Convergence in Distribution

Undergraduate version of central limit theorem: if X_1, \ldots, X_n are iid from a population with mean μ and standard deviation σ then $n^{1/2}(\bar{X}-\mu)/\sigma$ has approximately a normal distribution.

Also Binomial(n, p) random variable has approximately a N(np, np(1-p)) distribution.

Precise meaning of statements like "X and Y have approximately the same distribution"?

Desired meaning: X and Y have nearly the same cdf.

But care needed.

Q1) If n is a large number is the N(0, 1/n) distribution close to the distribution of $X \equiv 0$?

Q2) Is N(0,1/n) close to the N(1/n,1/n) distribution?

Q3) Is N(0,1/n) close to $N(1/\sqrt{n},1/n)$ distribution?

Q4) If $X_n \equiv 2^{-n}$ is the distribution of X_n close to that of $X \equiv 0$?

Answers depend on how close close needs to be so it's a matter of definition.

In practice the usual sort of approximation we want to make is to say that some random variable X, say, has nearly some continuous distribution, like N(0,1).

So: want to know probabilities like P(X > x) are nearly P(N(0,1) > x).

Real difficulty: case of discrete random variables or infinite dimensions: not done in this course.

Mathematicians' meaning of close:

Either they can provide an upper bound on the distance between the two things or they are talking about taking a limit.

In this course we take limits and use metrics.

Definition: A sequence of random variables X_n taking values in a separable metric space S,d converges in distribution to a random variable X if

$$E(g(X_n)) \to E(g(X))$$

for every bounded continuous function g mapping S to the real line.

Notation: $X_n \Rightarrow X$.

Remark: This is abusive language. It is the distributions that converge not the random variables.

Example: If U is Uniform and $X_n = U$, X = 1 - U then X_n converges in distribution to X.

Other Jargon: weak convergence, weak* convergence, convergence in law.

General Properties:

If $X_n \Rightarrow X$ and h is continuous from S_1 to S_2 then

$$Y_n = h(X_n) \Rightarrow Y = h(X)$$

Theorem 1 (Slutsky) If $X_n \Rightarrow X$, $Y \Rightarrow y_o$ and h is continuous from $S_1 \times S_2$ to S_3 at x, y_o for each x then

$$Z_n = h(X_n, Y_n) \Rightarrow Z = h(X, y)$$

We will begin by specializing to simplest case: S is the real line and d(x,y) = |x-y|. In the following we suppose that X_n, X are real valued random variables.

Theorem 2 The following are equivalent:

- 1. X_n converges in distribution to X.
- 2. $P(X_n \le x) \to P(X \le x)$ for each x such that P(X = x) = 0.
- 3. The limit of the characteristic functions of X_n is the characteristic function of X:

$$E(e^{itX_n}) \to E(e^{itX})$$

for every real t.

These are all implied by

$$M_{X_n}(t) \to M_X(t) < \infty$$

for all $|t| \le \epsilon$ for some positive ϵ .

Now let's go back to the questions I asked:

• $X_n \sim N(0, 1/n)$ and X = 0. Then

$$P(X_n \le x) \to \begin{cases} 1 & x > 0 \\ 0 & x < 0 \\ 1/2 & x = 0 \end{cases}$$

Limit is cdf of X=0 except for x=0; cdf of X is not continuous at x=0. So: $X_n \Rightarrow X$.

• Does $X_n \sim N(1/n,1/n)$ have distribution close that of $Y_n \sim N(0,1/n)$. Find a limit X and prove both $X_n \Rightarrow X$ and $Y_n \Rightarrow X$. Take X=0. Then

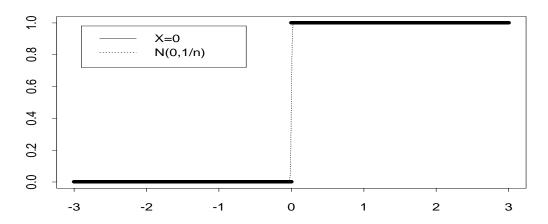
$$E(e^{tX_n}) = e^{t/n + t^2/(2n)} \to 1 = E(e^{tX})$$

and

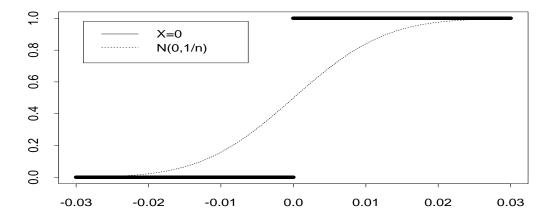
$$E(e^{tY_n}) = e^{t^2/(2n)} \to 1$$

so that both X_n and Y_n have the same limit in distribution.

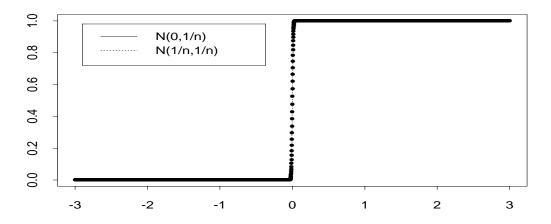
N(0,1/n) vs X=0; n=10000



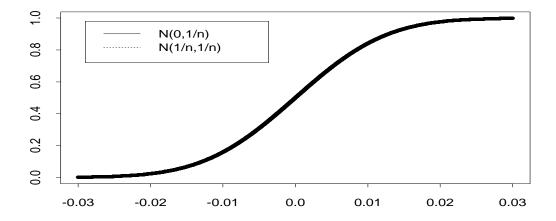
N(0,1/n) vs X=0; n=10000



N(1/n, 1/n) vs N(0, 1/n); n=10000

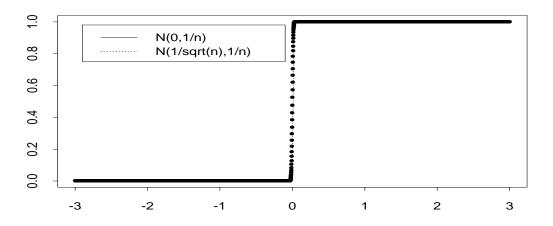


N(1/n, 1/n) vs N(0, 1/n); n=10000

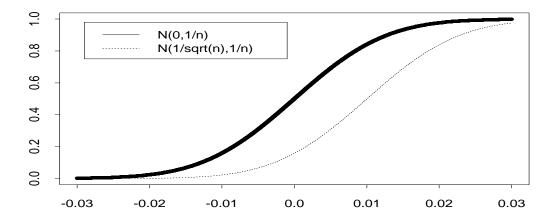


- Multiply both X_n and Y_n by $n^{1/2}$ and let $X \sim N(0,1)$. Then $\sqrt{n}X_n \sim N(n^{-1/2},1)$ and $\sqrt{n}Y_n \sim N(0,1)$. Use characteristic functions to prove that both $\sqrt{n}X_n$ and $\sqrt{n}Y_n$ converge to N(0,1) in distribution.
- If you now let $X_n \sim N(n^{-1/2}, 1/n)$ and $Y_n \sim N(0, 1/n)$ then again both X_n and Y_n converge to 0 in distribution.
- If you multiply X_n and Y_n in the previous point by $n^{1/2}$ then $n^{1/2}X_n \sim N(1,1)$ and $n^{1/2}Y_n \sim N(0,1)$ so that $n^{1/2}X_n$ and $n^{1/2}Y_n$ are **not** close together in distribution.
- You can check that $2^{-n} \rightarrow 0$ in distribution.

N(1/sqrt(n),1/n) vs N(0,1/n); n=10000



N(1/sqrt(n),1/n) vs N(0,1/n); n=10000



Summary: to derive approximate distributions:

Show sequence of rvs X_n converges weakly to some X.

The limit distribution (i.e. dstbn of X) should be non-trivial, like say N(0,1).

Don't say: X_n is approximately N(1/n, 1/n).

Do say: $n^{1/2}(X_n - 1/n)$ converges to N(0,1) in distribution.

The Central Limit Theorem

Theorem 3 If X_1, X_2, \cdots are iid with mean 0 and variance 1 then $n^{1/2}\bar{X}$ converges in distribution to N(0,1). That is,

$$P(n^{1/2}\bar{X} \le x) \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$$
.

Proof: We will show

$$E(e^{itn^{1/2}\bar{X}}) \to e^{-t^2/2}$$
.

This is the characteristic function of N(0,1) so we are done by our theorem.

Some basic facts:

If $Z \sim N(0,1)$ then

$$\mathsf{E}\left(e^{itZ}\right) = e^{-t^2/2}$$

Theorem 4 If X is a real random variable with $\mathsf{E}(|X|^k) < \infty$ then the function

$$\psi(t) = \mathsf{E}\left(e^{itX}\right)$$

has k continuous derivatives as a function of the real variable t. (Real part and imaginary part each have that many derivatives.) Moreover for $1 \le j \le k$ we find

$$\psi^{(j)}(t) = i^k \mathsf{E}\left(X^k e^{itX}\right)$$

Theorem 5 (Taylor Expansion) For such an X:

$$\psi(t) = 1 + \sum_{j=1}^{k} i^{j} E(X^{j}) t^{j} / j! + R(t)$$

where the remainder function R(t) satisfies

$$\lim_{t \to 0} R(t)/t^k = 0$$

Finish proof: let $\psi(t) = \mathsf{E}(\exp(itX_1))$:

$$\mathsf{E}(e^{it\sqrt{n}\bar{X}}) = \psi^n(t/\sqrt{n})$$

Since variance is 1 and mean is 0:

$$\psi(t) = 1 - t^2/2 + R(t)$$

where $\lim_{t\to 0} R(t)/t^2 = 0$.

Fix t, replace t by t/\sqrt{n} :

$$\psi^n(t/\sqrt{n}) = 1 - t^2/(2n) + R(t/\sqrt{n})$$

Define $x_n = -t^2/2 + 2nR(t/\sqrt{n})$.

Notice $x_n \to -t^2/2$ (by property of R) and use $x_n \to x$ implies

$$(1+x_n/n)^n \to e^x$$

valid for all complex x.

Get

$$E(e^{itn^{1/2}\bar{X}}) \to e^{-t^2/2}$$
.

to finish proof.

Proof of Theorem 4: do case k = 1.

Must show

$$\lim_{h \to 0} \frac{\psi(t+h) - \psi(t)}{h} = i \mathsf{E}(Xe^{itX})$$

But

$$\frac{\psi(t+h) - \psi(t)}{h} = \mathsf{E}\left[\frac{e^{i(t+h)X} - e^{itX}}{h}\right]$$

Fact:

$$\left| \frac{e^{i(t+h)X} - e^{itX}}{h} \right| \le |X|$$

for any t. By Dominated Convergence Theorem can take limit inside integral to get

$$\psi'(t) = i \mathsf{E}(Xe^{itX})$$

Multivariate convergence in distribution

Definition: $X_n \in \mathbb{R}^p$ converges in distribution to $X \in \mathbb{R}^p$ if

$$E(g(X_n)) \to E(g(X))$$

for each bounded continuous real valued function g on \mathbb{R}^p .

This is equivalent to either of

Cramér Wold Device: $a^T X_n$ converges in distribution to $a^T X$ for each $a \in \mathbb{R}^p$.

or

Convergence of characteristic functions:

$$E(e^{ia^TX_n}) \to E(e^{ia^TX})$$

for each $a \in \mathbb{R}^p$.

Extensions of the CLT

- 1. Y_1, Y_2, \cdots iid in R^p , mean μ , variance Σ then $n^{1/2}(\bar{Y} \mu) \Rightarrow MVN(0, \Sigma)$.
- 2. Lyapunov CLT: for each n X_{n1}, \ldots, X_{nn} independent rvs with

$$E(X_{ni}) = 0 \tag{1}$$

$$Var(\sum_{i} X_{ni}) = 1 \tag{2}$$

$$\sum_{i} E(|X_{ni}|^3) \to 0 \tag{3}$$

then $\sum_i X_{ni} \Rightarrow N(0,1)$.

3. Lindeberg CLT: If conds (1), (2) and

$$\sum E(X_{ni}^2 1(|X_{ni}| > \epsilon)) \to 0$$

each $\epsilon > 0$ then $\sum_{i} X_{ni} \Rightarrow N(0,1)$. (Lyapunov's condition implies Lindeberg's.)

- 4. Non-independent rvs: m-dependent CLT, martingale CLT, CLT for mixing processes.
- 5. Not sums: Slutsky's theorem, δ method.

Slutsky's Theorem in \mathbb{R}^p : If $X_n \Rightarrow X$ and Y_n converges in distribution (or in probability) to c, a constant, then $X_n + Y_n \Rightarrow X + c$. More generally, if f(x,y) is continuous then $f(X_n, Y_n) \Rightarrow f(X, c)$.

Warning: hypothesis that limit of Y_n constant is essential.

Definition: $Y_n \to Y$ in probability if $\forall \epsilon > 0$:

$$P(d(Y_n, Y) > \epsilon) \to 0$$
.

Fact: for Y constant convergence in distribution and in probability are the same.

Always convergence in probability implies convergence in distribution.

Both are weaker than almost sure convergence:

Definition: $Y_n \to Y$ almost surely if

$$P(\{\omega \in \Omega : \lim_{n \to \infty} Y_n(\omega) = Y(\omega)\}) = 1.$$

Theorem 6 (The delta method) Suppose:

- Sequence $Y_n \to y$, a constant.
- If $X_n = a_n(Y_n y)$ then $X_n \Rightarrow X$ for some random variable X.
- f is ftn defined on a neighbourhood of $y \in \mathbb{R}^p$ which is differentiable at y.

Then $a_n(f(Y_n)-f(y))$ converges in distribution to f'(y)X.

If $X_n \in \mathbb{R}^p$ and $f : \mathbb{R}^p \mapsto \mathbb{R}^q$ then f' is $q \times p$ matrix of first derivatives of components of f.

Proof: The function $f: \mathbb{R}^q \to \mathbb{R}^p$ is differentiable at $y \in \mathbb{R}^q$ if there is a matrix Df such that

$$\lim_{h \to 0} \frac{f(y+h) - f(y) - Dfh}{||h||} = 0$$

that is, for each $\epsilon > 0$ there is a $\delta > 0$ such that $||h|| \leq \delta$ implies

$$||f(y+h) - f(y) - Dfh|| \le \epsilon ||h||.$$

Define

$$R_n = a_n(f(Y_n) - f(y)) - a_n Df(Y_n - y)$$

and

$$S_n = a_n Df(Y_n - y) = DfX_n$$

According to Slutsky's theorem

$$S_n \Rightarrow DfX$$

If we now prove $R_n \Rightarrow 0$ then by Slutsky's theorem we find

$$a_n(f(Y_n) - f(y)) = S_n + R_n \Rightarrow DfX$$

Now fix $\epsilon_1, \epsilon_2 > 0$. I claim there is K so big that for all n

$$P(B_n) \equiv P(||a_n(Y_n - y)|| > K) \le \epsilon_1.$$

Let $\delta > 0$ be the value in the definition of derivative corresponding to ϵ_2/K . Choose N so large that $n \geq N$ implies $K/a_n \leq \delta$.

For $n \geq N$ we have

$$\{||a_n(Y_n - y)|| > K\} \supset \{||Y_n - y|| > \delta\}$$
$$\supset \{||R_n|| > \epsilon_2\}$$

so that $n \geq N$ implies

$$P(||R_n|| > \epsilon_2) \le \epsilon_1$$

which means $R_n \to 0$ in probability.

Example: Suppose X_1, \ldots, X_n are a sample from a population with mean μ , variance σ^2 , and third and fourth central moments μ_3 and μ_4 . Then

$$n^{1/2}(s^2 - \sigma^2) \Rightarrow N(0, \mu_4 - \sigma^4)$$

where \Rightarrow is notation for convergence in distribution. For simplicity I define $s^2 = \overline{X^2} - \overline{X}^2$.

How to apply δ method:

1) Write statistic as a function of averages:

Define

$$W_i = \left[\begin{array}{c} X_i^2 \\ X_i \end{array} \right] .$$

See that

$$\bar{W}_n = \left[\begin{array}{c} \overline{X^2} \\ \overline{X} \end{array} \right]$$

Define

$$f(x_1, x_2) = x_1 - x_2^2$$

See that $s^2 = f(\bar{W}_n)$.

2) Compute mean of your averages:

$$\mu_W \equiv \mathsf{E}(\bar{W}_n) = \left[\begin{array}{c} \mathsf{E}(X_i^2) \\ \mathsf{E}(X_i) \end{array} \right] = \left[\begin{array}{c} \mu^2 + \sigma^2 \\ \mu \end{array} \right].$$

3) In δ method theorem take $Y_n = \overline{W}_n$ and $y = \mathsf{E}(Y_n)$.

- 4) Take $a_n = n^{1/2}$.
- 5) Use central limit theorem:

$$n^{1/2}(Y_n - y) \Rightarrow MVN(0, \Sigma)$$

where $\Sigma = Var(W_i)$.

6) To compute Σ take expected value of

$$(W-\mu_W)(W-\mu_W)^T$$

There are 4 entries in this matrix. Top left entry is

$$(X^2 - \mu^2 - \sigma^2)^2$$

This has expectation:

$$\mathsf{E}\left\{ (X^2 - \mu^2 - \sigma^2)^2 \right\} = \mathsf{E}(X^4) - (\mu^2 + \sigma^2)^2.$$

Using binomial expansion:

$$E(X^{4}) = E\{(X - \mu + \mu)^{4}\}$$

$$= \mu_{4} + 4\mu\mu_{3} + 6\mu^{2}\sigma^{2}$$

$$+ 4\mu^{3}E(X - \mu) + \mu^{4}.$$

So

$$\Sigma_{11} = \mu_4 - \sigma^4 + 4\mu\mu_3 + 4\mu^2\sigma^2$$

Top right entry is expectation of

$$(X^2 - \mu^2 - \sigma^2)(X - \mu)$$

which is

$$E(X^3) - \mu E(X^2)$$

Similar to 4th moment get

$$\mu_3 + 2\mu\sigma^2$$

Lower right entry is σ^2 .

So

$$\Sigma = \begin{bmatrix} \mu_4 - \sigma^4 + 4\mu\mu_3 + 4\mu^2\sigma^2 & \mu_3 + 2\mu\sigma^2 \\ \mu_3 + 2\mu\sigma^2 & \sigma^2 \end{bmatrix}$$

7) Compute derivative (gradient) of f: has components $(1,-2x_2)$. Evaluate at $y=(\mu^2+\sigma^2,\mu)$ to get

$$a^T = (1, -2\mu)$$
.

This leads to

$$n^{1/2}(s^2 - \sigma^2) \approx$$

$$n^{1/2}[1, -2\mu] \begin{bmatrix} \overline{X^2} - (\mu^2 + \sigma^2) \\ \overline{X} - \mu \end{bmatrix}$$

which converges in distribution to

$$(1,-2\mu)MVN(0,\Sigma)$$
.

This rv is $N(0, a^T \Sigma a) = N(0, \mu_4 - \sigma^4)$.

Alternative approach worth pursuing. Suppose c is constant.

Define $X_i^* = X_i - c$.

Then: sample variance of X_i^* is same as sample variance of X_i .

Notice all central moments of X_i^* same as for X_i . Conclusion: no loss in $\mu = 0$. In this case:

$$a^T = (1,0)$$

and

$$\Sigma = \left[\begin{array}{cc} \mu_4 - \sigma^4 & \mu_3 \\ \mu_3 & \sigma^2 \end{array} \right] .$$

Notice that

$$a^T \Sigma = [\mu_4 - \sigma^4, \mu_3]$$

and

$$a^T \Sigma a = \mu_4 - \sigma^4.$$

Special case: if population is $N(\mu, \sigma^2)$ then $\mu_3 = 0$ and $\mu_4 = 3\sigma^4$. Our calculation has

$$n^{1/2}(s^2 - \sigma^2) \Rightarrow N(0, 2\sigma^4)$$

You can divide through by σ^2 and get

$$n^{1/2}(\frac{s^2}{\sigma^2}-1) \Rightarrow N(0,2)$$

In fact ns^2/σ^2 has a χ^2_{n-1} distribution and so the usual central limit theorem shows that

$$(n-1)^{-1/2}[ns^2/\sigma^2 - (n-1)] \Rightarrow N(0,2)$$

(using mean of χ_1^2 is 1 and variance is 2).

Factor out n to get

$$\sqrt{\frac{n}{n-1}}n^{1/2}(s^2/\sigma^2-1)+(n-1)^{-1/2} \Rightarrow N(0,2)$$

which is δ method calculation except for some constants.

Difference is unimportant: Slutsky's theorem.

Extending the ideas to higher dimensions.

$$W_1, W_2, \cdots$$
 iid

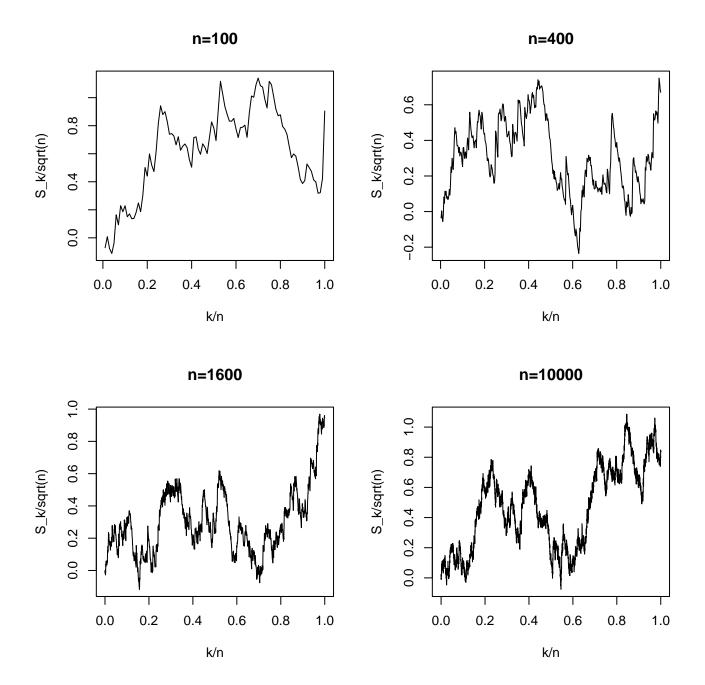
Density $f(x) = \exp(-(x+1))1(x > -1)$ Mean 0 – shifted exponential.

Set
$$S_k = W_1 + \cdots + W_k$$

Plot against k for k = 1..n.

Label x axis to run from 0 to 1.

Rescale vertical axes to fit in square.



Proof: of Slutsky's Theorem:

First: why is it true?

If $X_n \Rightarrow X$ and $Y_n \Rightarrow y$ then we will show $(X_n, Y_n) \Rightarrow (X, y)$.

Point is that joint law of X,y is determined by marginal laws!

Once this is done then

$$\mathsf{E}(h(X_n,Y_n)) \to \mathsf{E}(h(X,y))$$

by definition.

Note: You don't need continuity for all x, y but I will do only easy case.

Definition: A family $\{P_{\alpha}, \alpha \in A\}$ of probability measures on (S,d) is tight if for each $\epsilon > 0$ there is a K compact in S such that for every $\alpha \in A$

$$P(K) \ge 1 - \epsilon$$

Theorem 7 If S is a complete separable metric space then each probability measure P on the Borel sets in S is tight.

Proof: Let x_1, x_2, \cdots be dense in S.

For each n draw balls $B_{n,n}, B_{n,2}, \cdots$ of radius 1/n around x_1, x_2, \ldots

Each point in S is in one of these balls because the x_i sequence is dense. That is:

$$S = \bigcup_{j=1}^{\infty} B_{n,j}$$

Thus

$$1 = P(S) = \lim_{J \to \infty} P\left(\bigcup_{j=1}^{J} B_{n,j}\right)$$

Pick J_n so large that

$$P\left(\bigcup_{j=1}^{J_n} B_{n,j}\right) \ge 1 - \epsilon/2^n$$

Let F_n be the closure of $\bigcup_{j=1}^{J_n} B_{n,j}$.

Let $K = \bigcap_{n=1}^{\infty} F_n$. I claim K is compact and has probability at least $1 - \epsilon$.

First

$$P(K) = 1 - P(K^{c})$$

$$= 1 - P\left(\bigcup F_{n}^{c}\right)$$

$$\geq 1 - \sum P(F_{n}^{c})$$

$$\geq 1 - \sum \epsilon/2^{n}$$

$$= 1 - \epsilon$$

(Incidentally you see that K is not empty!)

Second: K closed (intersection of closed sets).

Third: K is totally bounded since each F_n is a cover of K by (closed) balls of radius 1/n.

So K is compact.

Theorem 8 If X_n converge in distribution to some X in a complete separable metric space S then the sequence X_n is tight.

Conversely:

Theorem 9 If the sequence X_n is tight then every subsequence is also tight. There is a subsequence X_{n_k} and a random variable X such that as $k \to \infty$

$$X_{n_k} \Rightarrow X$$
.

Theorem 10 If there is a rv X such that every subsequence of X_n has a further subsubsequence converging in distribution to X then $X_n \Rightarrow X$.

Proof of Theorem 9: do \mathbb{R}^p .

First assertion obvious. Let x_1, x_2, \ldots be dense in \mathbb{R}^p . Find sequence $n_{1,1} < n_{1,2} < \cdots$ such that the sequence $F_{n_{1,k}}(x_1)$ has a limit which we denote y_1 .

Exists because probabilities trapped in [0,1]. (Bolzano-Weierstrass).

Pick $n_{2,1} < n_{2,2} < \cdots$ a subsequence of the $n_{1,k}$ such that $F_{n_{2,k}}(x_2)$ has a limit which we denote y_2 .

Continue picking subsequence $n_{m+1,k}$ from the sequence $n_{m,k}$ so that $F_{n_{m+1,k}}(x_{m+1})$ has a limit which we denote y_{m+1} .

Trick: **Diagonalization**.

Consider the sequence

$$n_{1,1} < n_{2,2} < \cdots$$

After the kth entry all remaining are a subsequence of the kth subsequence $n_{k,j}$. So

$$\lim_{k \to \infty} F_{n_{k,k}}(x_j) = y_j$$

for each j.

Idea: would like to define $F_X(x_j) = y_j$ but that might not give cdf. Instead set $F_X(x) = \inf\{y_j : x_j > x\}$.

Next: prove F_X is cdf.

Then prove subsequence converges to F_X .