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ABSTRACT
In many clinical studies, longitudinal biomarkers are often used to
monitor the progression of a disease. For example, in a kidney trans-
plant study, the glomerular filtration rate (GFR) is used as a longitu-
dinal biomarker to monitor the progression of the kidney function
and the patient’s state of survival that is characterized by multiple
time-to-event outcomes, such as kidney transplant failure and death.
It is known that the joint modelling of longitudinal and survival
data leads to a more accurate and comprehensive estimation of the
covariates’ effect. While most joint models use the longitudinal out-
come as a covariate for predicting survival, very fewmodels consider
the further decomposition of the variation within the longitudinal
trajectories and its effect on survival. We develop a joint model that
uses functional principal component analysis (FPCA) to extract useful
features from the longitudinal trajectories and adopt the competing
risk model to handle multiple time-to-event outcomes. The longitu-
dinal trajectories and themultiple time-to-event outcomes are linked
via the shared functional features. The application of our model on a
real kidney transplant data set reveals the significance of these func-
tional features, and a simulation study is carried out to validate the
accurateness of the estimation method.
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1. Background and introduction

Various studies, such as Levey et al. [11] andWolfe et al. [17], have shown that kidney trans-
plantation prolongs the survival of patients with end-stage renal disease. As patients may
experience acute rejection or graft failure post-transplantation, how to extend the long-
term survival of the kidney graft remains themain scientific question for transplant studies.
If the rate of kidney graft failure can be reduced, the overall patient population would
enjoy a longer survival time. Surrogatemarkers have been proposed to predict kidney graft
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failure. For example, Marcen et al. [12] and Moranne et al. [13] proposed to use the slope
of the GFR trajectories to predict graft failure using a Cox model.

Three key questions pertain to understanding the interconnection between the GFR
trajectories and the long-term transplant outcomes. The first question is how to fit a contin-
uous trajectory from the repeated longitudinal GFR measurements. The second question
is how to model the survival hazard of multiple outcomes/events simultaneously, as kid-
ney recipients post-transplantation are subject to competing risks of transplant failure as
well as death from causes other than transplant failure. The third question is how to iden-
tify the effects of the shape of the longitudinal trajectories on the prediction of multiple
time-to-event outcomes.

To address the first question, several methods have been developed. For example, para-
metric models are commonly used to fit the GFR trajectories, e.g. Marcen et al. [12],
Moranne et al. [13], and Dong et al. [5]. Another alternative is to use a nonparametric
approach. For example, the functional principal component analysis is adopted by Dong et
al. [4] to explore the major sources of variation among the GFR trajectories. The dimen-
sion of the GFR trajectories is effectively reduced and each curve can be represented by
four functional principal components (FPCs). The top four FPCs account for 99.8% of the
total variation.

To address the second question, various survival models have been proposed to handle
competing events. In the competing risk framework, two popular competing risk models
are used. One is the cause-specific hazardmodel proposed by Prentice et al. [14] and Putter
et al. [15], and the other is the subdistribution hazards regression introduced by Fine and
Gray [7]. We model the multiple time-to-event outcomes via the latter approach, which is
based on a reweighted risk set for consistent estimation of the regression coefficients.

To address the third question, the longitudinal outcomes and the time-to-event out-
comes are linked using the FPC scores as the shared latent features. As shown by Dong
et al. [4], the four FPCs relate to four primary patterns of variation within the GFR trajec-
tories. Figure 1 shows the GFR trajectories of four clusters of patients whose trajectories
are dominated by their first, second, third, and fourth FPC scores, respectively. The risk of
kidney transplant failure or death might be different when a patient’s GFR trajectory is flat
versus when the trajectory highly fluctuates. It is thus of interest to explore whether and
how the progression of kidney function differs among these four clusters, and a natural
approach is to use the FPC scores as the shared covariates between the longitudinal model
and the survival model.

Several proposed joint models for longitudinal outcomes and time-to-event outcomes
have been constructed for FPCA. Yao [18] developed a joint model where FPCA is used
to fit the longitudinal trajectories and the longitudinal outcome is treated as a covari-
ate in the Cox regression model. Ding and Wang [3] proposed a joint model that treats
longitudinal outcomes as nonparametricmultiplicative random effects within the Cox pro-
portional hazard framework. However, the two joint models mentioned above can only
accommodate a single time-to-event outcome. A number of joint models have been devel-
oped recently for longitudinal and competing risk data. For example, Hickey et al. [8] has
given the summary for the published joint models with competing-risks event. However,
none of these joint models for longitudinal and competing risk data were set up for FPCA.
It is of interest to determine the relationship between the patient’s progression of kidney
function and the dominant variation patterns of the GFR trajectories in our clinical kidney
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Figure 1. The 4 clusters of observable GFR curves by FPC scores from our preliminary analysis. The thick
blue curve is the average of GFR curves in each panel.

transplantation data. Therefore, we propose a new joint model based on the FPC scores as
the shared latent features between the longitudinal and survival components.

Our model uses functional principal component analysis for the modeling of the lon-
gitudinal measurements and a competing risk subdistribution hazard model for handling
multiple time-to-event outcomes. The main highlight of this paper is that after reflecting
on the three key clinical questions in the kidney transplant studies, we tailor a new joint
model to adequately address them. To the best of our knowledge, the proposed model is
the first to explore the relationship between the pattern of variation of the GFR trajectories
and the patient’s state of survival that is subject to multiple time-to-event outcomes, using
FPC scores as the latent shared features between the longitudinal model and the survival
model.

The rest of this article is organized as follows. The proposed joint model is introduced
in Section 2. We present the estimation method for the proposed joint model in Section 3.
Section 4 demonstrates the application of our joint model in the kidney transplant data.
Section 5 presents a simulation study to investigate the finite sample performances of our
joint model. Conclusions and discussion are given in Section 6.

2. Joint model

Let Ti and Ci respectively denote the event and censoring times for the ith subject, where
i = 1, . . . ,N. Let Yi(t) denote the longitudinal outcome of the ith subject at time t, t ∈
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T , and Zi the covariate vector of the ith subject. We observe Xi = min(Ti,Ci) and the
censoring indicator �i = I(Ti ≤ Ci). Each Ti may correspond to one ofM different event
types, andwe denotemi ∈ (1, . . . ,M) as the index for the observed event types.We assume
that the subjects are independent with each other.

2.1. Longitudinal model

The model for the longitudinal outcome Yi(t) is based on functional principal compo-
nent analysis, which decomposes the underlying random stochastic process into a linear
combination of functional principal components. As mentioned in Dong et al. [4], for the
analysis of GFR curves, the principal component analysis through the conditional expec-
tation (PACE) approach is well-suited for conducting FPCA and handling longitudinal
outcome with possibly missing values and measurement errors. The obtained first 4 lead-
ing FPCs account for a majority of the variation (99.8%). We adopt such an approach for
fitting the longitudinal measurements.

Let Y∗
i (t) = Yi(t) − α̂�Zi be the longitudinal process adjusted for the effects of the

covariates. We decompose Y∗
i (t) as

Y∗
i (t) = μ(t) +

K∑
k=1

ξikφk(t) + εi, i = 1, . . . , n, (1)

where εi are identically and independently distributed normal measurement error terms
withmean 0 and varianceσ 2. The functionφk(t) is the kth functional principal component,
which satisfies

∫
T φk(t)φj(t) = δkj, where δkj = 1 if k = j and 0 otherwise. The ξik is the

associated functional principal component score for the ith subject and the kth component,
which is defined as

ξik =
∫
T

{Y∗
i (t) − μ(t)}φk(t) dt.

The magnitude of ξik represents the degree of similarity between the Y∗
i (t) − μ(t) and

φk(t). The mean and variance of the distribution of ξik are E(ξik) = 0 and Var(ξik) = λk,
where λ1 ≥ λ2 ≥ · · · ≥ 0.

By the Mercer’s theorem, the covariance function between any two time points s and
t in the time-period T , defined as G(s, t) = Cov(Y∗

i (s) − μ(s),Y∗
i (t) − μ(t)), can be

expressed as

G(s, t) =
∞∑
k=1

λkφk(s)φk(t).

As it would be unrealistic to estimate an infinite number of φk(t), in reality, Y∗
i (t) is usually

well approximated by retaining only the first K leading FPCs.
To estimate the FPCs, the first step is to establish smoothed estimates of the mean

and covariance functions. The mean function is obtained by smoothing the data from all
observations based on the one-dimensional local linear smoother [6], and the covariance
function G(s, t) is estimated by a two-dimensional smoother [10,19]. Let μ̂(t) and Ĝ(s, t)
denote the estimated mean trajectory and the estimated smoothed covariance surface.
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To obtain estimates for φk(t) and λk, we solve the eigenequation∫
T
Ĝ(s, t)φk(s) ds = λkφk(t), (2)

with the constraints ‖φk‖2 = 1 and 〈φk,φj〉 = 1 if k = j, and 0 otherwise. The solution
to such an eigenequation φ̂k(t) can be found by applying spectral decomposition to the
discretized covariance surface of Ĝ(s, t).

Let ni denote the number of timepoints on the trajectory of the ith subject. Let φ̂ik and
μ̂i denote the vectors of values of φ̂k(t) and μ̂(t) evaluated at time points of the ith subject,
and let G̃i denote the matrix of values of Ĝ(s, t) evaluated at the two-dimensional grid
consisting of time points of the ith subject. The FPC score of the ith subject and the kth
FPC is computed from the conditional expectation

ξ̂ik = Ê(ξik |Y∗
i ) = λkφ̂

�
k (G̃i + σ̂ 2I)−1(Y∗

i − μ̂i),

where Y∗
i = (Y∗

i1, . . . ,Y
∗
ini)

� is the vector of covariate-adjusted longitudinal data points of
the ith subject, and I is an identity matrix of size ni.

2.2. Competing riskmodel

The competing risk model is well-suited for our analysis of the time to multiple competing
events of interest. Without loss of generality, we consider two types of events, one event
of primary interest, and another event constituting a competing risk. If a competing event
occurs before the event of primary interest, the primary event of interest would no longer
be observable. For example, in the case of our application, kidney failure is the event of
primary interest, whereas death from other causes constitutes the competing event. Cen-
soring of the primary event (kidney failure) is not only due to loss of follow-up but also
due to the competing event (death from other causes).

Due to the existence of a competing event, the usual Kaplan-Meier estimate of the sur-
vival function of the primary event would render biased results. This is because the usual
assumption that any subject with a censored observation will eventually experience the
primary event of interest no longer holds due to the presence of the competing event. If the
competing event occurs prior to the primary event, it would be impossible for the subject
to experience the event of primary interest, thus violating the assumption of the Kaplan-
Meier method. Under the Kaplan-Meier method, the cumulative probability function will
approach one given infinite time of follow-up; whereas under the presence of the compet-
ing risk, there remain a proportion of subjects who are affected by the competing event and
will never experience the event of primary interest.

An alternative to the conventional cumulative probability function under the Kaplan-
Meier method is the cumulative incidence function. Denote m = 1, 2 as the index for
the primary event and the competing event, respectively, and let hm(t) denote the cause-
specific hazard function for themth event type. The cumulative incidence function of the
mth event is

Fm(t) =
∫ t

0
S(s)hm(s) ds,
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where

S(t) = exp
{
−
∫ t

0
(h1(s) + h2(s)) ds

}
.

The survival function S(t) is the probability that the subject survives to time twithout expe-
riencing events 1 or 2. The cumulative incidence function can be regarded as the marginal
subdistribution function of the time-to-event of a given type.

From the cumulative incidence function, the definition of the subdistribution hazard
function is naturally derived as

hm(t) = − d
dt
log (1 − Fm(t)) .

It is worth noting the hm(t) is a better characterization of the cumulative incidence func-
tion as opposed to the cause-specific hazard function hm(t). A transformation involving
the integration of hm(t) would lead to the cumulative incidence function, i.e. Fm(t) =
1 − exp{− ∫ t0 hm(s) ds}, whereas conducting the same transformation on the hm(t) would
render an improper function that lacks meaningful interpretation.

To incorporate the effects of covariates into the subdistribution hazard function and
thus direct effects on the cumulative incidence function, we may impose a proportional
hazards structure on the hazard assumption as

hm(t | ξ i,Zi) = hm,0(t) exp{γ �
mξ i + β�

mZi},

where hm,0(t) is the baseline subdistribution hazard function.
The estimate of the covariate effects in the subdistribution hazard function is not as

straightforward as establishing separate estimations for different causes from the Cox
model. Gray and Fine [7] proposed a reweighted approach on a modified risk set for
consistent estimation of the regression coefficients. To be specific, to adjust for diminish-
ing observability due to censoring, subjects who have experienced a competing event are
retained in the risk set with weight tapering off as time progresses according to a function
that depends on the censoring distribution.

2.3. Model setup

For the longitudinal process, in addition to extracting the major sources of variation via
FPCA, we are interested in the association between the longitudinal outcome and the
covariate vector Zi. For the survival process, it is of interest to model the cumulative inci-
dence function Fm(t | ξ i,Zi) = Pr(T ≤ t,mi�i = m | ξ i,Zi), which is the probability that
the event of type m occurs at or before time t. This is a conditional probability on the
covariate vector as well as the functional principal component scores from the longitudinal
process, denoted as ξ i = (ξ1i, . . . , ξKi)T, where K is the number of FPCs extracted.

We propose the following joint model for the longitudinal outcome Yi(t) and the
subdistribution hazard of multiple competing time-to-event outcomes,{

Yi(t) = μ(t) + �(t)�ξ i + α�Zi + εi,

hm(t | ξ i,Zi) = hm,0(t) exp{γ �
mξ i + β�

mZi}.
(3)
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The first equation represents the model for the longitudinal outcome Yi(t), where μ(t)
is the overall mean function of the longitudinal outcome, �(t) = (φ1(t), . . . ,φK(t))� is
the vector of the functional principal component, ξ i= (ξi1, . . . , ξiK)� the vector of FPC
scores for the ith subject, i.e. �(t)�ξ i =∑K

k=1 ξikφk(t), and α = (α1, . . . ,αP)
T is a vector

of coefficients for the fixed effects of Zi = (Zi1, . . . ,ZiP)T. It should be noted that the usual
Mercer expansion would have K → ∞ and we retain only the top K FPCs that explain
the majority of variation among the longitudinal trajectories. The FPC scores ξ i serve as
the shared features in the survival model, and they link the longitudinal outcome and the
competing time-to-event outcome in the joint model.

The second equation is a competing risk survival model. The subdistribution hazard
function hm(t | ξ i,Zi) is the hazard rate of the conditional cumulative incidence function
Fm(t | ξ i,Zi) for themth competing risk, γm = (γm1, . . . , γmK)T is the vector of coefficients
for the random effects of FPC scores ξ i, and βm = (βm1, . . . ,βmP)

T is the vector of coeffi-
cients for the fixed effects of Zi = [Zi1, . . . ,ZiP]T. We take m = 1 as the primary event of
interest corresponding to the event of kidney transplant failure.

There are several advantages of incorporating the FPC scores as the latent shared fea-
tures in the new joint model. Contrary to the conventional models [18], which use the
longitudinal outcome Yi(t) as a covariate in the proportional hazard structure, the FPC
scores, which represent the pattern of variation in the longitudinal curves, may offer a bet-
ter characterization of the relationship between the longitudinal process and the survival
outcomes. In particular, in the case of the kidney transplant data, prior studies [5] have
identified notable variation in the GFR trajectories, e.g. one group of patients may have
very flat GFR trajectories, whereas another group may exhibit huge variation in the tra-
jectories in terms of shape or slope. It is thus of interest to study the effects of the curve
patterns on the survival incidence function.

3. The estimationmethod

3.1. The joint likelihood functions

This section gives the inference of the proposed joint model. Let (ti,�i,mi�i,Zi,Yi(t))
denote the observations of each subject in the data, where ti is the observed survival
time, mi is the observed event type (1, . . . ,M), �i is the censoring indicator of event,
Zi is the observed covariate, and Yi(t) is the longitudinal outcome. Let Ci be a potential
censoring time, and Ti be the event time. We assume that Xi = min(Ti,Ci), and �i =
I(Ti ≤ Ci). The parameters � = (γ ,β , h0,�, σ 2) need to be estimated from data, where
γ = (γ ,

1 . . . , γM)T, β = (β1, . . . ,βM)T, and� = (λ1, . . . , λK)T and λk is the variance for
the FPC score ξik.

In order to estimate the parameters, we need to construct the joint likelihood functions.
As mentioned in Section 2.1, let Y∗

i (t) = Yi(t) − α̂�Zi be the longitudinal process after
adjusted for the effects of the covariates. We assume that the longitudinal outcome Yi(t)
and the time-to-event Ti are conditionally independent given the latent FPC scores ξ i. The
longitudinal trajectories of Y∗

i (t) can be determined by the FPC score ξi = (ξi1, . . . , ξiK)T

as shown in Section 2.1, so the joint probability density function of Y∗
i (t) and the time-

to-event Ti can be written as the factorization of the density distribution of the FPC score
ξ i and the conditional survival density distribution of Ti on the latent FPC score ξ i. Also,
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we assume that the subjects who are censored at time t should be representative of all the
subjects in that subgroup who remained at risk at time t with respect to their survival
experience. In other words, censoring is independently provided that it is random within
any subgroup of interest. The full likelihood of the full set of parameters under independent
censoring can be given by:

L(�) =
n∏
i=1

M∏
mi=1

{∫
f (Ti,�i,mi�i | ξ i,Zi, γ ,β)f (Y∗

i (t) | ξ i, σ)f (ξ i | �) dξ i

}
, (4)

where the density survival function f (Ti,�i,mi | ξ i,Zi, γ ,β) is given by

f (Ti,�i,mi | ξ i,Zi, γ ,β) = hm(ti | ξ i,Zi, γ ,β)Imi�i=mS(ti | ξ i,Zi, γ ,β)1−Imi�i=m ,

the longitudinal function

f (Y∗
i (t) | ξ i, σ) = (2πσ 2)−

ni
2 exp

{
− 1

2σ 2 (Y∗
i (t) − μi(t))T(Y∗

i (t) − μi(t))
}

and μi(t) = μ(t) +∑K
k=1 ξikφk(t), and the shared latent variable density function of the

FPC score

f (ξ i|�) = (2π |�|)− 1
2 exp

(
− 1

2ξ
T
i �−1ξ i

)
.

For example, we choose the sub-hazard density function for the sub-survival model in the
application example as the following:

f (Ti,�i,mi | ξ i,Zi, γ ,β) =
⎡⎣ exp

{
γ �
mξ i + β�

mZi
}

∑n
j=1 Rj(Ti)wj (Ti) exp

{
γ �
mξ j + β�

mZj

}
⎤⎦Imi�i=m

,

where

Rj(t) =
{
1 if mi �= m
I (Ti ≥ t) if mi = m

and the weighting function

wj(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if t ≤ Ti

0 if t > Ti and �i = 0

Ĝ(t)/Ĝ (Ti) if t > Ti and �i = 1,

where Ĝ(t) is the standard Kaplan-Meier estimator for the censoring distribution

Ĝ(t) =
∏
ti<t

{
1 −

∑n
j=1 I

(
tj = ti∩�i = 0

)∑n
j=1 I

(
tj ≥ ti

) }
.

According to Equation (4), the score function is found to be proportional to

S(�) ≈ ∂(
∑n

i=1 log{
∏M

m=1{
∫
f (TI ,�mi | ξ i,Zi, γ ,β)f (Y∗

i (t) | ξi, σ)f (ξ i | �) dξ i}})
∂�

=
n∑

i=1

∫
∂h(�, ξ i)

∂�
f (ξ i |Ti,�i,Y∗

i (t),�) dξ i, (5)
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where

h(�, ξ i) = log

{ M∏
m=1

f (TI ,�mi | ξ i,Zi, γ ,β)f (Y∗
i (t) | ξi, σ)f (ξ i | �)

}
.

The observed data score vector in formula (5) is expressed as the expected value of
the complete-data score vector with respect to the posterior distribution of the random
effects of ξ . If the score equations in the formula (5) can be solved with respect to
�, with f (ξ i |Ti,�i,Y∗

i (t),�) fixed at the � value of the previous iteration, then it is
an EM algorithm. The proposed algorithm to estimate the parameters will be given in
Section 3.2.

3.2. Parameter estimation

This section is focused on estimating the parameters in the joint-likelihood function. There
are two main challenges to estimate parameters in the joint likelihood functions. One is
the requirement for numerical integration of latent variables ξi when the dimension of
random-effects increases. The other is to estimate the density function f (ξ i | �) because
we don’t have a closed-form for FPC function φk(t). Therefore, we propose to use the
modified two-stage algorithm to estimate the parameters, and the proposed algorithm is
specified as follows:

(1) Stage I
(a) Estimate all the parameters μ̂, the FPC φ̂k, and the FPC score ξ̂ , and σ̂ 2 as shown

in Section 2.1. The vector of random effects ξi is shared between both longitudinal
and survival sub-models. Thereby, we try to reduce the biases from the infor-
mative dropout problem for estimating the random effects parameters. Here the
informative dropout means that there are missing measurements in the longi-
tudinal trajectory Y∗

i (t). These missing measurements can be recovered for all
subjects as

Ŷ∗
i (t) = μ̂(t) +

K∑
k=1

ξ̂ikφ̂k(t) + εi, (6)

where t can be any past or future time points before patient death. In this way, we
can simulate the complete longitudinal measurements Y∗

i (t) in the next step.
(b) Simulate complete measurements of the longitudinal data Y∗

i (t) from Equation
(6), which is based on the estimated mean function μ̂(t), the estimated score
function φ̂k(t), the latent variables ξ̂i and σ̂ 2. The latent variables ξ̂i and σ̂ 2 are
simulated from normal distributions with means and variances estimated from
the observed longitudinal data in the previous step. Using the complete longitudi-
nal measurements, we can reestimate parameters μ̂(t), φ̂k(t), ξ̂i, and σ̂ 2 using the
procedure in (a).. As min(ni) −→ ∞, the estimated parameters in the submodel
will convergence to the estimated parameters obtained from the joint model in
probability as shown in Rizopoulos [16] and Huong et al. [9].



10 JIANGHU (J.) DONG ET AL.

(2) Stage II
After the insertion of the fitted values from stage I, the proposed joint models

become ⎧⎪⎪⎨⎪⎪⎩
Ŷ∗
i (t) = ˆμ(t) +

K∑
k=1

ξ̂ikφ̂k(t) + εi,

hm(t | ξ̂i,Zi) = hm,0 exp[γ T
mξ̂ i + βT

mZi].

(a) Approximate the expected function of the complete data likelihood. After the
fitted values from stage I, the full joint likelihood function is in the following
form:

L(�) =
n∏

i=1

∫ M∏
m=1

({
hm[ti | ξ i,Zi]}Imi�i=m exp

{
−
∫ ∞

0

n∑
i=1

Ri(u)

× hm(u | ξ i,Zi)du

}1−Imi�i=m
⎫⎬⎭
⎞⎠ f (Y∗

i (t) | ξ̂ i, σ̂ )f (ξ̂i | �̂) dξi.

As proven in the papers [9,16], the expected function of the complete data log-
likelihood function can be approximated as in the following when min(ni) −→
∞,

E(l(�)) ≈
n∑

i=1
log

{ M∏
m=1

({
hm[ti | ξ̂ i,Zi]

}Imi�i=m
exp

{
−
∫ ∞

0

n∑
i=1

Ri(u)

× hm(u | ξ̂ i,Zi) du

}1−Imi�i=m
⎞⎠⎫⎬⎭+ log f (Y∗

i (t) | ξ̂ i, σ̂ )

+ log f (ξ̂i | �̂). (7)

(b) Estimate the parameters γ and β for the survival model by maximizing the
approximation of the expected function of the complete data log-likelihood as
in the formula (7).

4. Application: kidney transplant study

A total of 5654 kidney transplant recipients are included in the study from United Net-
work for Organ Sharing (UNOS). Patients may experience kidney transplant failure, death
or remain healthy until the end of their follow-up periods. Among the total 5654 patients,
1590 (28%) patients experience kidney transplant failure and 1735 (31%) patients even-
tually die. A total of 707 (44%) patients die after kidney failure, and 1028 (28%) patients
die with a kidney still functioning. A competing risk model is adopted where the primary
event of interest is the transplant failure and the competing event is death before transplant
failure from other causes. We use the first four FPC scores computed from the functional
principal component analysis on the patients’ longitudinal GFR trajectories as covariates
in the model. In addition, we included additional prognostic covariates such as age, sex,
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Table 1. Summary of Kidney transplanted
recipient characteristics in some kidney
transplant data.

Patient characteristics variables Percentage (%)

Age
18–39 48
40–59 39
≥ 60 13
Sex
Male 59
Female 41
Race
White 61
Black 31
Other 8
Cause of ESRD
Diabetes 32
Hypertension 21
Glomerular disease 29
Polycystic disease 9
Other 9
Kidney donor type
Deceased 78
Living 22

race, cause of end-stage renal disease (ESRD) and kidney donor type. The detailed patient
demographics are shown in Table 1.

4.1. Results: longitudinal submodel

WechooseK = 4 based on theAkaike InformationCriterion (AIC) that takes into account
the joint likelihood of longitudinal and survival models to select the number of principal
components to be extracted. From functional principal components analysis, the 4 lead-
ing functional principal components (K = 4) account for 99.8% of the total variability of
the GFR curves; the first, second, third, and fourth FPCs respectively account for 84.6%,
10.6%, 3.4%, and 1.1%. Although the first 2 FPCs account for 95.24% of the total variation,
the third and fourth ones also contain important information that has potential predictive
value.

The first four functional principal components are as shown in Figure 2. The patterns of
the four leading functional principal component curves are similar to Figure 3 in Dong et
al. [4], which are included in the Appendix. However, the new curves are more robust and
smooth compared with Figure 3 in Dong et al. [4]. The reason is that the joint model can
recover missing longitudinal GFR from survival data whenmodelling the longitudinal and
survival data together. These functional principal component curves have a straightfor-
ward explanation. For example, the first FPC stays flat during the entire follow-up period,
indicating that the largest GFR variation between subjects is the distance of a subject’s
GFR curve to the mean GFR curve. In other words, the degree of how far the curve is
from the mean GFR curve captures the largest variation of the data, and the majority of
patients have a relatively stable trajectory. The second FPC represents the ascent/decline in
the GFR curve. The third and fourth FPCs represent a higher degree of fluctuation in the
GFR curves.
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Figure 2. The first four leading functional principal components that estimated from the observed lon-
gitudinal GFR data and the recovered GFR data by incorporating survival data information when jointly
modelling the longitudinal and survival outcomes.

4.2. Results: competing risk submodel

Table 2 show the hazard ratios of the covariates in the proposed jointmodel withm = 2. All
of the 4 FPC scores are statistically significant for both death and kidney failure outcomes.
The effects of these FPC scores on the hazard are different. For example, the first FPC
score has a negative effect on the hazard while the second FPC score has a positive one.
The clinical interpretations of the effects of FPC scores are as follows. The first FPC score
depicts the main level of the GFR curve, i.e. how far it deviates from the mean. The level of
GFR is related to the state of kidney function, as higher GFR values indicate better kidney
health. A patient with a larger first FPC score has a higher GFR level and thus less likely
to suffer from kidney failure, whereas the one with a smaller first FPC score (and thus
lower GFR level) may be subject to a higher risk of kidney failure. Similarly, the second
FPC score relates to the degree of decline in the GFR curve. A larger second FPC score
indicates a steeper decline and is thus associated with a higher hazard of kidney failure.
The third and fourth FPC scores are also significantly related to the event of interest; they
represent the degree of abnormal fluctuation within the curve. The third and fourth FPC
scores can be used as a guide to identifying those abnormal patients with highly fluctuating
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Table 2. Estimated hazard ratios of kidney failure post kidney transplant (m = 1) in the
joint model with different survival submodels with 95% confidence interval given in
brackets.

Joint model

Competing risk submodel Cox submodel

Covariates Hazard ratio p-value Hazard ratio p-value

Age
18–39 1.00 1.00
40–59 0.68(0.61,0.76) < 0.001 1.61(1.35, 1.92) 0.001
≥ 60 0.47(0.38,0.57) < 0.001 1.49(1.15, 1.93) 0.001
Sex
Male 1.00 1.00
Female 0.89(0.80,0.99) 0.048 0.78(0.66, 0.91) 0.038
Race
White 1.00 1.00
Black 1.39(1.23, 1.55) < 0.001 1.37(1.16, 1.62) < 0.001
Other 0.82(0.66, 1.02) 0.079 0.63(0.44, 0.89) < 0.001
Cause of ESRD
Diabetes 1.00 1.00
Hypertension 0.89(0.74, 0.97) 0.026 0.74(0.61, 0.91) < 0.001
Glomerular disease 0.99(0.85, 1.14) 0.834 0.55(0.44, 0.68) < 0.001
Polycystic disease 0.76(0.60, 0.97) 0.026 0.44(0.31, 0.62) < 0.001
Other 0.90(0.76, 1.07) 0.221 0.56(0.44, 0.71) < 0.001
Kidney donor type
Deceased 1.00 1.00
Living 0.90(0.79,0.99) 0.048 0.84(0.68,1.02) 0.084
FPC score
First FPC score 0.981(0.979, 0.982) < 0.001 0.968(0.965, 0.970) < 0.001
Second FPC score 1.009(1.005, 1.013) < 0.001 1.003(1.000, 1.005) 0.001
Third FPC score 0.976(0.969, 0.983) < 0.001 0.964(0.953, 0.975) < 0.001
Fourth FPC score 0.993(0.974, 1.000) 0.050 0.972(0.946, 0.999) 0.048

GFR curves. The significance of the FPC scores indicates that the conventional proposal
in the literature [12,13] to assume that the change of the GFR curves is primarily linear
might result in an incomplete depiction of the variation within the GFR curves as well as
its effects. Such a simplified assumption may lead to biased findings.

As a comparison, Table 2 also displays estimation results under the Coxmodel. The Cox
model attempts to answer a different question from the competing risks model. Under a
Cox model, all patients who die before kidney failure are regarded as censored. The effect
identified in the Cox model can be interpreted as the association between a covariate and
the hazard rate of kidney failure in patients who have not experienced either kidney failure
or death. On the other hand, under a competing risks model, the covariate effect is inter-
preted as the degree of association to the instantaneous rate of kidney failure given that the
patient has either been healthy and never experienced kidney failure, or has died and could
never possibly have kidney failure. The issue addressed by the Coxmodel refers to the risks
of kidney failure that could be expected if a patient lives long enough, instead of, as with
the competing risks model, the actual risk of kidney failure. The Coxmodel might bemore
suitable for understanding the etiological association between the covariates and the event
of kidney failure; whereas the competing risks model is more relevant for prediction and
allocation of resources as it focuses on the actual risk of the event occurring.

Regarding the effect of age, we observe an interesting pattern. Specifically, under the
Cox model, the older age group has a hazard ratio greater than 1, indicating that from
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an etiological perspective, older patients are more likely to experience kidney failure. On
the contrary, under the competing risks model, the hazard ratio of the older age group is
smaller than 1, i.e. relative to the age group of 18 to 35, patients who are in age groups of
40 to 59, and 60 or above have hazard ratios equal to 0.68 and 0.47, respectively. This is
possibly due to the fact that young patients are more likely to have kidney failure before
death because they tend to live long enough until the occurrence of kidney failure, while
old patients are less likely to experience a kidney failure becausemore often than not, death
occurs before kidney failure.

The relationships of the time-to-event outcomes with the rest of the covariates have
reasonable clinical interpretations. For example, female patients are less likely to experience
a kidney failure event compared with male patients. Compared with patients whose donor
is deceased, patients who have a living donor transplant are less likely to experience kidney
failure.

5. Simulation study

We evaluate the estimation accuracy of our joint model under simulated scenarios. As the
primary focus is the functional component of the joint model, for simplicity, we assume
that there are no baseline covariates Zi. A FPCA model with no covariates is used to
simulate the longitudinal trajectories,

Yi(t) = μ(t) +
K∑

k=1

ξikφk(t) + εi,

where K = 4 and the mean function μ(t) and the eigenfunctions φk(t) are given as the
ones estimated from the kidney transplant data. The measurement error εi are assumed to
follow N(0, 0.85), and the FPC scores follow the distributions ξik ∼ N(0, σ 2

k ), where k =
1, . . . , 4, and σ1 = 16, σ2 = 8, σ3 = 4, σ4 = 1. For each subject, the scheduled repeated
measurement times are set at a grid sequence of (1, . . . ,Ti), whereTi is the event time. Each
cohort has a maximum follow-up time of 10. The time to the primary event is assumed to
follow a log-normal distribution, and the time to the competing risk event is assumed to
follow a Weibull distribution. The hazard for the time-to-event Ti is specified as

hm(t | ξi) = h0m(t) exp(γm1ξi1 + γm2ξi2 + γm3ξi3 + γm4ξi4), m = 1, 2.

The censoring times were simulated from a uniform distribution in the interval (0, 10), the
censoring rate about 40%, and the number of repeated longitudinal measurements per per-
son is greater than 3. We generate data cohorts in two scenarios where (γ11, γ12, γ13, γ14)
and (γ21, γ22, γ23, γ24) take different values. As the estimation accuracies of the two event
types are similar, only results for the estimation for the primary competing risk, i.e.
(γ11, γ12, γ13, γ14), are presented. Table 3 displays the estimates, standard errors, and cov-
erage probabilities for the two scenarios. It is evident that the estimation is quite accurate
as the estimates are close to the true values. The empirical standard deviations of the esti-
mates are also close to the average standard errors, corroborating the correctness in our
estimation. The empirical coverage probabilities are slightly lower than the nominal levels
of 95% and 99%; this could be due to the stage-wise nature of our estimation procedure. In
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Table 3. Means, empirical standard deviations (SD), average stan-
dard errors (SE), and the 95% and 99% empirical coverages in two
different scenarios. Each scenario has 100 simulation replicates and
100 subjects in each replicate.

Parameters γ11 γ12 γ13 γ14

Scenario 1
True value 1.000 1.000 1.000 1.000
Estimate 1.014 0.986 1.021 0.974
Empirical SD 0.127 0.212 0.131 0.132
Average SE 0.121 0.208 0.127 0.128
Empirical coverage(95%) 0.932 0.946 0.938 0.937
Empirical coverage(99%) 0.974 0.986 0.978 0.973

Scenario 2
True value −1.000 0.850 −0.750 0.500
Estimate −0.985 0.844 −0.739 0.484
Empirical SD 0.131 0.112 0.196 0.114
Average SE 0.128 0.107 0.189 0.105
Empirical coverage(95%) 0.935 0.946 0.941 0.941
Empirical coverage(99%) 0.982 0.992 0.981 0.987

general, the model is proven to render satisfactory performance in terms of the estimation
accuracy.

6. Conclusion and discussion

This paper proposed a joint model that includes a longitudinal FPCA submodel and a
competing risk submodel, with shared latent functional features. The competing risk sur-
vival submodel can incorporate hazard ratios ofmultiple time-to-event outcomes.We have
demonstrated the usefulness and applicability of the proposed joint model on a real kidney
transplant data set. The main results from the application reveal meaningful clinical find-
ings. The finite sample performance of the proposed method is verified in the simulation
study.

One possible direction of future research relates to the stage-wise approach we adopted
to estimate the coefficients. Compared with the regular approach based on seeking the
maximizer of the complete data likelihood via the expectation-maximization algorithm,
the stage-wise approach tremendously reduces the computational burden as it no longer
requires computing integral via quadratures. Therefore, the stage-wise procedure is one of
common approaches for joint models, and the improvements of stage-wise approaches for
jointmodels have been developed in the literature [1,2,9,20,21]. Ye andWu [20] andHuong
et al. [9] have proved the asymptotic equivalence between the stage-wise estimates and
the estimates obtained from the complete data likelihood and expectation-maximization
algorithm. Possible improvement in parameter estimation might be achieved in the mod-
ified stage-wise EM approach in the future.
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Appendix

For comparison with the patterns of the four leading FPCs, Figure 3 in Dong et al. [4] is copied here
for the convenience of the readers.

Figure A1. The first four leading functional principal components (FPCs) that estimated from functional
principal components analysis in the paper [4].
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