Tweet This Book!

Please help Luc P. Beaudoin by spreading the word about this book on Twitter!

The suggested tweet for this book is:

I just bought the book Cognitive Productivity by Luc Beaudoin of CogZest!

The suggested hashtag for this book is #CognitiveProductivity.

Find out what other people are saying about the book by clicking on this link to search for this hashtag on Twitter:

https://twitter.com/search?q=#CognitiveProductivity
In memory of Pierre-Elliot Trudeau, Sir Winston Churchill, Jacques Brel and their cognitive zest.
Contents

List of Figures ... i
Preface ... iii
Acknowledgements .. vi

I Challenges and opportunities .. 1

1. Introduction .. 2
 1.1 Broad cognitive science ... 6
 1.2 Updating how we think about knowledge and ourselves 10
 1.2.1 The designer stance .. 13
 1.2.2 Mindware .. 15
 1.2.3 Adult mental development .. 16
 1.2.4 Effectance: motivation for competence .. 17
 1.2.5 Meta-effectiveness ... 18
 1.3 Example knowledge resources referenced in this book 19
 1.3.1 Keith Stanovich (2009). What Intelligence Tests Miss: The Psychology
 of Rational Thought ... 20
 1.3.2 John Gottman: Seven Principles for Making Marriage Work and
 The Relationship Cure .. 21
 1.3.3 Ries (2011): The Lean Startup .. 23
 1.3.4 The work of Aaron Sloman and other cognitive scientists 24
 1.4 Three vignettes: Disasters avertable by applying knowledge 24
 1.4.1 Being taken to the trough but choosing not to partake 25
 1.4.2 The applied science of marital failure .. 27
 1.4.3 Project failures ... 27
 1.5 The imperative of meta-effectiveness .. 28
 1.6 Overview of this book ... 29

2. Psychological contributors to effectiveness ... 32
 2.1 Effectiveness: The master objective ... 34
 2.2 Mastering objective knowledge ... 35
 2.2.1 Developing implicit understanding ... 37
CONTENTS

2.3 Developing skills ... 39
2.4 Mastering norms ... 40
2.5 Developing attitudes ... 42
2.6 Developing propensities, habits and other dispositions 43
2.7 Developing mentally ... 46
2.8 Countering cognitive aging .. 47
2.9 Becoming more meta-effective .. 48
2.10 Back to the top: Excelling .. 49

3. Challenges to meta-effectiveness .. 50
 3.1 Information technology: Lack of support for cognitive productivity . 52
 3.1.1 Tools designed for surfing, not delving 52
 3.1.2 Inadequate support for annotation 53
 3.1.3 The need to annotate entire resources 54
 3.1.4 The need for synchronized annotation services 55
 3.1.5 Where's the productive practice app? 59
 3.1.6 Where's the glossary manager and instiller? 60
 3.1.7 Drawbacks of smartphones and tablets 61
 3.1.8 Conclusion .. 62
 3.2 Challenging circumstances .. 62
 3.2.1 Demands on our time .. 62
 3.2.2 Sequestered and ill-presented information 63
 3.2.3 Cognitive productivity training 64
 3.3 Psychological challenges .. 67
 3.3.1 Cognitive science in the realm of knowledge work 67
 3.3.2 Illusions of meta-effectiveness 68
 3.3.2.1 Illusions of helpfulness of information 69
 3.3.2.2 Illusions of comprehension 70
 3.3.2.3 Illusions of (future) recall 71
 3.3.2.4 Illusions of rationality: transfer reframed 74
 3.3.3 Cognitive miserliness and its antagonists 77
 3.3.3.1 Effectance as a propensity to develop competence 79
 3.3.3.2 Perceived self-efficacy ... 83
 3.3.4 Cognitive aging ... 85
 3.3.5 Distractibility and the mind’s design 85

II Cognitive science ... 87

4. Introduction to Part 2 .. 88

5. Your mind and its wares (the mind’s design) 89
 5.1 Overview ... 90
 5.2 Functional characterization ... 93
5.2.1 Reactive mechanisms ... 93
5.2.2 Internal Motivators ... 94
5.2.3 Management processes (Deliberative processes) 96
5.2.4 Motive generators .. 97
5.2.5 Meta-management ... 99
5.2.6 Interrupt filters and perturbation (tertiary emotions) 101
5.2.7 Alarm systems and emotions 103
5.2.8 Long-term memory abilities 107
5.2.9 (Short-term) working memory 109
5.2.10 Long-term working memory 110
5.3 Microcognition: Monitors, parallelism and mental reflexes 113

6. Adult mental development ... 119
6.1 Objective knowledge (World 3), virtual machines (World 2’) and the rest (World 1) . 121
 6.1.1 Mindware as World 2’: Virtual machinery 123
6.2 Understanding understanding 125
6.3 Developing monitors .. 127
6.4 Developing motivators ... 129
6.5 Developing long-term working memory 132
6.6 Developing representational machinery 135
 6.6.1 Growth of component processes 137
 6.6.2 Taking child and adult development seriously 139
 6.6.2.1 Some phenomena that highlight mental representations 139
 6.6.2.2 Representational redescription (RR) 142
 6.6.3 RR in reverse: The problem of instilling mindware 146

7. Deliberate practice: A source of effectiveness 150
7.1 Practice enhances factual learning and memory 151
 7.1.1 Practicing slows forgetting 152
 7.1.2 Practicing trumps reviewing 153
 7.1.3 Spacing practice potentiates the effects of testing 154
 7.1.4 Many learners underestimate and shun deliberate practice 155
 7.1.5 Why practicing works: Explanations of test-enhanced learning . 156
7.2 Developing cognitive skills with practice 161
 7.2.1 Three phases of cognitive skill acquisition 161
7.3 Deliberate practice and expertise 163
 7.3.1 K. Anders Ericsson’s theory of the development of expertise .. 164
 7.3.2 Beyond Ericsson’s theory of expertise 166
7.4 Reflective practice and deliberate performance 168
7.5 Enter productive practice 170
III Solutions ... 173

8. Introduction to Part 3 174

9. Learn your way around your R&D 177
 9.1 Learn your way around levels of processing 178
 9.2 Learn your way around your meta-information 186
 9.2.1 Appreciate the meta-access problem 189
 9.2.2 Address the meta-access problem 189
 9.3 Learn your way around your R&D projects and activities 193
 9.3.1 Identify your projects 197
 9.3.2 Classify your R&D tasks 199

10. Inspect .. 204

11. Assess ... 206
 11.1 About Assessment 208
 11.2 CUPA: Caliber, utility, potency and appeal 211
 11.3 C: Gauge its caliber 212
 11.3.1 Rhetorical and rational compellingness 213
 11.3.2 General epistemic criteria 214
 11.3.3 Assessing explanatory theories 216
 11.4 U: Gauge its usefulness 218
 11.5 P: Gauge its potency 220
 11.5.1 Potency as the potential for mental development 222
 11.6 A: Gauge its appeal and analyze your intuitions 225
 11.7 CUPA: Helpful information 228
 11.8 Other minds: Their recommendations, reviews and commentary 229

12. Delve ... 231
 12.1 Effective delving 231
 12.2 Annotation concepts and tools 233
 12.3 Tag entire resources 235
 12.4 Tag snips of text and images 240
 12.5 Write meta-docs 246
 12.5.1 An elaborate meta-doc template 248
 12.6 A template for conceptual understanding 254
 12.7 Quickly create and access meta-docs 260
 12.8 Delve ebooks, audio and other media 262
 12.8.1 Delve audio on the go 262
 12.8.2 Delve e-books 264
 12.8.3 Delve other media on your computer 266
 12.8.4 Productive laziness (cognitive parsimony) 267
 12.9 Computer monitors and other hardware 268
CONTENTS

13. Productive practice: A master maker ... 271
 13.1 Productive practice in a nutshell ... 271
 13.2 An example: Learning the motive generator concept 274
 13.3 Co-opt flashcard software .. 276
 13.4 Capture and instillerize ... 280
 13.5 Design Instillers ... 281
 13.5.1 Instiller types and challenge templates .. 281
 13.5.2 Grow your understanding ... 284
 13.5.3 Divide and conquer ... 285
 13.5.4 RD cue mnemonic system: From free recall to cued recall 288
 13.5.5 Instiller design rules ... 291
 13.6 Practice with these general considerations in mind 292
 13.6.1 Set your practice time ... 293
 13.6.2 Respond to challenges ... 294
 13.6.3 Be efficient and effective .. 298

14. Practice productively .. 300
 14.1 Aim for effectiveness with knowledge: Rationality and transfer 300
 14.2 Grow monitors through review and reflection .. 301
 14.3 Master concepts and vocabulary .. 303
 14.3.1 Some basic distinctions ... 305
 14.3.2 Structure concept instillers ... 306
 14.3.3 Instill mindware about mindware, for example 308
 14.3.4 Develop effective (affective) bid monitors .. 309
 14.4 Master collections of information .. 312
 14.4.1 Apply the RD cue system .. 315
 14.5 Develop propensities to apply rules: Self-regulate with productive practice 318
 14.5.1 Consider the opposite .. 319
 14.5.2 Andon cord ... 321
 14.5.3 Avoid harsh startups with your new mindware 323
 14.6 Develop attitudes ... 326

IV Conclusion .. 329

15. Meta-effectiveness framework and clinical psychology 330
 15.1 The pertinence of psychotherapy concepts and methods to meta-effectiveness 331
 15.2 The practical relevance of meta-effectiveness to psychotherapy 332
 15.3 H-CogAff (mental architecture) and ACT as complementary 333

16. Delve and instill the knowledge of your choice .. 336

References .. 337
List of Figures

Figure 1.1	Processing knowledge for effectiveness
Figure 2.1	Uses of Information
Figure 5.1	H-CogAff (Human Mental Architecture)
Figure 5.2	Internal Motivators
Figure 5.3	Sloman’s depiction of Jerry Fodor’s modular architecture as sunflower-like
Figure 6.1	Developing Motivators
Figure 6.2	Microdevelopment (Beyond Modularity)
Figure 9.1	Levels of Information Processing
Figure 9.2	The Information to Effectiveness Funnel
Figure 9.3	Shallow vs. Deep Processing
Figure 9.4	A Focal Resource and its Meta-Information
Figure 9.5	Sample Areas of Responsibility
Figure 9.6	Example Development Activities as OmniFocus Contexts
Figure 9.7	R&D activities (surf, process, develop) as OmniFocus contexts
Figure 9.8	OmniFocus Task Capture
Figure 12.1	Mavericks Tag Input Window
Figure 12.2	OmniFocus Project View for this Book
Figure 12.3	A Portion of a Meta-doc
Figure 12.4	An Example Empty Meta-doc
Figure 12.5	A Template for Understanding Concepts
Figure 12.6	Schematic of Notational Velocity User Interface
Figure 12.7	Example Transcription in Scrivener
Figure 14.1	Cue Overload
Figure 14.2	RD Cue for Avoiding Harsh-Startups

Cognitive Productivity: Using Knowledge to Become Profoundly Effective Published by CogZest⁴ of British Columbia.

Prior to 2014-07-10, this book was published as *Cognitive Productivity: The Art and Science of Using Knowledge to Become Profoundly Effective*.

Release notes for this book (errata of previous revisions) are published on the CogZest website².

If you discover an error in this book please email cz-info@cogzest.com about it.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe. Mac OS®, iPod®, iPhone®, iPad®, and Applescript®, iBooks® are registered trademarks of Apple® Inc. registered in the U.S. and other countries. App Store is a service mark of Apple Inc. GTD® and Getting Things Done® are registered trademarks of David Allen & Co. OmniFocus®, OmniOutliner®, and OmniGraffle® are trademarks of OmniGroup®. RIM and Blackberry are trademarks of Blackberry Limited. There are other marks not listed in this paragraph but mentioned below that are trademarks of their respective owners.

Examples Given that people learn better with examples than without, I use many different types of examples in this book. For example, I use fictional characters in this book to illustrate the cognitive productivity framework. However, any resemblance between these fictional characters and real persons is strictly coincidental. I also refer to a few, diverse well-known, high-caliber concepts and books to illustrate my framework. My descriptions of example theories are terse; however, I encourage readers to consult the original works in order to benefit from them. Rather than merely refer to product categories, I mention specific products. For example, when talking about book holders, I refer to Book Gem®.

Disclaimers. This book is not meant to provide legal, medical, psychological or any other type of advice in regulated domains.

The Acknowledgments below constitute an extension to the copyright page.

¹http://cogzest.com
Preface

We’ve all had this experience: We’ve read a factual or practical book that had the potential to make us more effective in some specific respects. Several months later, however, we can hardly remember the content. Worse, years go by and we have yet to apply the gems of knowledge it contains. There is no simple solution to this problem; but there are things we can do to address it.

I have written this book primarily for self-directed learners and those who study them. My objective is to help effective people systematically use knowledge and technology to become increasingly effective. This is the problem of “knowledge potentiation”: How to release the potential of knowledge in ourselves. This book addresses this problem by leveraging the most progressive attempt humanity has made to understand the human mind: cognitive science, broadly speaking. Broad cognitive science is not restricted to the narrow, classical concept of “dry” information processing. It also seeks to explain affective information processing: motivation, emotions, moods and attitudes.

To prepare you for this book, let me briefly recapitulate the journey of which it is a part. While taking a high school course on history, I “discovered” a simple yet potent algorithm to master a body of knowledge:

1. Review the materials to ensure full comprehension.
2. Formulate a collection of questions that can only be adequately answered by someone who sufficiently understands the matter.
3. Practice answering these questions, at spaced intervals until and beyond the point of manifest mastery.

Of course, the system worked like a charm. It helped me gain a deep understanding of all kinds of academic problem spaces. I aced papers and exams. It helped me to earn more scholarships and Ph.D. placement offers than I could accept. I got to study in one of the finest cognitive science programs with my top choice of a Ph.D. thesis supervisor, Prof. Aaron Sloman.

Cognitive psychology had decades earlier formally discovered some key data and principles that lend credence to my “algorithm”. Some of the keywords to that literature are test-enhanced learning, test-effect, distributed recall practice, self-regulated learning and deliberate practice.

I contributed to the “Cognition and Affect Project” at the universities of Sussex and Birmingham. We developed a deep, new theory of how minds process goals, motives and emotional states.³ This has informed my understanding of all aspects of psychology and this book.

Like that of many other knowledge workers, my career has required that I develop expertise in a wide variety of areas. I have been an Assistant Professor of Military Psychology and Leadership, a semiconductor technical writer (Tundra Semiconductor), an element-management software developer and team lead (Abatis Systems),⁴ a project manager, an Adjunct Professor of

⁴Tundra Semiconductor Corp. and Abatis Systems Corp. were both co-founded by Sir Terry Matthews, Newbridge Networks Corp. and their employees. I was an employee of Tundra Semiconductor and Abatis Systems at the founding of these companies.
Education and the founder of two businesses that apply cognitive science, CogZest⁵, which provides publications and services, and CogSci Apps Corp., which develops software. Each one of my roles has called upon me to rapidly transform myself with knowledge and technology. In each role, I tried to understand how what I knew could help me to learn more effectively.

As I began to rely mainly on electronic documents, it struck me that the potential for technology to support learning with cognitive science was scarcely exploited. I had written, in 1991, a little Smalltalk program to help me acquire technical concepts and (being French Canadian) augment my English vocabulary, using principles of test-enhanced learning (as described in chapter 7). Web browsers and PDF readers later made it possible to read about most of what I needed to learn. Then came software to listen to podcasts and audiobooks, read ebooks, participate in conferences, and more. Yet, none of these applications included support for test-enhanced learning! Annotation mechanisms were (and still are) very rudimentary and fragmentary. It also struck me that whereas public performance experts engage in deliberate practice, knowledge workers seem to ignore deliberate practice and many other cognitive potentiators. Cognitive science was, and still is, not sufficiently exploited.

So, after my second exhilarating (and successful) experience in high-tech startups, I decided to tackle, head on, the problems we knowledge workers face in learning with technology. I contributed my prior analyses to Phil Winne’s Learning Kit and nStudy projects, and worked with him from 2002 to 2009. We built a couple of general-purpose learning platforms and learned a great deal.

In 2010, I struck out on my own again, founding CogZest and becoming Adjunct Professor at Simon Fraser University. I continued to focus on the cognitive productivity problems addressed in this book.

In January 2010, just before Apple’s much anticipated tablet was announced, I wrote a blog article for SharpBrains⁶ detailing the cognitive productivity requirements I felt it should address.⁷ When the iPad was announced it received mixed reviews; but I was truly impressed! I could see its potential to improve cognitive productivity. So, I wrote another blog post for SharpBrains⁸, briefly assessing the iPad and pointing out ways in which it could be improved to further augment cognitive productivity. Wanting to put a “dent in the universe”, as Steve Jobs used to say, I emailed Jobs to congratulate him on Apple’s most recent innovation and suggest ways in which Apple could better support cognitive productivity. I offered Apple a white paper on the subject; Steve Jobs asked me to send him one. This book expands considerably on the 30+ page document I sent to Steve Jobs in February 2010.

While I am still not satisfied with today’s technology, we must use the tools we have at our disposal. This book is meant to help self-directed learners do that.

- **Part 1** describes the problems and opportunities we face when trying to use knowledge to become more effective people. I refer to the ability and propensity to use knowledge for this purpose as “meta-effectiveness”. Meta-effectiveness is one of the most significant contributors

⁵http://cogzest.com/
⁷On the CogZest website, I’ve collated the two posts and some notes about them.
to personal success and happiness. It is the key aspect of cognitive productivity with which this book is concerned.

- **Part 2** describes cognitive science that is pertinent to addressing meta-effectiveness. If you are only interested in applications, skip this part of the book and go straight to **Part 3**. In order to benefit from what we read (and other information we process), we need to learn to see the world in new ways with knowledge and to respond with the right motivation and emotions. Self-directed learning involves mental development. We develop “monitors” (internal and external perceptual mechanisms), “motive generators” (mechanisms to generate new evaluations, goals, wishes, wants and desires) and other mental mechanisms. If I am successful, then by delving this chapter, you will think of your mind and the learning you do in a new, more powerful way.

- **Part 3** provides concepts and guidance for using knowledge to become more effective. This framework will, I hope, help you
 - “know your way around” information and your information processing tasks,
 - systematically evaluate knowledge resources (ebooks, podcasts, videos, etc.),
 - delve knowledge resources, and
 - practice with knowledge gems in order to perceive, understand and respond to the world with the knowledge you acquire.

I believe that self-directed learning from high-caliber, potent information requires more effort than people typically realize. This leads me, in the conclusion of this book, to elaborate on an important overlap between self-directed learning, education, self-help and clinical psychology.

I hope this book helps us to discharge our privilege and duty—to further understand and improve the most sophisticated power in the world, the human mind.
Acknowledgements

I have many people to thank for Cognitive Productivity.

I am grateful to my peers who kindly reviewed parts of this book: Sharon Bratt (MacEwan University), Eva Hudlicka (University of Massachusetts-Amherst), Jeffrey Karpicke (Purdue University), Mary Pyc (Washington University in St-Louis) and Aaron Sloman (University of Birmingham). Christopher Stone (Harvey Mudd College) also provided helpful feedback.

Students, friends and family also reviewed parts of this book: Mark Beaty, Alissa Ehrenkranz, Judy Garner, Sheryl Guloy, Marilyn Medén, Jeannine Malo, Jeanie Morton, Heather Morton, Al Sather and Carol Woodworth.

Claude Lamontagne, Phil Winne, Steve Leach, and Peter Brems provided feedback on ideas presented here. I appreciate the feedback I have received from readers of this book, clients, participants in my workshops, and lecture and seminar attendees. I’ve been encouraged by knowledge workers across disciplines who agreed with me that cognitive productivity is critical to the modern pursuit of excellence.

Thanks to Lisa N. Eisen for deep insights into some of the psychological principles alluded to in chapter 15.

Damien Elmes kindly reviewed the text in chapters 13 and 14 about his deliberate practice application, Anki⁹.

Lam Wong¹⁰ created the fabulous front and back covers. He also convinced me to apply the principle of parsimony by removing “The science and art of” from the subtitle of this book. Carrie Spencer of Royal Rhodes University was instrumental to me choosing to develop the eponymous concept of this book, cognitive productivity, in 2010.

Thanks to James Cullin¹¹ for carefully reviewing all the citations and correcting the bibliography. Thanks also to Brian Holmes of GradeAEditions, for proofreading this book.

Several ideas in Part 3 have their roots in R&D projects led by Phil Winne at Simon Fraser University, where I was research associate and software development leader. We developed the StatStudy, gStudy and nStudy applications to understand and address learners’ cognitive requirements. Some of the ideas presented in this book have also been implemented in software by my colleagues at CogZest and CogSci Apps Corp.¹² (of British Columbia). I’m grateful to all the contributors to these projects.

The Leanpub team¹³ has reliably provided an amazing platform to evolve this book according to lean principles.

I greatly appreciate the support of Simon Fraser University, where I am Adjunct Professor in the Faculty of Education.

⁹http://ankisrs.net
¹⁰http://www.lamwong.com
¹¹https://www.linkedin.com/profile/view?id=182612691
¹²http://CogSciApps.com
¹³http://leanpub.com
Some of the theoretical roots of this book are in my Ph.D. research, which was part of the Cognition and Affect Project at Sussex University and the University of Birmingham in England. Hence my gratitude to all contributors to that project. I am also grateful to my external Ph.D. thesis examiner, Prof. Margaret Boden14, for encouraging me to publish my thesis research in the form of a book. Thanks also to Prof. Aaron Sloman15 for encouraging me, in 2008, to resume research on the intersection of cognition and affect. This book contains extensions and applications of our “H-CogAff” framework and the perturbation theory of emotion.

Thank you to Ian Hand (Managing Director, VentureLabs), John Siu (Engineering Director, In Motion Technology), Paul Terry (Entrepreneur in Residence at SFU Venture Labs) and Renwei Li (Senior Director, Software Engineering at Huawei) for permission to refer to them personally in this book. Interactions with them helped me shape this book.

Carol Woodworth was a sounding board, editor and companion throughout this project.

I am deeply grateful to countless authors who shaped my thinking, whether or not I have cited them in this book.

14\url{http://en.wikipedia.org/wiki/Margaret_Boden}

15\url{http://en.wikipedia.org/wiki/Aaron_Sloman}
I Challenges and opportunities

Only the ideas that we actually live are of any value.
Hermann Hesse
1. Introduction

The essence of knowledge is, having it, to apply it; not having it, to confess your ignorance.
Confucius

We live in an era of ineffable opportunities to use knowledge to become more effective. The information cornucopia is at our finger tips. We are served the latest knowledge in print, ebooks, audiobooks, web pages, podcasts, videos, screen casts, webinars, and other forms.

For example, books by relationship expert Dr. John Gottman can improve your marriage and other close relationships. The principles of rationality conveyed by cognitive scientists like Dr. Keith Stanovich can help you avoid costly mistakes. Agile product-development principles conveyed by the likes of Eric Ries can help you develop products customers will actually like and pay for. High caliber investment advice from writers like TSI Network’s Pat McKeough can protect and grow your investments. Applying health and nutrition information from Center for Science in the Public Interest¹’s Nutrition Action² newsletter might help you live a healthier and longer life. The open-access movement provides public access to information hitherto only available to select knowledge workers. Many universities are now even offering massive, open (free) online courses—MOOCs!

To be sure, there is more irrelevant information than text worth reading, let alone delving. But there is no denying the abundance of potent knowledge to help us solve problems and develop ourselves. This bodes well for the exercise of the seventh habit of highly effective people, which—according to the late Stephen R. Covey—is to “sharpen the saw”®. It is to improve ourselves—our productive capacity—through regular reading and related pro-active activity (Covey, 2004). If we properly conduct our research and apply ourselves, then we can develop personal effectiveness: understanding, skills, attitudes, habits and dispositions. I agree with Aristotle, who laid the foundations for Western ethics, that in the balanced pursuit of excellence lies the route to happiness.

Alas “the shallows”, intellectual defeatism, naive optimism and cognitive miserliness each in their own way threaten our knowledge-based and technology-enabled pursuit of effectiveness. In his best selling book, The Shallows, Nicolas Carr laments the effects he supposes the Internet has on our brains, minds and behavior. He suggests that our usage of information technology causes us to have shorter “attention spans” and more difficulty learning. He claims that the distractions, hyperlinks and other features of technology (and our way of using it) not only interfere with our productive use of technology, they alter our brains and minds. “The tools of the mind amplify and in turn numb the most intimate, the most human, of our natural capacities—those for reason, perception, memory, emotion.” From the neuroplasticity bandwagon, Carr professes that our new technological vices “rewire our brains”. We are, he seems to believe, becoming inextricably stuck in the shallows.

However, Carr’s apparent defeatism overshadow his legitimate concerns. Let us “consider the opposite”, a reasoning strategy discussed below. If plasticity (i.e., modifiability) is as important a

¹http://www.cspinet.org
²http://www.nutritionaction.com
characteristic of the brain as Carr believes, then an opposite conclusion might just as well be right: We can “mold” our brains to become more focused and productive by habitually using the Internet in focused, productive ways. Carr alludes to this possibility, but he shuns it. “It’s possible to think deeply while surfing the Net, just as it’s possible to think shallowly while reading a book, but that’s not the type of thinking the technology encourages and rewards.” One might as well say that automobiles encourage us to speed and so we should stay out of them. In the spirit of the people to whose memory this book is dedicated, I reject cognitive defeatism in favour of informed, productive ways of using technology to improve ourselves.

Carr’s book is part of a trend amongst popular writers to try to describe, explain and predict psychological processes using neuroscience. Of course, understanding the brain is ultimately essential to understanding the mind. Alas, it is very difficult even for neuroscientists to make detailed sense of human behavior in neurological terms. Neuroscientist Seth Grant defines systems biology as “a new branch of biology aimed at understanding biological complexity” (2003). Grant has identified eight interacting layers in the system to consider. The bottom layer is genetics and the top layer is behaviour. Synaptic connectivity is just one of the components of systems biology. Synapses themselves are now considered as complex computers (Grant, 2007). We can expect learning to happen at multiple layers and not to be faithfully approximated by any “hard wiring”. The mind itself must be considered as having multiple layers capable of learning. Between the brain and behavior there are complex virtual machines—“the mind”. Mapping mental phenomena to brain mechanisms is a challenging task for scientists. As Stephen Pinker put it “Psychology, the analysis of mental software, will have to burrow a considerable way into the mountain before meeting the neurobiologists tunneling through from the other side.” (Pinker, 1999)

Many popular “brain-based” claims originated in psychology—whether it be folk or scientific psychology. They mainly concern psychological matters. For example, many of the principles in John Medina’s popular Brain Rules book, such as the importance of repetition, are mainly psychological matters. The neuroscience of distributed practice effects has a long way to go — as does its cognitive science. These matters usually need to be assessed, if at all, with the rigorous research methods of empirical psychology. We need to be as careful when we draw inferences from neuroscience as other sciences; however, the luster of neuroscience can be particularly distracting.

In particular, I reject the notion that the Internet is “rewiring our brains”. As Pinker put it:

Critics of new media sometimes use science itself to press their case, citing research that shows how “experience can change the brain.” But cognitive neuroscientists roll their eyes at such talk. Yes, every time we learn a fact or skill the wiring of the brain changes; it’s not as if the information is stored in the pancreas. But the existence of

³Thus, multi-scale modeling of the brain must include virtual machines. See Sloman (2009a) for a description of the mind as a layered virtual machine that is itself layered on top of physical machines (themselves layered). The concept of layering is well understood in telecommunications (the Internet Protocol being one of several examples http://en.wikipedia.org/wiki/Internet_protocol_suite) and computer software. However, it is still rarely explicitly invoked in relation to the mind. Yet to think in terms of “wiring” obscures the many layers at which learning may flexibly occur. Compare also Section 8-4 of Minsky (2006).

⁴While neuroscience is an important contributor to cognitive science, too many people are duped into thinking we understand more about mind-brain interactions than we do. One of the difficulties with neuroscience is statistical power, linked to low sample sizes (Button et al., 2013.) There are also problems with frequent non-blind studies. Button et al. lament the lack of reproducibility in swaths of neuroscience. See also Stix (2013) on the subject. Satel & Lilienfeld (2013) warn their readers about the seductive appeal of mindless neuroscience, particularly given the psychological (if not rational) compellingness of neuroimaging. See also the discussion of “neuromania” in Changeux & McGinn (2013). Epistemic exuberance needs to be bridled by skeptical thinking (compare chapter 11, “Assess”).
neural plasticity does not mean the brain is a blob of clay pounded into shape by experience. (Pinker, 2010)

Cognitive neuroscience is a difficult discipline. It is, nevertheless, an important member and contributor to cognitive science. It is indirectly represented in this book.

Carr is right to call our attention to the shallow use of technology and information. We face real challenges to our cognitive productivity\(^5\); many of them predate the web. To have studied cognitive psychology is to know that our perception, understanding, attention, ability to recall and utilize information, indeed all mental functioning is biased, limited and error prone. Furthermore, ostensibly learning something in one domain or context is no guarantee of being able or disposed to apply it when one should in another. For example, a person who aced mechanical physics may fail to realize (or value) that she is not keeping a safe distance from the car ahead of her. Likewise, we may read the work of Gottman, Stanovich and Ries, which I describe below, and yet still be blind to too many of our partners’ bids, make too many biased decisions and be insufficiently agile. Psychologists refer to these issues as problems of “inert knowledge”\(^6\) and “transfer”. They have been studying them at least since 1901 (Haskell, 2000). In chapter 3, I describe our cognitive productivity challenges so that we may remedy them with the rest of the book.

The Internet is not the root cause of human information-processing fallibility. Nor are our limitations a fluke of evolution discovered by attentive empirical psychologists.\(^7\) I do not believe natural selection (or any intelligent mechanism) could evolve a machine that meets the awesome requirements of the human mind without this resulting machine having severe challenges to cognitive productivity described above. Design, human or Darwinian, is a matter of trade-offs.\(^8\) But we, intelligent machines, can nevertheless improve.

The majority of people who read this book, I assume, are knowledge workers. Knowledge workers are people who spend a significant portion of their lives understanding, assessing, modifying, building and using knowledge. They solve problems with knowledge and often create and share knowledge in so doing. One can be a golfer without earning one’s living as a golfer. One can be a knowledge worker without being a scientist. Explicit knowledge-intense work need not occupy all of one’s time for one to be considered a knowledge worker. A surgeon may spend most of his time delivering services and administering his business. But the portion of time he spends acquiring and building knowledge provides significant value. A lawyer creates and processes knowledge as argument in service to her clients. An effective trades person reads about his profession, communicates with colleagues about it, and develops and shares new techniques and strategies. All these people are knowledge workers.

The staggering abundance of knowledge has increased expectations for many of us to exploit knowledge to develop our own effectiveness, more effective products, and better solutions for our clients. In order to meet this challenge, one needs a propensity to develop effectiveness and consequently competence. This is something that the late psychologist of Harvard University, Robert

\(^5\)Chapter 3 discusses the obstacles we face.
\(^6\)Below, I describe a new way of thinking about the so called “transfer” problems and how to address them.
\(^7\)Empirical psychologists are research psychologists who attempt to resolve psychological problems of understanding by collecting, analyzing and interpreting data in studies involving real animals, whether human or not.
White, referred to as "effectance" (White, 1959). Effectance plays a large role in determining which of two people of equal intelligence will be more effective. It pushes people to develop expertise to overcome limitations in fluid intelligence.9 Effectance drives one to develop thinking dispositions and skills to become increasingly effective. White articulated his concept of effectance in relation to children and before our transition to a knowledge society. In this book, I improve his critical but largely overlooked concept10.

But even effectant people may be unsettled by the pressures to tame an exponentially expanding knowledge base. Faced with the cognitive demands of the knowledge economy, they often turn to productivity systems and software. Ironically, these categories of solutions are themselves expanding so fast productivity experts are finding them hard to track. That expanse, however, is not the major obstacle between effectant people and the effectiveness they pursue.

Unfortunately, productivity systems, like David Allen’s popular Getting Things Done® (GTD®), and productivity software, are not for the most part designed to meet the specific requirements of cognitive productivity. A cognitive productivity solution is one that addresses the constitutive problems of knowledge work: to understand, assess, modify, create and apply knowledge. While I believe the GTD system contains useful general productivity concepts, it clearly was not designed specifically for knowledge-intensive work. For example, Allen’s seminal book contains examples of managing grocery lists and cleaning one’s garage. GTD is supposed to free its user’s mind for cognitive work, but it has little to say about the particularities of mental processes or cognitive work. In contrast, the framework I develop in this book is specifically targeted at cognitive productivity challenges: to exploit knowledge to productively develop products, solutions, and oneself.

Steve Jobs said of Apple, “We believe that it’s technology married with the humanities that yields us the result that makes our heart sing” (Isaacson, 2011). As I suggested in a white paper and email exchange with him in 201011, cognitive science—the interdisciplinary, information processing study of mind—also needs to be included in the intersection. Medicine is informed by biology. Mechanical engineering by physics. Likewise, we cannot adequately address difficult problems of cognitive productivity without exploiting the results of cognitive science.

Consider an example of how we suffer as a result of such neglect. Today, we read documents in web browsers, ebook readers and other applications that in many respects are worse than paper. For example, no operating system yet provides a uniform way for users to annotate text across diverse applications—such as email, PDFs, and web pages. Their designers do not seem to consider basic principles of cognitive science. I will describe these problems in chapter 3 and show how to work around them in Part 3.

The opposite of Carr’s intellectual-technical defeatism, a macho attitude towards learning, is no better. The implicit idea here is that everyone who has proven their intellectual capabilities at

9 Fluid intelligence is the ability to solve novel problems using general purpose reasoning without depending on specialized knowledge. Crystallized intelligence is composed of our abilities to use what we have learned (skills, factual knowledge, etc.). However high one’s fluid intelligence, it is necessarily limited, and it tends to decrease in adulthood.

10 See in particular the Section on Effectance, below. My extensions are based on Bereiter & Scardamalia (1993), Sloman (2009b) and Stanovich (2009). For example, White focused on the implicit motivation for competence. He did not explore other targets of effectance (developing better products, solutions and self). He restricted his analyses to children. He did not explore the creation and use of objective knowledge for effectance. He could not explore the architectural, information-processing bases of motivation. He did not frame effectance as a propensity, a key concept in this book.

11 Steve Jobs, like Winston Churchill, extended himself by asking other people to help him accomplish his goals and he said no to fear. He kindly repaid the favor by responding to emails from people he did not know, such as myself. Cf. McBurney (2013).
university or work knows how to read, and more generally process knowledge resources, in such a way that they can derive the benefits they seek. Provided the information is well presented, they will understand it after processing it once or twice. Thereafter, they will be able to use it. They need not systematically and effortfully apply themselves to master knowledge gems. Their skills, understanding, attitudes, propensities, habits, etc. will follow from their own unaided abilities to learn. To be sure, students and public performers (musicians, athletes) may need to practice and rehearse. But competent professionals do not. Such are the beliefs floating in the bubble atop my cartoon of the intellectual macho.

Alas, cognitive nonchalance flies in the face of cognitive science. I suspect that such cavalier attitudes, and the superficial strategies they entail, are the main causes of what Carr described as “the shallows”. However, contra defeatism, the “shallows”, where they exist, are correctible. Productive strategies can be learned.

How? We cannot solely rely on motivational books or productivity systems. Cognitive science provides relevant material for our problems, though scholarly books are either too technical or general to satisfy the needs addressed by this book. Several recent popular books have drawn attention to the cognitive science of expertise¹². This primes my reader to the importance of effortful practice. These books, however, do not deal with specific problems of exploiting knowledge for enhanced effectiveness. Expertise is an important technical concept in cognitive psychology that is related to, but different from the fundamental concept of effectiveness. Nor are the abundant study-strategy books aimed at college students particularly relevant to knowledge workers.

There is a need for a coherent, cognitive-science based framework specifically to help self-directed learners exploit knowledge and technology to improve their effectiveness. The novelty of this quest partly explains why I have had to coin several terms, utilize several others that have yet to reach their memetic potential, and develop new concepts.

I have in this introduction referred to a critical quality of people who pursue excellence with knowledge. Like the concept of acceleration in physics, this concept is a second-order (derivative) one. I call it meta-effectiveness: abilities and dispositions to use knowledge to become more effective. To a first approximation, meta-effectiveness is simply what it takes to be an effective lifelong learner. Naming, characterizing and applying this concept may help people become more meta-effective.

If we are to draw deeply from the cornucopia of knowledge and be transformed by it, if we are to systematically develop effectiveness from knowledge rather than merely become vaguely familiar with information, then we need a meta-effectiveness framework—one that is informed by cognitive science and that, in turn, informs it. One that is designed to meet the requirements of effectant people in the Knowledge Age. It must eschew defeatism and machismo in favor of effectance. Those are the objectives of the framework I have set out to describe in this book; they are the standards by which I would like this book to be judged.

1.1 Broad cognitive science

There are no subject matters; no branches of learning—or, rather, of inquiry: there are only problems, and the urge to solve them.

¹²For example Gladwell (2008), Coyle (2009), Foer (2011).
16. Delve and instill the knowledge of your choice

The relevance of the opening quotation of this book, “Only the ideas that we actually live are of any value”, should now be evident. Potentially useful, high-caliber knowledge too often lies wasted in superficial mindware. It would be difficult to overstate the importance of that which enables and motivates you to instill knowledge: meta-effectiveness. With the right mindware one can intelligently perceive the world, prevent predicaments and solve problems.

Having reached the conclusion of this long book, how are you supposed to instill the knowledge expressed in Part 3 to bootstrap your learning?

I recommend that you start by choosing a helpful resource—something potent, useful and of high caliber that appeals to you. It may be as broad or narrow in scope as you like. Look at your library for inspiration. For reasons discussed in chapter 12, select a resource that you can access electronically, preferably with a PDF reader or Apple’s iBooks. It’s important to pick a challenging resource the mastery of which will immediately give you significant benefits. The expected yield will motivate you to apply the required effort. Applying your new mindware will be inspiriting. This might motivate you to sharpen your meta-effectiveness “saw” with other resources too. You need not master all aspects of the resource. Focus on its gems. Selecting and mining will help you sharpen your assessment skills and dispositions.

While the topics of Part 3 are presented in natural order, you can focus on areas of competence (and hence chapters) in the order of your choice: learning your way around, assessing, delving, or practicing. It’s best to focus on one skill set at a time with one resource. Then repeat with other resources. That way you will get the benefits of spacing.

Further, I recommend that before or as you delve into your chosen knowledge resource, you also apply delving techniques to Cognitive Productivity itself. By regularly applying cognitive productivity concepts and techniques, you will get the benefits of practice that are described throughout this book.

When world champions rework some of their core competencies, their performance degrades temporarily. Thus, your own information-processing velocity will decrease temporarily as you develop your meta-effectiveness. That is to be expected and accepted. What previous quotation of Marvin Minsky is relevant here? Oh yes, “No matter what one’s problem is, provided that it’s hard enough, one always gains from learning better ways to learn”.
References

References

References

References

References

http://pss.sagepub.com/content/22/6/781

Goldacre, B. (2014). *I think you’ll find it’s a bit more complicated than that.* London: Fourth Estate.

strategically self-regulate their learning? An analysis of contemporary study skills textbooks. (35 pp.).

References

Kljun, M., Mariani, J., & Dix, A. (2013). Transference of PIM research prototype concepts to the mainstream: successes or failures. Interacting with Computers, doi:10.1093/iwc/iwt059

References

Mogle, J. A., Lovett, B. J., Stawski, R. S., & Sliwinski, M. J. (2008). What’s so special about working memory? An examination of the relationships among working memory, secondary memory, and
References

References

References

Schwefel (Eds.), *Parallel Problem Solving from Nature - PPSN VI* (pp. 3–16). Berlin, Germany: Springer Berlin-Heidelberg.

Sloman, A. (2011a). What’s information, for an organism or intelligent machine? How can a machine

Index

10,000 hour rule
Abatis Systems Corp.
abbreviation expanders
abstract artifacts
acceptance and commitment therapy (ACT)
accessing information
accommodation
ACT (acceptance and commitment therapy)
action tags
active reading
active study
Adler, Mortimer
adult mental development
agile processes (lean)
aging
alarm systems
Alfred
algorithmic mind
algorithms, anytime
aliases
Allen, David
alphabet
“Alphabet Song, The”
Amazon
analogueical reasoning
analogy
analysis of concepts
 assessment
 cause and origin
 characterize the concept
 control
 examples of
 questions, miscellaneous
 template
 template example
andon cord
andon cord principle
Anki Desktop (flashcard software)
annotation
annotation services
in books
browser
and goals
lack of in information technology
multimedia
short-hand
software
software, third party
annotation services
anytime algorithms
appeal in knowledge resources
criticisms of
definition
and emotions
impressions of
and mathematics
and surprise
Apple’s Automator
applying knowledge
applying knowledge, failure to
architectural modeling
architecture of the mind
architecture, mental
areas of responsibility (OmniFocus)
artifacts, abstract
artifacts, conceptual
artificial intelligence
assessment of documents (information technology)
assessment of explanatory theories
assessment of information
appeal
assessment of knowledge resources
complications in
criteria for
and CUPA (caliber, utility, potency, appeal)
difficulties of
evaluating
and values
assessment, taxonomy of
assimilation
associative conditioning
attitudes
attitudes, changing
audio as a knowledge resource
autonomous mind
backward-reaching-transfer
basal ganglia
BBEdit
Behavior and Brain Sciences (BBS)
Bereiter, Carl
Beyond Modularity (Karmiloff-Smith)
biases, cognitive
BibTeX
bi-directionality of cognitive development
bid-response
Bjork, Robert
Bloom’s taxonomy
Boden, Margaret
books
 vs technology
 navigating
bootstrapping strategy
brain mechanisms
brain structure
Bratt, Sharon
broad cognitive science
Bugzilla
build it, and they will come
Build-Measure-Learn loop
caliber of knowledge resources
Calibre
capture
Carpenter, Shana
Carr, Nicolas
challenge templates
challenges (instiller)
 andon cord example
 concepts, new
 consider the opposite
 cramming
definition
difficulty level
examples of
practice examples
rating ease of questions
responding to
re-testing
schedules
schedules, spacing
vocabulary terms
chess
 and expertise
 and memory
child vs adult mental development
childhood mental development
 language
 open- vs closed-classed words
 the/my word choice
citation manager
classical cognition
classical cognitive processes
classification
classification of documents
cognitive aging
cognitive biases
cognitive defeatism
cognitive defusion
cognitive fitness
cognitive miserliness
cognitive parsimony
cognitive potency
cognitive productivity
cognitive shuffle
 challenges of
 definition
 shallow vs. deep processing
 and education
 software
cognitive reflexes
cognitive shuffle
cognitive science
criticisms of
 definition
 lack of
psychology, lack of in
and technology, applying
terminology differences
untapped in information technology
cognitive skills
and chess
and mastery
phases of acquisition
and practice
training
training
cognitive strategy
cognitive terms
CogSci Apps Corp.
CogZest
collections of information, mastering
challenges
mastering cues
harsh startup example
practice
practice principles
RD cue system
commenting in documents
comparative analysis
competence
development of
feeling of
illusion of
component processes
comprehension
computer workstations
concept maps
concept of goal
Concept of Mind, The (Ryle)
concept specifications
concepts
defining
distinctions of new
instillers of new
mastery of new
potent
conceptual analysis
definition
conceptual artifacts
conceptual progress
conceptual understanding template
consider the opposite
constructible cue system
consuming, as metaphor for information
contexts, knowledge resources
counteractive construal
criteria, for assessing knowledge resources
criteria, rhetorical
critical reasoning
crystallized intelligence
cue chaining
cue mnemonic
cue overload
cued recall
cues
CUPA: caliber, utility, potency, appeal
curation, as metaphor of information processing
daemons
decision making
declarative memory
deep processor
delegation model
deliberate performance
deliberate practice
 amount needed
 concepts, new
 and expertise
 and knowledge workers
 Schôn on
types of
 vocabulary terms
deliberation scheduling
deliberative processes
Delicious
delving
 audio
 definition
e-books
examples of
and memory
multimedia
multimedia, other
vs surfing
effectance preliminary description of, White's concept of, generalized.

Dennett, Daniel
designer stance
desirable difficulties hypothesis
desktop search engine
developing (level of processing information)
development of the adult mind
DevonAgent
DEVONthink
digestion, as metaphor of information processing
Diigo
discriminative cue system
dismantle mindware
dispositions
distractibility
distributed recall practice
documents
 filing
 organizing, project related
 organizing, third party
documents, assessing
domain reading
Dragon Dictate
Dropbox
dry cognition
EagleFiler
e-books
editing tools
education
 cognitive productivity
 learning objectives
 and memory
 and memory
 reading
 transfer problem
effectance
effectiveness
 information, using to earn
processing knowledge
effectiveness, improving
 and cognitive aging
efficiency
elaborate retrieval hypothesis
emotional command centres
emotions
emotions, secondary
episodic memory
epistemic criteria
e-reader software
e-readers
ergonomics
Ericsson, K. Anders
Ericsson’s theory of expertise
Ericsson’s theory of expertise criticisms with
errors in mental representations
evaluating knowledge resources
EverNote
evolution
examples (learning from)
excelling
executive functions
experience
expert judgments
expert memory
expert reading
expertise
 in chess
 and education
 and effectance
 fluid
 and intelligence
 and memory
 and motivation
 and novices
 and talent
explanatory theories
extended mind
factual memory
fan effect
fascination
feedback (as learning tool)
feeling of competence
file systems
 aliases
 desktop search engines
 tagging documents
fine-grained mental representations
fixed-action patterns
flashcard applications
flashcard software
flashcards
flaws, knowledge
flow
fluid expertise
fluid intelligence
fluid rationality
focal resource and meta-information
folders, organizing project related
folk psychology
foresight bias
forgetting
framework, productivity
free recall
Freud, Sigmund
functional autonomy
gem
General Problem Solver (GPS)
generation effect
Getting Things Done (GTD) (Allen)
 and knowledge organization
 as personal management system
 knowledge gems
 OmniFocus
 criticism of
glial cells
goal processing systems
goals
Gottman, John
GPS (General Problem Solver)
Grant, Seth
graphic tools
GTD (Getting Things Done; Allen)
Index

habits
harsh startup example
harsh startups
H-CogAff Theory (Human-Cognition and Affect)
and ACT (acceptance and commitment therapy)
emotion, classes of
and emotions
goals
illustration
meta-management processes
motivators
heuristic relevance-signaling hypothesis
hierarchical organization of information
highlighting
How to Read a Book (Adler)
iBooks
IDs
illusion of competence
illusion of rationality
illusions
illusions of (future) recall
illusions of comprehension
illusions of helpfulness of information
illusions of meta-effectiveness
illusions of rationality
imagery mnemonics
implicit information
implicit understanding
inert knowledge
inert mindware
inferring
information assessing
information, processing
and complexity
levels of
information to effectiveness funnel
information, quality of
inner motivators
inspection of knowledge resources
instiller stubs
instillers
challenge
challenges examples
concepts, new
creation of
creating
definition
designing
design rules
and knowledge gems
motive generators
practice
smart, folder
template
types
intellectual macho
intelligence vs rationality
intentional stance
Intentional Stance, The (Dennett)
intentional tagging
intentional talk
intermediate effect
internal monitors
internal motivators
Internet
attention spans
as a distraction
and memory
rewiring brains
interpersonal relations
interpretation of knowledge
interrupt filters
intuition
intuitive understanding
IQ (Intelligence Quotient)
irrationality
issue (ticket) processing system
James, William
Jobs, Steve
judgment of knowledge resources
judgment of learning
junk information
Karmiloff-Smith, Annette
Karpicke, Jeffrey
keyboard shortcuts
Kindle
know how
knowledge
 abundance of
 application of
 definition
 failure to apply
 levels of mastery
 organizing
 and self improvement
 processing for effectiveness
 processing, levels of
Knowledge as a Design (Perkins)
knowledge flaws
knowledge gaps
knowledge gems
 capturing
 definition
 design instillers
 extracting
 identifying
 instillerizing
 mastering
 practicing with instillers
 producing
knowledge resources
knowledge work
knowledge work
knowledge workers
 access to knowledge
 assessment of information
 cognitive science, lack of knowledge about
 and cognitive science, problems with
 definition
 flexibility in thinking
 identifying as
 IT burden at home
 learning and producing rapidly
 and meta-effectiveness
 organizing work
 and practice
print preference
and self improvement
smart people, surrounded by
and time pressures
Koriat, Asher
labyrinthine
lag effect
language, childhood development
LaunchBar
launcher programs
layering
layers of human mind
lean processes
Lean Startup, The (Ries)
Leap
learning
learning
linking information to information
lists, mastering
logic
long-term memory
long-term working memory
Lord, Charles
machinery
management processes
marriage
mastering collections of information
 challenges
cues
 harsh startup example
 practice
 practice principles
 RD cue system
Mavericks
mediator shift hypothesis
mediators
Mekentosj Papers
memes
memory
 and the alphabet
 declarative
 and education
episodic
factual
H-CogAff Theory
long-term
long-term working memory
and music
principles of
prioritizing information
procedural
quizzing
and recall
semantic
short-term working
and technology
working
memory judgment
skewing of
word pairing experiment
word pairing experiment
memory-indexing
mental architecture
mental development
Mental Development Challenge, The
mental development, adult
mental development, childhood
mental reflexes
mental representations
meta-access problem
meta-cognition
meta-computation
meta-doc (meta-document)
 accessing
 analysis section
 creating
definition
examples of
index
Notational Velocity
sections
templates
meta-effectiveness
cognitive productivity
as contribution to cognitive science
definition
and designer stance
and psychology
and psychotherapy
meta-information
accessing
external
internal
managing
tagging
types of
meta-level reasoning
meta-management
metamemory
meta-semantic competence
method of loci
micro cognition
microdevelopment
microdomains of cognition
Microsoft OneNote
Microsoft Project
mind, as a term
mind, as virtual machines
mind, autonomous
mindware
categories of
definition
development
dismantle
and flashcard software
and productive practice
inert
instiller
vs mental concepts
motivational aspects of development
personal
and physics
reactive
software analogy
Stanovich on
unhelpful
mnemonic system
 definition
 and designing instillers
 RD cue system
mnemonics
 imagery
 instiller template
 instilling mindware
 prioritizing
 RD cue system
mobile cognitive-productivity
modifiability
modular architecture
monitors
 bid monitors
 building
 detecting violations
 developing
 growing
 internal
 novelty
monitors, computers
morphogenesis
motivation for increased competence
motivational aspects of mindware development
motivational process
motivational state
motivators
 attributes of
 developing
 inappropriate
 internal
 and management processes
 tertiary emotions
motive
motive generators
motor
multimedia annotation
multiple-choice test questions
music
 and memory
 and practice
mySleepButton
natural reactive systems
natural selection
neurons
neuroscience
cognitive
psychological processes
nodes
non-contradiction, principle of
normal learning vs expertise
norms
Notational Velocity
note-taking
note taking, audio
nStudy
nvALT
objective knowledge
Objective Knowledge (Popper)
observation, self
obsessions
OmniFocus
OmniGraffle
OmniOutliner
OmniPlan
open access movement
open- vs closed-classed words, in childhood mental development
OpenMeta
opinions, differing
organizing knowledge
organizing work
OS X Mavericks
outliners
outlining
Panksepp, Jack
paper vs technology
Paperless (Spark)
Papers (software)
parallelism
PDF apps
PDF files
PDF reader
PDFPenPro
pedagogical utility
perceived competence
perceived self-efficacy
perception
Perkins, David
personal development
personal mindware
perturbance
PhraseExpress
physical world (World 1)
Piaget, Jean
Pinker, Stephen
plasticity
Pocket
podcasts
Popper, Sir Karl
potency of a knowledge resources
definition
and mental development
as a subjective notion
and understanding
and usefulness
practical books
practical knowledge
practice
by answering questions
and chess
concepts, new
and forgetting
and memory
and music
and skill acquisition
spacing schedules
time
Practice Zealously experiment
predictability
prediction
preferences
Preview (Apple’s PDF)
principle of non-contradiction
principles of expert memory
printing information from technology
printing vs on-screen
problem solving
problems of transfer
problems of understanding
problems, identifying
procedural knowledge
procedural memory
process of modularization
processing knowledge resources
process-motivator index
process-purpose index
product startups
productive information-processing
productive laziness
productive practice
 concepts, new
definition
developing propensities
example of
and flashcard apps
goals
objectives
rules
steps
software
and technology
tips for
 vocabulary terms
productive processor
Productive Thinking (Wertheimer)
productivity framework
productivity literature
productivity software
productivity systems
productivity tools
productivity training
products of World 2’ (World 3)
professional practice
project information, organizing across different files
project planning system
project view, OmniFocus
projects, identifying
propensities
prophesy, self-fulfilling
psychological challenges
Psychopathology of Everyday Life, The (Freud)
psychotherapy and meta-effectiveness
Pyc, Mary
quality of information
questions and practice
questions, in delving
quizzes
R&D
rating scales
rational behavior
rationality
and decisions
definition
fluid
growing monitors
illusion of
vs intelligence
non-contradiction
Stanovich on
taxonomy of
training
RD cue system
applying
challenge templates
challenges of
challenges of
collections and lists
described
principles of
structure for concept instillers
reactive mechanisms
reactive mindware
reactive processes
reactive systems
Readability (software)
reading
realms of thinking
reason
reason
recall
collections and lists
distributed practice
illusions of (future)
and memory being cue-driven
practicing
practice lazily experiment
as a skill
RecentX
Reddit
reflecting-in-action
reflection
reflection, in learning
reflective abstraction
reflective intelligence
reflective mind
reflective practice
Reflective Practitioner, The: How Professionals Think in Action (Schön)
Relationship Cure, The (Gottman)
relationship problems
remembering
reminiscence
representation
representational machinery
representational redescription (RR)
Representational redescription (RR) in reverse
representations
resource-rating tags
retrieval (of information)
retrieval strategies
retrieval structure principle
review (of information)
rhetorical criteria
Ries, Eric
right vs wrong
Rodeiger, Henry, III
rote learning
RR (representational redescription)
RR (representational redescription) in reverse
Ryle, Gilbert
scalar ratings
scheduling, deliberation
schema activation exercise
Schön, Donald A.
scratch pad
screen vs printing
Scrivener
search engines, problems with
secondary emotions
self improvement
self-efficacy
self-fulfilling prophesy
self-help books
self-modification
self-monitoring
self-observation
self-regulation
self-testing
semantic memory
sense-making ability
Seven Principles for Making Marriage Work (Gottman)
shallows
Shallows, The (Carr)
short-term memory
skill acquisition
skills
Skim (PDF reader)
sleep
sleep onset
Sloman, Aaron
smart instiller-folder
smart people
 and mental architectures
 and self-destructive beliefs
 surrounded by smart people
 who do dumb things
smartphones
software
 andon cord principle
 and annotation
 flashcard
 meta-docs access
 meta-docs annotation
 OmniFocus
Index

- outlining
- project planning system
- tagging
- task management
- TextExpander solutions
- somnolent mentation hypothesis
- spacing practice
- Spark, David
- speed reading
- speed up principle
- Spitzer, Herbert F.
- Spotlight standards
- Stanovich, Keith
- statable knowledge
- students
- studying
- subjective knowledge vs objective knowledge
- Successful Investor, The (McKeough)
- superficial processor
- surface processing
- surfing information
- surfing vs. delving
- surprise (in appeal of knowledge resources)
- Swahili word experiment
- synapses
- synaptic connectivity
- sync technology
- System 1
- systems biology
- table of contents
- tablets
- tagging
 - action
 - benefits
 - criticisms of
 - while delving
 - documents
 - and highlighting
 - information categories
 - information you don’t understand
intentional
knowledge gaps
meta-information
needs in software
resource-rating
with Skim (PDF reader)
software
software faults
system (for information)
temporary
term tag
topic
websites
tagging system
IDs
PDF reader
Tags (software)
task management system
task manager
tasks
taxonomy of assessment
taxonomy of rationality
taxonomy, Bloom’s
technical rationality
technology
1950’s
attention spans
information processing
and memory
vs paper
and perceived competence
proficiency with
shallow use of
and time pressures
tools to remove distractions
temporary tags
term tag
terms, finding later
tertiary emotions
test questions
test-enhanced learning
testing effect
text expansion software
TextExpander
TextWrangler
the/my word choice in childhood development
theory of expert memory
theory of mind
theory of the development of expertise
thesis writing
thinking disposition
thinking strategy
ticket (issue) processing system
time management
time pressures
time tracking
times to practice
topic tagging
TrackTime
transcription
transfer
transformational processing
true-false test questions
two-strike principle
Type 1 process
understanding knowledge
understanding, concept of
understanding, implicit
unlearning
urgency
usefulness of knowledge resources
usefulness vs utility
utility theory
UVOutliner
value judgments
VanLehn, Kurt
vestibular system
vignettes
 agile project management
 bids in marriage
 investing
virtual machinery
virtual machines (World 2’)
vision
vocabulary terms
 deliberate practice
 mastering new
 productive practice
voice-driven task list
volition
web browsing
web surfing
Wertheimer, Max
What Intelligence Tests Miss: The Psychology of Rational Thought (Stanovich)
White, Robert
work management
working memory
World 1 (physical world)
World 2
World 2’ (virtual machines)
World 3 (products of World 2’)
worlds (domains)
wrong vs right
Yep
Yojimbo
zone of proximal development