (Ω, \mathcal{F}, P) .

- Ω is a set (possible outcomes); elements are ω called elementary outcomes.
- \mathcal{F} is a family of subsets (**events**) of Ω with the property that \mathcal{F} is a σ -field (or σ -algebra):
 - 1. Empty set \emptyset and Ω are members of \mathcal{F} .
 - 2. $A \in \mathcal{F}$ implies $A^c = \{\omega \in \Omega : \omega \notin A\} \in \mathcal{F}$.
 - 3. A_1, A_2, \cdots in \mathcal{F} implies $A = \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

- P a function, domain \mathcal{F} , range a subset of [0,1] satisfying:
 - 1. $P(\emptyset) = 0$ and $P(\Omega) = 1$.
 - 2. Countable additivity: A_1, A_2, \cdots pairwise disjoint $(j \neq k \ A_j \cap A_k = \emptyset)$

$$P(\cup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

Axioms guarantee can compute probabilities by usual rules, including approximation.

Consequences of axioms:

$$A_i \in \mathcal{F}; i = 1, 2, \cdots \text{ implies } \cap_i A_i \in \mathcal{F}$$
 $A_1 \subset A_2 \subset \cdots \text{ implies } P(\cup A_i) = \lim_{n \to \infty} P(A_n)$ $A_1 \supset A_2 \supset \cdots \text{ implies } P(\cap A_i) = \lim_{n \to \infty} P(A_n)$

Power set of any set A is a σ -field on A.

Intersection of arbitrary collection of σ -fields is σ -field.

In metric space S:

Borel σ -field in S: smallest σ -field in S containing every open ball.

Every common set is a Borel set, that is, in the Borel σ -field.

An S valued **random variable** is a map X: $\Omega \mapsto S$ such that when A is Borel then $\{\omega \in \Omega : X(\omega) \in A\} \in \mathcal{F}$.

Fact: this is equivalent to

$$\{\omega \in \Omega : X(\omega) \in O\} \in \mathcal{F}$$

for all O open in S.

Jargon and notation:

Write
$$P(X \in A)$$
 for $P(\{\omega \in \Omega : X(\omega) \in A\})$

Definition: The **distribution** of X is the map

$$A \mapsto P(X \in A)$$

This is a probability on the set S with the Borel σ -field rather than the original Ω and \mathcal{F} .