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Semiparametric Mixed-Effects Ordinary
Differential Equation Models with

Heavy-Tailed Distributions
Baisen Liu, Liangliang Wang, Yunlong Nie, and Jiguo Cao

Ordinary differential equation (ODE) models are popularly used to describe complex
dynamical systems. When estimating ODE parameters from noisy data, a common dis-
tribution assumption is using the Gaussian distribution. It is known that the Gaussian
distribution is not robust when abnormal data exist. In this article, we develop a hierarchi-
cal semiparametric mixed-effects ODE model for longitudinal data under the Bayesian
framework. For robust inference on ODE parameters, we consider a class of heavy-tailed
distributions to model the random effects of ODE parameters and observations errors.
An MCMC method is proposed to sample ODE parameters from the posterior distri-
butions. Our proposed method is illustrated by studying a gene regulation experiment.
Simulation studies show that our proposed method provides satisfactory results for the
semiparametric mixed-effects ODE models with finite samples.

Supplementary materials accompanying this paper appear online.

KeyWords: Metropolis–Hastings;Abnormal data; Scalemixture ofmultivariate normal
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1. INTRODUCTION

Ordinary differential equations are widely used to model complex dynamical systems in
many areas of science and technology. For example, ODE models have been used in the
study of reconstruction of transcription factor activity for gene regulatory activities (Khanin
et al. 2007; Rogers et al. 2007; Nie et al. 2019). Although ODE models are often proposed
based on expert knowledge of the dynamical process of interest, the solver of the ODE relies
heavily on the ODE parameters and the values of the ODE parameters are rarely known.
It is an important but challenging statistical problem to estimate the ODE parameters from
observational (noisy) data since that most ODEs have no analytic solutions and it is often
computationally intensive to solve ODE numerically.
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For estimating the ODE parameters, many efficient methods have been developed. For
instance, Liang andWu (2008) developed a two-step method using local polynomial regres-
sion. Ramsay et al. (2007), Cao and Ramsay (2007), and Cao et al. (2008) proposed a
generalized profiling approach to estimate the ODE parameters. Cao et al. (2011) proposed
a robust method for estimating ODE parameters when the data have outliers. Hall and Ma
(2014) suggested a class of fast, easy-to-use, genuinely one-step procedures for estimating
unknown parameters in dynamical systemmodels. Brunel et al. (2014) developed a gradient
matching approach for estimating ODE parameters. Zhang et al. (2015) proposed a least
squares approximation method for ODEmodel selection. In the Bayesian framework, many
researches have been made for estimating the ODE models; for example, Campbell and
Steele (2012) proposed a Bayesian smooth functional tempering method for the ODE mod-
els; Bhaumik and Ghosal (2015) considered a Bayesian two-step estimation approach; Dass
et al. (2017) suggested a Laplace approximation method for obtaining the posterior infer-
ence of ODE parameters; and Liu et al. (2018) proposed a stochastic approximation Monte
Carlo method for estimating ODE models when the likelihood has multiple local modes,
among others. However, all of the above methods assume that the data are collected for one
individual dynamical process and cannot address the problem when multiple individuals
dynamical processes are observed.

When the dynamical process are measured for multiple subjects, mixed-effects ODE
models are developed to include random effects to account for the within-subjects correla-
tions in the models. For instance, Huang and Wu (2006) studied a parametric hierarchical
HIV dynamic model and provided an MCMC algorithm to sample from the posterior dis-
tribution of ODE parameters. Guedj et al. (2007) used the maximum likelihood approach
directly to estimate unknown parameters in mixed-effects ODE models. Fang et al. (2011)
proposed a fast two-stage estimating procedure for mixed-effects dynamical systems and
applied it to analyze longitudinalHIVvirus data.Wang et al. (2014) proposed a semiparamet-
ric method to estimate a mixed-effects ODE model for the HIV combination therapy study.
A common fundamental assumption of aforementioned methods is that the observations for
the dynamical process follow a normal distribution, but this assumptionmay lack robustness
when abnormal data exist, which may lead to biased inference. Liu et al. (2019) proposed an
MCMC method to estimate the mixed-effects ODE model using heavy-tailed distributions.
On the other hand, the aforementioned papers only studied the parametric mixed-effects
ODE models, while the semiparametric dynamic system which includes time-varying coef-
ficients inODEmodels can havemany valuable applications, especially in gene transcription
experiments in which the regulatory activity of the transcriptional factor is often modeled
by a varying function over time [see Eq. (4.1) in Section 4].

To introduce the motivation of this paper, we revisit the experiment that studies statistical
reconstruction of transcription factor activity (TFA) from time-course gene expression data
(Khanin et al. 2007; Rogers et al. 2007). It is a central but difficult problem to link tran-
scription factors (TFs) to their target genes in post-genomic biology, since that the changes
in the expression of a TF are subtle and its activity is often controlled at levels of other than
expression, for example, via post-transcriptional and post-transcriptional modifications.

Under the log-normal noise assumptions, Khanin et al. (2007) made statistical inference
on the ODE parameters using a conjugate gradient method, and Rogers et al. (2007) devel-
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Figure 1. The histogram and the normal Q–Q plot of the obtained residuals assuming normal distributions for
observations and random effects in the gene regulation ODE model (4.1) with the fission yeast cells.

oped a fully Bayesian approach to reconstruct the functional TFA from time-course gene
expression data. However, this assumption may lack the robustness against departures from
normality and/or abnormal data. Fig. 1a displays the histogram of the obtained residuals for
the semiparametric mixed-effects gene regulation ODE model (4.1) by assuming that the
observations errors and random effects both follow normal distributions. It seems that the
obtained residuals present a heavy-tailed feature. This is also confirmed by the normal Q–Q
plot of the residuals shown in Fig. 1b. In addition, the p-value from the Shapiro–Wilk test
is 4.232 × 10−11. Thus, a normal distribution assumption is quite doubtful and may be too
restrictive to provide an accurate inference of ODE models.

To account for this departure from normality, we propose to apply the scale mixture
of multivariate normal (SMN) distributions (Andrews and Mallows 1974), to model the
observations errors of the dynamical process and random effects of ODE parameters. The
SMN distributions are flexible heavy-tailed distributions which include the multivariate
normal distribution as a special case. In the literature, the SMN distributions have been
extensively applied to regression models (Lange and Sinsheimer 1993; Liu 1996), linear
mixed-effects models (Choy and Smith 1997; Rosa et al. 2004) and nonlinear mixed-effects
models (Meza et al. 2012; De la Cruz 2014), to obtain robust estimates against outlying
observations. In this article, we intend to pursue the robust inference of the ODEs model
based on the SMN distributions.

This article has three main contributions. (i) We develop a hierarchical semiparametric
mixed-effects ODE model which considers the within-subject and between-subject varia-
tions simultaneously and makes the statistical inference by borrowing more information
from all subjects. (ii) Our model applies a class of heavy-tailed distributions for random-
effect ODE parameters and observations errors for the dynamical process, which is robust
against the atypical subjects and the abnormal observations within individual subjects. (iii)
Our proposed method can detect the subjects which are atypical or have abnormal observa-
tions by estimating latent parameters in the model.
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The remainder of this article is organized as follows. Section 2 briefly reviews the scale
mixture of multivariate normal distributions. Section 3 introduces our proposed hierarchical
semiparametric mixed-effects ODE models and provides a Bayesian estimation method.
Section 4 demonstrates our proposed method in comparison with the conventional method
by studying the reconstruction of transcription factor activity from a set of real time-course
gene expression measurements. Section 5 evaluates the finite sample performance of our
proposed method using some simulation studies. We end this article with conclusions and
some discussion of future research in Sect. 6. TheMATLAB code for our simulation studies
can be downloaded at https://www.github.com/caojiguo/SMODE.

2. SCALE MIXTURE OF MULTIVARIATE NORMAL
DISTRIBUTIONS

The class of SMN distributions consists of a group of heavy-tailed distributions and has
been applied to make robust inference in the statistical analysis. In this section, we provide
some brief knowledge of the SMN distributions. More details refer to the book of Azzalini
and Capitanio (2014).

Letμ be anm-dimensional vector and� be anm×m positive definite symmetric matrix.
Anm-dimensional random vectorY is said to follow a scale mixture of multivariate normal
distribution, if it has a probability density function

p(y|μ,�, ν) = 1√|2π�|
∫ ∞

0
um/2 exp(−uD2(y)

2
)dH(u|ν), (2.1)

where D2(y) = (y − μ)T�−1(y − μ), and H(u|ν) is a univariate probability distribution
function which depends on a scalar- or vector-valued parameter ν and satisfies H(0|ν) =
0. We use the notation Y ∼ SMNm(μ,�, H) to indicate that Y has the density (2.1).
This class of distributions is flexible and includes many symmetric distributions as special
cases, for instance, the normal, the Student’s t , etc. When the mixture distribution function
H is degenerate, SMNm(μ,�, H) reduces to the usual multivariate normal distribution
Nm(μ,�).

Let Z ∼ Nm(0,�) be an m-dimensional random variable and U ∼ H(u|ν) be an
independent mixture variable. The SMN distributed random variables Y can be written as
Azzalini and Capitanio (2014)

Y = μ +U−1/2Z. (2.2)

From (2.2), applying the iterative law of expectations, the mean and covariance of Y are
given, respectively, by

E(Y) = E[E(Y|U )] = μ,

and

Cov(Y) = E[Cov(Y|U )] + Cov[E(Y|U )] = E(U−1)�. (2.3)

https://www.github.com/caojiguo/SMODE
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Trivially, when E(U−1) < ∞, Y has a finite positive definite covariance matrix.
In fact, a more convenient stochastic representation is to use the following hierarchical

representation (De la Cruz 2014)

Y|U ∼ Nm(μ,U−1�), U ∼ H(u|ν). (2.4)

A special distribution of the SMN class is the multivariate t distribution (Lange et al. 1989)
that has been extensively applied in robust regressions. In the rest of this paper, we use
the notation Ga(α, β) to denote a Gamma distribution with shape parameter α and rate
parameter β, which has the following density

p(x |α, β) = βα

�(α)
xα−1 exp(−βx), x > 0.

Then, the multivariate t distribution is obtained by assuming that U ∼ Ga(ν/2, ν/2) in
(2.4), where the parameter ν corresponds to the degrees of freedom of the multivariate
Student’s t distribution. If further letting ν → ∞, the Gaussian distribution is recovered.

3. ESTIMATING SEMIPARAMETRIC MIXED-EFFECTS ODE

3.1. BAYESIAN FRAMEWORK

Consider the dynamical process Xi (t) for the i-th subject, i = 1, . . . , n, which is defined
by

dXi (t)

dt
= F(Xi (t)|η(t), θ i ), (3.1)

where t is continuous in some interval [0, T ], F is a known function, η(t) is the population
time-varying function, and θ i is aq-dimensional vector of individualODEparameters for the
i-th subject. Without loss of generality, we assume that Xi (t) is one-dimensional dynamical
curve in this article. We also assume that the subject-specific ODE parameters are expressed
as θ i = ξ + bi , where ξ is a q-dimensional fixed effect and bi is a q-dimensional random
effect. Let Yi = (yi1, . . . , yini )

T denote the vector of observations or measurements for the
i-th subject at the observation times ti = (ti1, . . . , tini )

T and Xi = (Xi (ti1), . . . , Xi (tini ))
T

with Xi (t) being the solution of the ODE (3.1) conditional on {Xi (0), η(t), θ i }. Generally,
we assume thatYi = h(Xi )+εi , where h(·) is a known function (e.g., h(·) = log(·) in many
statistical analysis) and εi are measurement errors. In conventional methods, a common
assumption is that the random effects bi and the data errors εi both follow the multivariate
normal distributions. However, as discussed in Sect. 1, such normality assumptions are
vulnerable in the presence of atypical observations, which can seriously affect the estimation
accuracy of the mixed-effects ODE model. Thus, more flexible distributions are necessary
to replace the normality assumption. To this aim, we propose to use the scale mixture of
multivariate normal distributions for ODE random effects bi and within-subject data errors
εi . In other words, we assume bi ∼ SMNq(0,�, H1) and εi ∼ SMNni (0, σ

2
ε Ini , H2)

where � is an unknown positive definite symmetric matrix.
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Applying the stochastic representation (2.4), the ODE model of interest is presented as
the following hierarchical structure

Yi |θ i ,Ui
ind.∼ Nni (h(Xi |θ i , η(·)),U−1

i σ 2
ε Ini ) ,

θ i |Wi
ind.∼ Nq(ξ ,W−1

i �) ,

Ui
ind.∼ H1(·|ν) ,

Wi
ind.∼ H2(·|κ) ,

(3.2)

whereUi andWi are two latent variableswith distributions H1(·|ν) and H2(·|κ), respectively.
One popular choice for the latent variable distribution H1 (and H2) is to use the gamma
distributions (Azzalini and Capitanio 2014). For example, in this article, we assume that
Ui ∼ Ga(ν/2, ν/2) with the shape parameter ν/2 and the rate parameter ν/2, which leads
to a multivariate t distribution for Yi . Similarly, we assume that Wi ∼ Ga(κ/2, κ/2)
with the shape parameter κ/2 and the rate parameter κ/2, which leads to a multivariate t
distribution for θ i . When Ui and Wi have degenerate distributions, model (3.2) reduces to
the conventional model with the normal distribution assumption. However, when someU−1

i
has a large value, it indicates that the i-th subject may have outlying observations. When
someW−1

i has a large value, it indicates that the i-th subject may be an atypical subject with
outlying ODE parameters. This outlier detection will be demonstrated in our applications
in Sect. 4. Hence, our proposed model (3.2) is more flexible than the conventional model
with the normal distribution assumption.

We estimate the time-varying parameter η(t) using a linear combination of spline basis
functions:

η(t) =
J∑

l=1

φl(t)ζl = ζTφ(t) , (3.3)

where φ(t) = (φ1(t), . . . , φJ (t))T is a vector of basis functions with dimension J , and
ζ = (ζ1, . . . , ζJ )

T is the corresponding vector of basis coefficients. In this article, we
choose cubic B-splines as basis functions for expanding η(t), and the smoothness of η(t) is
controlled by penalizing the difference of adjacent B-splines coefficients. In the Bayesian
framework, this penalization is conveniently implemented by assuming a kth-order random
walk prior on the splines coefficients ζ1, . . . , ζJ (Lang and Brezger 2004). The first-order
random walk is defined as

ζl = ζl−1 + el , l ≥ 2, (3.4)

with el ∼ N (0, λ−1
η ) and a diffuse prior ζ1 ∝ constant . The second-order random walk is

defined as

ζl = 2ζl−1 − ζl−2 + el , l ≥ 3, (3.5)

with el ∼ N (0, λ−1
η ), and adiffuse prior ζ1 ∝ constant and ζ2 ∝ constant . The smoothness

of η̂(t) is controlled by the additional parameter λη > 0. In this article, we apply the second-
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order randomwalk prior (3.5). To avoid the possibility of improper posteriors of ζ , we assign
weakly informative priors on (ζ1, ζ2): ζ1 ∼ N (0, 100) and ζ2 ∼ N (0, 100). Then, the prior
of ζ can be equivalently written in the following form

p(ζ |λη) ∝ λ(J−2)/2
η exp

(
−1

2
ζTM(λη)ζ

)
, (3.6)

where M(λη) = diag(0.01, 0.01, ληD2DT
2 ) with

D2 =

⎛
⎜⎜⎜⎜⎝

1 −2 1 0 0 · · · 0
0 1 −2 1 0 · · · 0
...

...
...

...
... · · · ...

0 0 0 0 0 · · · 1

⎞
⎟⎟⎟⎟⎠

(J−2)×J

. (3.7)

The unknown parameter λη is assigned a hyper-prior Ga(aλ, bλ) with the pre-specified
values of the hyper-parameters (aλ, bλ).

In nonparametric regressions, the number of spline coefficients, J ,maypotentially impact
the fitted results. In the Bayesian scheme, there are two approaches to deal with the choice
of J . One is fixing J , and the other is treating J as an unknown variable to be estimated (for
example, using the reversible jump MCMC algorithm, see Biller and Fahrmeir 2001). Lang
and Brezger (2004) compared these two methods and found that the approach that fixes J
performed better for functions with moderate curvature, while the approach that treats J
as random performed better for highly oscillating functions. In this article, J is fixed and
pre-determined in our approach [generally from 20 to 40, see Lang and Brezger (2004)].
The simulation results showed that our method is robust on the choice of J , see Figure S5
in the Supplementary file.

Define 
 = (θT1 , . . . , θTn )T and let U = (U1, . . . ,Un)
T andW = (W1, . . . ,Wn)

T be the
latent variables. Then, the joint likelihood is given by

L(Y,
,U,W|ζ ,�, ξ , σ 2
ε , ν, κ) =

n∏
i=1

Li (Yi , θ i ,Ui ,Wi |ζ ,�, ξ , σ 2
ε , ν, κ),

where Li (·|·) is the likelihood function of the i-th subject, that is,

Li (Yi , θ i ,Ui ,Wi |ζ ,�, ξ , σ 2
ε , ν, κ) = Li (Yi ,Ui |θ i , ζ , σ 2

ε , ν)Li (θ i ,Wi |ξ ,�, κ),

with

Li (Yi ,Ui |θ i , ζ , σ 2
ε , ν) = p(Yi |Ui , θ i , ζ , σ 2

ε )H1(Ui |ν),

and

Li (θ i ,Wi |ξ ,�, κ) = p(θ i |ξ ,�,Wi )H2(Wi |κ).
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To complete the Bayesian specification of the proposed model, the following prior dis-
tributions are assigned: σ−2

ε ∼ Ga(a0, b0), ξ ∼ N (ξ0,�0) and � ∼ IW (S0, d f ), where
the Gamma distribution Ga(a0, b0) has the shape parameter a0 and the rate parameter b0,
and the inverse Wishart distribution IW (S0, d f ) has the scale matrix S0 and degrees of
freedom d f . The hyper-parameters a0, b0, ξ0, �0, S0 and d f are pre-specified. The priors
for ν and κ depend on which distributions chosen for H1(·|ν) and H2(·|κ). If both H1(·|ν)

and H2(·|κ) are chosen as gamma distributions, then the values of ν and κ must be chosen
to ensure E(U−1) < ∞ and E(W−1) < ∞ which further lead to both Yi and θ i have
finite positive definite covariance matrices. For convenient conjugacy, in this article, we
specify the priors of ν and κ as truncated exponential priors, λν exp(−λν · ν)I (ν > 2.0)
and λκ exp(−λκ · κ)I (κ > 2.0), with pre-specified values λν and λκ , respectively.

The joint posterior distribution of the parameters of the model conditional on the data
is obtained by combining the joint likelihood and the prior distributions using the Bayes’
theorem. The full conditional posterior distributions are sampled using the Monte Carlo
methods which are presented in the Supplementary file.

3.2. MODEL COMPARISONS

To determine the best fitting model in a class of candidate models, in this article, we
apply two common measures of model adequacy: the deviance information criterion (DIC;
see, Spiegelhalter et al. 2002; Celeux et al. 2006) and conditional predictive ordinate (CPO;
see, Chen et al. 2000). In this section, we briefly review the theory of DIC and CPO under
a general Bayesian hierarchical framework.

The DIC has been extensively applied in Bayesian statistics, which measures the fit and
the complexity of the candidate model. Suppose that y = (y1, . . . , yn)T is a sample with the
probability distribution function f (y|ϑ) which depends on the parameter vector ϑ . Then,
the deviance is given by

D(ϑ) = − 2 log f (y|ϑ) + 2 log g(y),

where g(y) is some fully specified normalized term. Define the effective number of param-
eters

pD = D(ϑ) − D(ϑ̄),

where D(ϑ) is the posterior mean deviance which is defined as

D(ϑ) = Eϑ |y[D(ϑ)] = Eϑ |y[−2 log f (y|ϑ)] + 2 log g(y),

and ϑ̄ is a posterior mean estimate of ϑ depending on y. Then, the DIC statistic is defined
as

DIC = D(ϑ) + pD = 2D(ϑ) − D(ϑ̄). (3.8)

A smaller DIC value indicates a better model.
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The CPO is a Bayesian diagnostic tool which is based on leave-one-out-cross-
validation. The CPO can be used to detect the surprising observations. Let y−i =
(y1, . . . , yi−1, yi+1, . . . , yn)T which is obtained from the sample y after omitting yi . The
CPO for yi is defined as

CPOi = f (yi |y−i ) = f (y)
f (y−i )

=
∫

f (yi |ϑ, y−i )p(ϑ |y−i )dϑ, (3.9)

which gives the predictive distribution of each data point conditional on the remainder of the
data. Since that CPOi involves a multiple integration, we estimate it based on the MCMC
samples of ϑ (Carlin and Louis 2008). Let ϑ1, . . . ,ϑM be the posterior samples from the
posterior distribution p(ϑ |y) with the size M after the burn-in. A Monte Carlo estimate of
CPOi is given by

̂CPOi =
{

1

M

M∑
�=1

1

f (yi |ϑ�)

}−1

,

where {ϑ�}M�=1 are the posterior samples of ϑ (De la Cruz 2014). More conveniently, a

common summary statistic of CPOi ’s is defined as B = ∑n
i=1 log(̂CPOi ), which is often

called the logarithm of the pseudo-Bayes factor. A larger value of B indicates a better model.

4. APPLICATION: GENE REGULATION STUDY

In this study, we consider the cell-cycle microarray data of S. pombe or fission yeast
(Rustici et al. 2004)which studied three transcription factors that were involved in regulating
three different groups of genes in the fission yeast cell cycle. A single input motif (SIM) is a
class of small regulatory subnetwork which consists of one transcription factor regulating a
set of i = 1, . . . , n target genes. In this article, we only analyze one SIM, but our proposed
model can be extended to multiple SIMs. Rustici et al. (2004) studied a SIM with one
transcription factor, Sep1p and 14 target genes. In addition, gene ace2, which is also coded
as Ace2p, is known to be the target gene of Sep1p (Bahler 2005). Hence, we include gene
ace2 in the SIM as another target gene. Thus, we have totally 15 target genes regulated by
the same transcription factor, Sep1p.

The expressions of all genes aremeasured at 20 equally spaced timepoints on [0, 285]. Let
Xi = (Xi (ti1), . . . , Xi (tini ))

T be the expressions of the i-th gene at the common observation
time points ti = (ti1, . . . , tini )

T. Let Yi = (yi1, . . . , yini )
T be the logarithms of noisy

measurements of gene expressions with ni = 20. As discussed in Sect. 1, it is doubtful that
Yi follows a multivariate normal distribution. Therefore, in this article, we assume that Yi

follows the scale mixture of multivariate normal distributions SMNni (logXi , σ
2
ε Ini , H1),

where H1 is a gamma distribution with the shape parameter ν/2 and rate parameter ν/2.
This is equivalent to assume a hierarchical structure Yi |Ui ∼ Nni (logXi ,U

−1
i σ 2

ε Ini ) and
Ui ∼ Ga(ν/2, ν/2).
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One of the often-used semiparametric gene regulation dynamical systems is given by
Khanin et al. (2007) and Rogers et al. (2007)

dXi (t)

dt
= αi + βi

η(t)

η(t) + γi
− δi Xi (t), i = 1, . . . , n, (4.1)

where η(t) is the activity function of the transcriptional factor, Sep1p. To remove the positive
constraints on the ODE parameters (αi , βi , γi , δi )

T, they are reparameterized in the loga-
rithmic scales. Besides, the initial condition Xi (0) is assumed unknown and also estimated
togetherwith theODEparameters. Let θ i = (log(Xi (0)), log(αi ), log(βi ), log(γi ), log(δi ))T.
We assume that θ i follows the scale mixture of multivariate normal distribution
SMN5(ξ ,�, H2), where ξ = (log(X (0)), log(α), log(β), log(γ ), log(δ))T and H2 is a
gamma distribution with the shape parameter κ/2 and the rate parameter κ/2. This is equiv-
alent to the hierarchical structure: θ i |Wi ∼ N5(ξ ,W−1

i �) and Wi ∼ Ga(κ/2, κ/2).
For the identifiability problem, we rescale the transcriptional factor activity η(t) to satisfy

η(0) = 1. We use cubic B-spline basis functions with 20 equally spaced knots on [0, 285].
Then, η(t) is approximated by a linear combination of B-spline basis functions:

η(t) = exp{φ0(t)ζ0 +
J∑

l=1

φl(t)ζl} = exp{φ0(t)ζ0 + ζTφ(t)},

where φ(t) = (φ1(t), . . . , φJ (t))T, ζ0 and ζ = (ζ1, ζ2, . . . , ζJ )
T are the corresponding

basis coefficients. The property of B-spline basis functions allows that η(0) = 1 is equiv-
alent to ζ0 = 0. We assign a prior for other basis coefficients ζ1, . . . , ζJ : p(ζ |λη) ∝
λ

(J−2)/2
η exp(− 1

2ζ
TM(λη)ζ ) where M(λη) = diag(0.01, 0.01, ληD2DT

2 ) and D2 is given
by (3.7).

We set a gamma prior Ga(0.01, 0.01) for σ−2
ε , a gamma prior Ga(1, 0.01) for λη, an

inverse Wishart prior IW (S0, f0) for � and a multivariate normal prior N5(ξ0,�0) for ξ .
Moreover, we chose the following values for the hyper-parameters: ξ0 = (0, 0, 0, 0, 0)T,
S0 = diag(10, 10, 10, 10, 10), �0 = diag(1000, 1000, 1000, 1000, 1000), and f0 = 6. For
the hyper-priors of ν and κ , we choose 1

3 exp(− ν
3 )I (ν > 2.0) and 1

3 exp(− κ
3 )I (κ > 2.0).

We compare our proposed SMNmodel which assumes both the individual ODE parame-
ters and the observations errors to follow the scalemixture ofmultivariate normal distribution
with the conventional normalmodel which assumes both the individual ODEparameters and
the observations errors to follow the normal distributions. To improve mixing convergence
of the posterior samples, the adaptive proposals are applied in the Metropolis–Hastings
algorithm. The details are provided in Section S1 of the Supplementary document. For
each of SMN model and normal model, the proposed MCMC algorithm is run for 150,000
iterations. With the ‘burn-in’ of the first 50,000 iterations, the samples of (α, β, γ, δ)T are
chosen with a lag of size 20 from the rest of Markov chains under each of the models. The
convergence of the MCMC chains was monitored using trace plots and Gelman–Rubin con-
vergence diagnostic (R̂). We report the results of the convergence diagnostic results in Table
S1 of the Supplementary document. Gelman and Rubin (1992) suggested that diagnostic R̂
values greater than 1.2 for any of the model parameters should indicate non-convergence.
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Here, we use a rule of R̂ < 1.1 to declare convergence of the Markov chains. All these diag-
nostics indicate a good convergence of the Markov chains. We calculate the values of the
DIC using the formula (3.8) and the pseudo-Bayes factor B = ∑n

i=1 log(̂CPOi ) based on
the formula (3.9). The results are: For the SMNmodel, DIC = − 2186.90 and B = 174.16,
whereas for the normal model, DIC = − 1502.30 and B = 146.04. Obviously, our pro-
posed model using the SMN model has a smaller value of DIC and a large value of the
logarithm of the pseudo-Bayes factor B = ∑n

i=1 log(̂CPOi ) than the conventional model
using the normal distribution, which indicates that our proposed model is better. The values
of CPOi for each individual are calculated and reported in Table S2 of the Supplementary
document. Obviously, the overall CPO is driven by a few overly influential values under the
multivariate normal model, e.g., the 12th gene. In contrast, the influence of those points is
greatly attenuated by assuming a scaled mixture of normal distributions. As the requirement
of a referee, we also calculate CPOi using the bridge sampling method (Meng and Wang
1996) and the results are: For the SMN model, B = 702.24, whereas for the normal model,
B = 110.57, which further demonstrated that the SMN model is better than the normal
model.

Table 1 shows the posterior means, the standard errors and the corresponding 95% equal-
tail credible intervals for the fixed effects (α, β, γ, δ)T in our proposed model. Table 2
displays the estimated latent parameters in the gene regulation mixed-effects ODE model
(4.1) under the assumption that the individual ODE parameters and observations errors
follow the SMN distributions. All of Ŵ−1

i and most of Û−1
i are around 1.0, but Gene 12

has very large values of Û−1
i . This implies that Gene 12 may have abnormal observations.

The left panel of Fig. 2 displays the measured gene expressions and the estimated Xi (t)
for Gene 12. As expected, the estimate of gene expression under the normal model is much
affected by the abnormal observations. In contrast, the estimate of gene expression under
the SMN model is robust against the abnormal observations. Furthermore, from Fig. 1a,
it seems that the residuals present a feature of skewness. We performed a mixed-effects
ODE model by assuming that the ODE parameters and observations errors follow the scale
mixture of multivariate skew normal distributions; however, it is found that the skewness
is not significant. Finally, the estimated transcriptional factor activity is displayed in the
right panel of Fig. 2. It shows that the transcriptional factor activity has two periodic cycles,
which coincided with the results of Rogers et al. (2007).

5. SIMULATION STUDIES

In this section, we implement four simulation studies to evaluate the finite sample per-
formance of our proposed semiparametric mixed-effects ODE models.

5.1. SCENARIO I

As stated in Sect. 1, the semiparametric ordinary differential equations have valuable
applications in the gene transcription experiments. To mimic the transcription activity in
gene transcription experiments, we consider the following semiparametric ODE (Barenco
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Table 1. The posterior means, standard deviations (SD) and 95% credible intervals of the population ODE param-
eters (α, β, γ, δ)T in the gene regulation mixed-effects ODE model (4.1) under the SMN model and
normal model, respectively

Model Parameters Mean SD 95% CI

SMN model α 0.012 0.006 (0.004, 0.026)
β 0.207 0.080 (0.108, 0.441)
γ 2.656 1.222 (1.123, 5.791)
δ 0.050 0.011 (0.031, 0.075)

Normal model α 0.012 0.007 (0.003, 0.028)
β 0.221 0.081 (0.108, 0.418)
γ 2.702 1.265 (1.095, 5.828)
δ 0.053 0.013 (0.032, 0.082)

Table 2. The estimated latent parameters in the gene regulation mixed-effects ODE model (4.1) under the SMN
model which assumes that the ODE parameters and observations errors follow the scale mixture of
multivariate normal distributions

Subject 1 2 3 4 5

Residual errors (Û−1
i ) 1.02 0.92 2.11 0.75 0.72

Random effects (Ŵ−1
i ) 0.95 1.09 0.94 0.93 0.95

Subject 6 7 8 9 10
Residual errors (Û−1

i ) 0.75 0.99 2.22 1.53 0.84

Random effects (Ŵ−1
i ) 0.94 0.95 0.97 1.28 0.99

Subject 11 12 13 14 15
Residual errors (Û−1

i ) 0.60 8.05 0.74 1.54 1.14

Random effects (Ŵ−1
i ) 0.96 1.16 0.96 1.05 1.18

The significance of the bold values is at the 1% level

et al. 2006):

dXi (t)

dt
= αi + βiη(t) − δi Xi (t), t ∈ [0, 8], (5.1)

where the changing level of a gene i’s expression, Xi (t), is given by a combination of a
basal transcription rate, αi , a sensitivity, βi , to its governing TF’s activity, η(t), and the
decay rate of the mRNA, δi . We generate the logarithm of the individual ODE parameters
θ i = log{(αi , βi , δi )

T} from a multivariate normal distribution N (ξ ,�) with the mean
vector ξ and the covariance matrix � = 0.04 ·R, where the true values of ξ are chosen
as ξ = log{(α, β, δ)T} with α = 1.2, β = 3.5 and δ = 1.0, and the correlation matrix
R = (ri j )3×3 with r12 = 0.45, r13 = − 0.25 and r23 = − 0.45. The activity function
of the transcriptional factor is given by a mixture of three Gaussian-like bumps, η(t) =
exp[−(t − 2)2/1.44] + exp[−(t − 5)2] + 0.5 exp[−(t − 6)2/0.64] − 0.062, which was
considered in Chapter 9 of Lawrence et al. (2010) with a similar formula.

The true initial condition Xi (0) is generated as Xi (0) ∼ N (1.0, 0.04). Then, our simu-
lated data are generated as Yi (ti j ) = Xi (ti j ) + εi j , where Xi (ti j ) is the numerical solution
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Figure 2. Example of inference applying the SMNmodel (solid lines) and normal model (slashed lines) with real
microarray data from fission yeast. a The observations of gene expressions (circles) and the numerical solutions
of the gene regulation mixed-effects ODE model (4.1) for Gene 12; b the posterior mean estimates of η(t); the
shaded area denotes the 95% credible intervals of the TFA η(t) under the SMN model.

of ODE (5.1) via the fourth-order Runge–Kutta algorithm evaluated at 201 equally spaced
time points on [0, 8], and εi j are the measurement errors which are independently generated
from a normal distribution N (0, 0.25). We then estimate the mixed-effects ODE (5.1) by
assuming the ODE parameter θ i and the data error εi j follow the SMN distributions. This
proposed model is also compared with the conventional model which assumes θ i and εi j

follow the normal distribution. With the ‘burn-in’ of the first 10,000 iterations, we obtain
1000 posterior samples from the rest of the Markov chains with a lag of size 10. The above
procedure is repeated for 100 simulation replicates.

To evaluate the performance of the estimate for the time-varying ODE parameter η(t),
we define the following mean absolute deviation error (MADE)

MADE(η̂) = 1

MN

M∑
�=1

N∑
j=1

|η̂(�)(t j ) − η(t j )|,

where t j , j = 1, . . . , N , are N = 201 equally spaced time points in [0, 8], and η̂(�)(t)
is the estimate of η(t) in the �-th simulation replicate for � = 1, . . . , M . Table S3 of the
Supplementary file shows the posterior means, standard deviations as well as the mean
absolute deviation errors for the fixed effect (α, β, δ)T. In Table S3, for α and η(·), our
proposed model based on the SMN distribution has a little larger MADE values but has
smaller MADE values for β and δ in comparison with the conventional model using the
normal distribution for n = 50 and 100. We think that our proposed model using the SMN
distribution is compatible with the conventional model using the normal distribution.

5.2. SCENARIO II

To study the robustness of the proposed method, we generate the logarithm of the indi-
vidual ODE parameters θ i = log{(αi , βi , δi )

T} from a multivariate Student’s t distribution
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Table 3. The bias, standard deviation(SD) and mean absolute deviation error (MADE) of estimates for the fixed
effects of the mixed-effects ODE model (5.1) under Scenario II based on 100 simulation replicates

Case n Fixed effects Distribution assumptions

SMN distributions Normal distributions

Bias SD MADE Bias SD MADE

(i) 50 α 0.155 0.150 0.214 0.222 0.156 0.272
β −0.261 0.269 0.374 −0.420 0.261 0.493
δ −0.244 0.182 0.303 −0.370 0.146 0.397
η(t) N/A N/A 0.384 N/A N/A 0.497

100 α 0.139 0.149 0.202 0.263 0.143 0.311
β −0.207 0.235 0.311 −0.434 0.197 0.476
δ −0.217 0.174 0.277 −0.388 0.090 0.397
η(t) N/A N/A 0.364 N/A N/A 0.481

(ii) 50 α 0.274 0.188 0.331 0.314 0.229 0.388
β −0.206 0.268 0.336 −0.216 0.305 0.372
δ −0.257 0.123 0.282 −0.250 0.150 0.289
η(t) N/A N/A 0.492 N/A N/A 0.517

100 α 0.207 0.148 0.252 0.307 0.162 0.346
β −0.275 0.199 0.339 −0.367 0.215 0.424
δ −0.28 0.120 0.303 −0.359 0.097 0.371
η(t) N/A N/A 0.421 N/A N/A 0.491

The true values of fixed effects α = 1.2, β = 3.5 and δ = 1.0

tκ(ξ ,�) with the location parameter ξ , shape matrix � = 0.04 ·R which are the same as
in Scenario I and degrees of freedom κ = 3. The time-varying fixed-effect function η(·) is
also the same as in Scenario I.

The true initial condition Xi (0) is generated from the Xi (0) = 1.0 + 0.1bi0 where bi0
follows a Student’s t distribution, t (3), with degree of freedom 3. Then, our simulated data
are generated as Yi (ti j ) = Xi (ti j ) + εi j , where Xi (ti j ) is the numerical solution of ODE
(5.1) via the fourth-order Runge–Kutta algorithm evaluated at 201 equally spaced time
points on [0, 8], and εi j are the measurement errors. We consider two cases for generating
the measurement errors: (i) εi j ∼ 0.3× t (3); (ii) εi j ∼ 0.6× t (3). With the ‘burn-in’ of the
first 10,000 samples, we obtain 1000 posterior samples from the rest of the Markov chain
with a lag of size 10. Table 3 displays the simulation results for the estimates of fixed-effect
(α, β, δ)T and time-varying function η(t) based on 100 simulation replicates. It shows that
our proposed model using the SMN distribution is preferred than the conventional model
using the normal distribution.

5.3. SCENARIO III

To study the robustness of the proposed method for mis-specified ODEs model, we
consider the following two experiment designs:
III-(a): Suppose that the true ODEs are given by

dXi (t)

dt
= −δi Xi (t) + Diδi Kai

Cli (δi − Kai )
exp(−Kai t) + βi

(t − 5)2 + 119

144
, t ∈ [0, 12],
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Figure 3. TheMISEs for Xi (t) in the Scenario III by performing the SMNmodel and normal model, respectively.

(5.2)

where Di = 400, 1 ≤ i ≤ 50, and the logarithms of the individual ODE param-
eters {Kai , βi , δi ,Cli } follow a multivariate normal distribution N (ξ ,�) with ξ =
log{(1.0, 0.5, 0.3, 21.0)T} and � = diag{0.1, 0.1, 0.1, 0.25}. The true initial condition
Xi (0) is generated from a normal distribution N (1.0, 0.01). Then, our simulated data are
generated as Yi (ti j ) = Xi (ti j ) + εi j , where Xi (ti j ) is the numerical solution of ODE (5.2)
via the fourth-order Runge–Kutta algorithm evaluated at 201 equally spaced time points on
[0, 12], and the measurement errors εi j ∼ N (0, 0.25).
III-(b): Suppose that the true ODEs are given by

dXi (t)

dt
= −δi Xi (t) + Diδi Kai

Cli (δi − Kai )
exp(−Kai t), t ∈ [0, 12], (5.3)

where the values of individual parameters are taken the same as in Scenario III-(a).
To implement the traditional method which is based on the normal distributions assump-

tions, the working ODEs model is specified by

dXi (t)

dt
= −δi Xi (t) + Diδi Kai

Cli (δi − Kai )
exp(−Kai t), (5.4)

which is a mis-specified model in Scenario of III-(a) and is a correct model in Scenario of
III-(b). For our proposed method, the working ODEs model is specified by

dXi (t)

dt
= −δi Xi (t) + Diδi Kai

Cli (δi − Kai )
exp(−Kai t) + βiη(t), (5.5)

We use the following mean integrated square error (MISE) criterion:

MISE = 1

50

50∑
i=1

∫ 12

0
[X̂i (t) − Xi (t)]2dt,
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to evaluate the performances of our proposedmethod and the traditional method. The results
are displayed in Fig. 3, which show that our proposed method is robust on the mis-specified
ODEs model.

6. CONCLUSIONS AND DISCUSSION

Ordinary differential equation models are elegant and popular models for describing the
mechanism of complex dynamical systems. In this paper, we propose a semiparametric
mixed-effects ODE model that contains both constant and time-varying parameters and
considers the within-subject and between-subject variations simultaneously. We propose to
use a class of scale mixture of multivariate normal distributions to model the random effects
of ODE parameters and measurement errors in the data to obtain a robust estimation for the
ODE parameters when the abnormal subjects and the abnormal measurement errors exist
in the data.

Our proposed model can be framed in a Bayesian hierarchical model in which two latent
variables are introduced to identify abnormal individuals and abnormal measurement errors.
As one reviewer points out, one interesting feature of the proposed hierarchical model is
the potential interpretability of the latent parameters as indicators of abnormal individuals.
Another benefit of the proposed hierarchicalmodel is feasibly performing anMCMCmethod
to estimate the ODE parameters and latent variables. To improve the mixing convergence
of the algorithm, an adaptive proposal was applied in the MH step. Finally, our proposed
method is demonstrated by studying a genetic regulation experiment in which the regulatory
activity of the transcriptional factor ismodeled by a varying function over time.We show that
our proposed model using the scale mixture of multivariate normal distribution is preferred
in comparison with the conventional model using the normal distribution. Our simulation
studies also show that our proposed model can obtain a more robust estimation for ODE
parameterswhen using the scalemixture ofmultivariate normal distributions. As an example
of applications, a class of often-used gene regulatory dynamic systems was studied in real
data analysis; however, our proposed approach is very flexible and can be applied to provide
robust inference results for other semiparametric mixed-effects dynamic systems.

Furthermore, the ODEs are generally designed based on the experts knowledge or the
prior research. Our simulation results showed that therewill have serious biaswhen applying
a mis-specified ODEs model. A conservative approach is to consider a flexible semipara-
metric ODEs model:

dXi (t)

dt
= F(Xi (t); θ i ) + ri (t), (6.1)

where the parameters θ i belong to a parameter space 
, the function F is known based on
the experts knowledge, and ri (t) describes the uncertainty of the ODEs. In the simulation
studies, we have investigated the case of ri (t) = αi +βiη(t) and demonstrated the efficiency
of our proposed method. We will go on to study this issue in the future. It is possible that the
heavy-tailed residuals arise from stochastic transcriptional factor activity rather than how
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it is currently modeled as a smooth deterministic trend. We will study how to distinguish
them in our future study.
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