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Abstract: In this article, we consider the problem of recovering the underlying trajectory when the
longitudinal data are sparsely and irregularly observed and noise-contaminated. Such data are popularly
analyzed with functional principal component analysis via the principal analysis by conditional estimation
(PACE) method. The PACE method may sometimes be numerically unstable because it involves the
inverse of the covariance matrix. We propose a sparse orthonormal approximation (SOAP) method as
an alternative. It estimates the optimal empirical basis functions in the best approximation framework
rather than eigen-decomposing the covariance function. The SOAP method avoids estimating the mean
and covariance function, which is challenging when the assembled time points with observations for all
subjects are not sufficiently dense. The method also avoids the inverse of the covariance matrix, hence
the computation is more stable. It does not require the functional principal component scores to follow
the Gaussian distribution. We show that the SOAP estimate for the optimal empirical basis function is
asymptotically consistent. The finite-sample performance of the SOAP method is investigated in simulation
studies in comparison with the PACE method. Our method is demonstrated by recovering the CD4
percentage curves from sparse and irregular data in a multi-centre AIDS cohort study. The Canadian
Journal of Statistics 50: 122–141; 2022 © 2021 Statistical Society of Canada
Résumé: Cet article traite de l’estimation (ou récupération) d’une trajectoire sous-jacente à des données
longitudinales clairsemées, irrégulières et contaminées par du bruit. L’analyse de ce type de données
fait usuellement appel aux techniques de l’Analyse en Composantes Principales Fonctionnelles, plus
spécifiquement l’Analyse Principale par Espérance Conditionnelle (PACE). La méthode PACE peut parfois
être numériquement instable car elle implique l’inverse de la matrice de covariance. Pour parer à cette
éventualité, les auteurs du présent travail proposent une méthode d’approximation orthonormale clairsemée
(SOAP). Cette dernière adopte le meilleure cadre d’approximation pour estimer les fonctions de base
empiriques optimales plutôt que de recourir à une décomposition en valeurs propres de la matrice de
covariance. Ainsi, la méthode SOAP contourne la difficulté d’estimer la moyenne et la covariance lorsque
l’ensemble des observations dans le temps n’est pas dense. En plus d’assurer une stabilité numérique en
évitant l’inversion de la matrice de covariance, cette méthode n’impose pas la normalité des scores des
composantes principales fonctionnelles. Les auteurs prouvent la convergence asymptotique de l’estimateur
SOAP de la fonction de base empirique optimale et présentent des études de simulation pour comparer sa
performance avec celle de la méthode PACE sur des échantillons finis. Ensuite, ils illustrent la mise en
œuvre de l’approche proposée en utilisant des données éparses et irrégulières provenant d’une étude de
cohorte multicentrique sur le SIDA pour estimer des courbes de CD4. La revue canadienne de statistique
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1. INTRODUCTION

Functional principal component analysis (FPCA) is a key dimension reduction tool in functional
data analysis. FPCA explores major sources of variability in a sample of random curves by finding
functional principal components (FPCs) that maximize the curve variation. Consequently, the top
few FPCs explain most of the variability in the random curves. In addition, each random curve can
be approximated by a linear combination of the top FPCs. Therefore, the infinite-dimensional
curves are projected to a low-dimensional space defined by the top FPCs. This powerful
dimensional reduction feature also contributes to the popularity of FPCA.

The theoretical properties of FPCA have been carefully studied at length. For example,
Dauxois, Pousse & Romain (1982) first studied the asymptotic properties of PCA estimators for
the infinite-dimensional data from a linear operator perspective. Following this point of view,
Bosq (2000) and Mas (2002) utilized functional analysis to study FPCA theoretically. On the
other hand, Yao, Müller & Wang (2005), Hall, Müller & Wang (2006), and Hall & Horowitz
(2007) studied FPCA from the kernel perspective. The smooth version of FPCA was carefully
studied by Rice & Silverman (1991), Pezzulli (1993), Silverman (1996), and Yao, Müller &
Wang (2005). There are mainly three methods to achieve smoothness. The first method smooths
the functional data in the first step and conducts the regular FPCA on the sample covariance
function. The second method smooths the covariance function first and then eigen-decomposes
the resulting smoothed covariance function to estimate the smoothed FPCs. The last method
directly adds a roughness penalty to the optimization criterion for estimating FPCs. Moreover,
various extensions of FPCA have been proposed to suit different goals. For instance, Lin, Wang
& Cao (2016) and Nie & Cao (2020) proposed adding a penalty function on the non-zero regions
of FPCs, which led to better visualization, as their estimated FPCs become non-zero only in the
intervals with major variation. Sang, Wang & Cao (2017) proposed conducting FPCA from a
parametric perspective to improve the interpretability of the FPCs. To enhance the predictiveness
of FPCs, Nie et al. (2018) developed a supervised version of FPCA that accommodates the
correlation between FPCs and a response variable of interest. Shi et al. (2021) proposed FPCA
for longitudinal data with informative dropout.

FPCA has been widely and successfully applied in many applications such as functional linear
regression (Cardot, Ferraty & Sarda, 1999) and classification and clustering of functional data
(Müller, 2005; Müller & Stadtmüller, 2005; Ramsay & Silverman, 2005; Peng & Müller, 2008;
Dong et al., 2018). All these applications assume the functional data to be densely and regularly
observed. When the functional data are sparsely or irregularly observed, it is challenging to
obtain a good estimate of FPCs and the corresponding FPC scores. Yao, Müller & Wang (2005)
proposed the PACE method to analyze sparse functional data. The PACE method estimates
the covariance function by the local polynomial regression method and then eigen-decomposes
the estimated covariance function to obtain the eigenfunctions as the estimates of FPCs. The
corresponding FPC score is estimated using conditional expectation, which requires that FPC
scores follow a Gaussian distribution. The asymptotic properties were established in Hall, Müller
& Wang (2006).

The PACE method is very successful. It is now popularly used to analyze sparse functional
data. On the other hand, the PACE method also has two major assumptions, which may limit
its applications. The first assumption of PACE is that the observed time points over all subjects
are sufficiently dense. Otherwise, PACE cannot estimate the mean and covariance function
by pooling data for all subjects together. The second assumption of PACE is that the FPC
scores follow a Gaussian distribution. Otherwise, the conditional expectation formula is invalid.
In addition, the PACE method involves the inverse of the estimated covariance matrix when
estimating individual trajectories, which may be computationally unstable. This problem will
be demonstrated in our simulation studies. Peng & Paul (2009) proposed a restricted maximum
likelihood approach to estimate FPCs and apply a Newton–Raphson procedure on a Stiefel
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manifold to guarantee that the resulting FPCs satisfy the orthonormality constraints. They also
used conditional expectation to obtain FPC scores in order to recover individual trajectories.
Therefore, their method also involves the inverse of the estimated covariance matrix and requires
the FPC scores to have a Gaussian distribution.

The main objective of this article is to recover the underlying trajectory given sparse and
irregular longitudinal observations. Note that this objective is different from exploring the
major variation patterns of the functional data, which is the central goal for the conventional
FPCA. We propose a new sparse orthonormal approximation (SOAP) method to recover the
underlying trajectory. This method directly estimates the optimal empirical basis functions and
the corresponding coefficients in the best approximation framework. The SOAP method has
three main advantages. First, it avoids the inverse of the covariance matrix, and the computation
is stable and efficient. Second, it does not require that the scores follow a Gaussian distribution.
Therefore, it can be applied in non-Gaussian cases. Lastly, the method does not need to estimate
the mean and covariance function, which might be challenging in the case of sparse observation
times. The computing scripts for the simulation studies and the application to real data are
available at https://github.com/caojiguo/SOAP.

The rest of the article is organized as follows. Section 2 introduces the best approximation
framework for recovering the underlying trajectory given sparse and irregular longitudinal
observations. Section 3 describes the SOAP method for estimating the optimal empirical basis
functions and the corresponding coefficients. The asymptotic consistency results for the estimated
functional empirical components (FECs) are provided in Section 4. Our proposed method is
demonstrated in Section 5 by recovering the longitudinal CD4 percentage trajectories. In Section
6, we compare the finite-sample performance of our method with that of the PACE method using
simulation studies. Section 7 provides concluding remarks.

2. FUNCTIONAL EMPIRICAL COMPONENT ANALYSIS

Consider n independent realizations, x1(t),… , xn(t), of an L2 stochastic process X(t) ∶ t ∈ [0,T]
at a sequence of random points on [0,T] with measurement errors. That is, the observed data
yi𝑗 , i = 1,… , n, 𝑗 = 1,… , ni, is

yi𝑗 = xi
(
ti𝑗
)
+ 𝜖i𝑗 ,

where
{
𝜖i𝑗

}
are independent and identically distributed random errors with mean zero and

variance 𝜎2. The number of measurements ni for each curve is random and small. The observed
time points ti𝑗 can also be different for each curve. Using the Karhunen–Loève expansion
(Fukunaga & Koontz, 1970), each xi(t) can be expressed as

xi(t) = 𝜇(t) +
∞∑

k=1

𝜏ik𝜙k(t),

where 𝜇(t) = E(X(t)) is the mean function, and 𝜙k(t), k = 1, 2,… , are the eigenfunctions of the
covariance function C(s, t) = E[(X(s) − 𝜇(s))(X(t) − 𝜇(t))], t, s ∈ [0,T]. We call the 𝜙k(t)’s and
the corresponding 𝜏ik’s the FPCs and FPC scores, respectively. The above estimation procedure
is called the FPCA.

A main advantage of FPCA is that xi(t) is projected onto orthogonal basis functions. This
projection allows us to approximate xi(t) using the first K leading FPCs:

xi(t) ≈ 𝜇(t) +
K∑

k=1

𝜏ik𝜙k(t).
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There are many other basis functions onto which xi(t) can be projected. However, the eigen-
functions of the covariance functions have been proved to be the optimal basis functions in the
sense that they minimize the mean L2 errors (see Tran, 2008). Formally speaking, for any fixed
K ∈ {1, 2,…}, the first K leading empirical FPCs minimize

1
n

(
n∑

i=1
∫
⊤

0

[
xi(t) − 𝜇(t) −

K∑
k=1

⟨xi − 𝜇, 𝜙k⟩𝜙k(t)
]2

dt

)
,

subject to ⟨𝜙k, 𝜙l⟩ ≡ ∫ 𝜙k(t)𝜙l(t)dt = 𝛿kl, where 𝛿kl is the Kronecker delta. We will omit the
interval of integration [0,T] for the rest of the article for the sake of notational simplicity. From
the above criterion, we can see that the eigenfunctions 𝜙k(t), k = 1,… ,K, are essentially the
optimal empirical basis functions for approximating the centred stochastic process X(t) − 𝜇(t).

For the original uncentred stochastic process X(t), the optimal empirical basis functions are
the eigenfunctions of K(s, t) = E[X(s)X(t)], as shown in Theorem 1. Note that though K(s, t)
is not a covariance function, it is still a Mercer kernel. By Mercer’s theorem, there exists an
orthonormal basis 𝜓m(t) such that K(s, t) has the following representation:

K(s, t) =
∞∑

m=1

𝜆m𝜓m(s)𝜓m(t),

in which the eigenvalues 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0 and the eigenfunctions satisfy ⟨𝜓m, 𝜓𝓁⟩ = 𝛿m𝓁 .
Correspondingly, xi(t) can be represented as

xi(t) =
∞∑

m=1

𝛼im𝜓m(t).

Now we will show that the empirical basis functions, 𝜓m(t),m = 1,… ,M, optimal in the sense
of minimizing the approximation error (defined later in Theorem 1), are the eigenfunctions of
the estimate K̂(s, t) = 1

n

∑n
i=1[xi(s)xi(t)].

Theorem 1. For any given value of M, the optimal empirical basis functions 𝜓m(t),m =
1,… ,M, which minimize

1
n

n∑
i=1

⎛⎜⎜⎝∫
[

xi(t) −
M∑

m=1

𝛼im𝜓m(t)

]2

dt
⎞⎟⎟⎠ , (1)

subject to ⟨𝜓m, 𝜓𝓁⟩ = 𝛿m𝓁 , are the first M eigenfunctions of K̂(s, t) = 1
n

∑n
i=1

[
xi(s)xi(t)

]
and

𝛼im = ⟨xi, 𝜓m⟩.
The detailed proof for Theorem 1 is given in the Supplementary Material. Theorem 1 not only

shows that those eigenfunctions of K̂(s, t) are the optimal empirical basis functions for approxi-
mating the original functional data but also provides an alternative way to estimate these optimal
empirical basis functions in the best approximation framework other than eigen-decomposing
the uncentred sample covariance function K̂(s, t). Note that estimating the sample covariance
function may become challenging when the data are sparsely observed.

Moreover, this best approximation framework also allows the coefficients of the optimal
empirical basis functions to be estimated without inverting the sample covariance matrix.
Furthermore, Theorem 1 shows that estimating the mean function 𝜇(t) is not necessary if the goal
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is recovering or approximating the original trajectory. In practice, when the observed data are
very sparsely observed, it may be challenging to estimate the mean function 𝜇(t). Alternatively,
we can simply estimate those optimal empirical basis functions and represent each trajectory
using the estimated optimal empirical basis functions.

In this article, the optimal empirical basis functions 𝜓m(t),m = 1, 2,… , are called the FECs,
and 𝛼im is the corresponding FEC score. Note that when the mean function of the stochastic
process X(t), 𝜇(t) = E(X(t)) = 0, the FECs are equivalent to the FPCs.

We propose the SOAP method to estimate the first M FECs 𝜓m(t),m = 1,… ,M, by
minimizing the observed loss function:

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
yi𝑗 −

M∑
m=1

𝛼im𝜓m
(
ti𝑗
)]2

, (2)

subject to ⟨𝜓m, 𝜓𝓁⟩ = 𝛿m𝓁 , where m,𝓁 = 1,… ,M. We minimize the objective function (2) in a
sequential manner. That is, we first obtain the first FEC. Then conditional on the estimated first
FEC, we estimate the second FEC, and so on. When estimating each FEC, we estimate the mth
component𝜓m and the corresponding FEC score𝜶m = (𝛼1m,… , 𝛼nm)⊤ in an iterative fashion. We
first estimate𝜶m based on the given FEC𝜓m(t) and the observations yi𝑗 , i = 1,… , n, 𝑗 = 1,… , ni.
Then, given the estimated �̂�m, we obtain the corresponding FEC 𝜓m(t) by minimizing (2). In
each iteration, the loss function (2) is guaranteed to decrease.

3. SPARSE ORTHONORMAL APPROXIMATION METHOD

We first describe the SOAP method to estimate the first FEC in Section 3.1. Then our method is
expanded to estimate the first M FECs in Section 3.2.

3.1. Estimating the First FEC
The first FEC 𝜓1(t) is obtained by minimizing

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
yi𝑗 − 𝛼i1𝜓1

(
ti𝑗
)]2

, (3)

subject to ‖𝜓1‖2 = 1. We first express 𝜓1(t) as a linear combination of basis functions:
𝜓1(t) = 𝜷⊤1 b(t), where b(t) =

(
b1(t),… , bL(t)

)⊤ is a vector of basis functions chosen beforehand,

and 𝜷1 =
(
𝛽11,… , 𝛽1L

)⊤ is the corresponding vector of coefficients. We choose cubic B-spline
basis functions in our numerical studies. The choice of basis functions will not affect the
performance of our method. Users can also apply other basis functions such as the Fourier basis
functions. We propose to minimize (3) in an iterative fashion. That is, for a given 𝜓1(t), we find
the corresponding 𝛼i1 that minimizes (3). Then, given the value of 𝛼i1, we minimize (3) with
respect to 𝜓1(t). In every iteration step, the value of the loss function (3) decreases. The detailed
algorithm is outlined as follows:

Step I Set the initial value of 𝜓1(t) as 𝜓 (0)
1 (t), which satisfies ||||𝜓 (0)

1
||||2 = 1;

Step II Given the current value of 𝜓 (𝓁)
1 (t),𝓁 = 0, 1, 2,…, we can obtain the value of 𝜶(𝓁)

1 =
(𝛼11,… , 𝛼n1)⊤ by minimizing

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
yi𝑗 − 𝛼i1𝜓

(𝓁)
1

(
ti𝑗
)]2

.
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In fact, this is simply a least-squares problem. The ith element of 𝜶(𝓁)
1 can be expressed

as
𝛼i1 =

(
𝝍⊤

1i𝝍1i
)−1
𝝍⊤

1iyi,

where 𝝍1i =
(
𝜓1

(
ti1
)
,… , 𝜓1

(
tini

))⊤ is an ni × 1 vector, and yi =
(
yi1,… , yini

)⊤.

Step III Given the current value of 𝜶(𝓁)
1 , update 𝜓 (𝓁)

1 (t) to 𝜓 (𝓁+1)
1 (t) by minimizing

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
yi𝑗 − 𝛼

(𝓁)
i1 𝜓1

(
ti𝑗
)]2
,

subject to ||𝜓1||2 = 1.
We recast the above criterion into

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
yi𝑗 − 𝛼

(𝓁)
i1 𝜓1

(
ti𝑗
)]2 = 1

n

n∑
i=1

1
ni

ni∑
𝑗=1

[
yi𝑗 − 𝛼

(𝓁)
i1 𝜷

⊤
1 b

(
ti𝑗
)]2

= 1
n

n∑
i=1

ni∑
𝑗=1

[
1√
ni

yi𝑗 − 𝜷⊤1
1√
ni
𝛼
(𝓁)
i1 b

(
ti𝑗
)]2

,

subject to 𝜷⊤1 G𝜷1 = 1, in which G is an L × L matrix with the (i, 𝑗)th element⟨bi, b𝑗⟩. This is a constrained least-squares problem. Fortunately, we can ignore
the norm constraint and obtain the unconstrained least-squares minimizer first, and
then scale it such that its norm is 1. More specifically, the solution can be written

as 𝜷(𝓁+1)
1 = �̃�(𝓁+1)

1

/√{
�̃�
(𝓁+1)
1

}⊤G�̃�(𝓁+1)
1 , in which �̃�

(𝓁+1)
1 = (a(𝓁)⊤a(𝓁))−1(a(𝓁))⊤yw,

yw =
(

y⊤1
/√

n1,… , y⊤n
/√

nn

)⊤
and a(𝓁) =

(
a(𝓁)1

⊤
,… , a(𝓁)n

⊤
)⊤

is a
(∑n

i=1 ni
)
× L

matrix, in which a(𝓁)i is an ni × L matrix with (p, q) elements being 𝛼(𝓁)i1 bq
(
tip
)
∕
√

ni.

It can be checked that the minimizer obtained from the least squares will satisfy the
Karush–Kuhn–Tucker (KKT) condition, and thus it is the global minimizer of the loss
function (3).

Step IV Repeat Steps II and III until the change in value falls below a given threshold.

3.2. Estimating the Second FEC Given the First Estimated FEC
Once the first estimated FEC, �̂�1(t), is obtained, the second FEC is estimated by minimizing

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
r̂(1)i𝑗 − 𝛼i2𝜓2

(
ti𝑗
)]2

,

subject to ⟨�̂�1, 𝜓2⟩ = 0 and ||𝜓2||2 = 1. Here, r̂(1)i𝑗 denotes the estimated residuals after estimating
the first FEC, which is expressed as

r̂(1)i𝑗 = yi𝑗 − �̂�i1�̂�1(ti𝑗).

We can apply a similar iterative optimization procedure as described in the previous subsection
to obtain �̂�2(t):
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Step I: Set an initial value of 𝜓 (0)
2 (t), satisfying ⟨�̂�1, 𝜓2⟩ = 0 and ||𝜓2||22 = 1.

Step II: Given the current value of 𝜓
(𝓁)
2 (t), we can obtain the current value of 𝜶(𝓁)

2 =
(𝛼12,… , 𝛼n2)⊤ by minimizing

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
r̂(1)i𝑗 − 𝛼i2𝜓

(𝓁)
2

(
ti𝑗
)]2

.

The ith element of 𝜶(𝓁)
2 can be expressed as

𝛼
(𝓁)
i2 =

(
𝝍

(𝓁)
2i

⊤
𝝍

(𝓁)
2i

)−1
𝝍

(𝓁)
2i

⊤
r̂(1)i ,

where 𝝍 (𝓁)
2i =

(
𝜓

(𝓁)
2

(
ti1
)
,… , 𝜓

(𝓁)
2

(
tini

))⊤
and r̂(1)i =

(
r̂(1)i1 ,… , r̂(1)ini

)⊤
.

Step III: Given the value of 𝜶(𝓁)
2 , update the value of 𝜓 (𝓁+1)

2 (t) by minimizing

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[r̂i𝑗 − 𝛼
(𝓁)
i2 𝜓2(ti𝑗)]2,

subject to ⟨𝜓 (𝓁+1)
2 , �̂�1⟩ = 0 and ‖𝜓 (𝓁+1)

2 ‖2 = 1. Because the norm of 𝜓 (𝓁+1)
2 (t) will not

affect the KKT conditions, we can first ignore the norm constraint, and the minimization
becomes a problem of least squares with equality constraints. This problem can also
be solved efficiently using the Least Squares with Equalities and Inequalities (LSEI)
algorithm proposed by Lawson & Hanson (1974). Then, we normalize the resulting
solution such that the norm of 𝜓 (𝓁+1)

2 (t) is 1.
Step IV: Repeat Steps II and III until convergence is reached.

3.3. Estimating the Mth FEC Given the First M − 1 Estimated FECs

Given the first M − 1 estimated FECs, �̂�m(t),m = 1,… ,M − 1 and the residuals r(M)
i , i = 1,… , n,

we can obtain the estimate for 𝜓M(t) using a similar strategy to that described in Section 3.2, by
minimizing

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
r̂(M−1)

i𝑗 − 𝛼iM𝜓M
(
ti𝑗
)]2

,

subject to ⟨�̂�m, 𝜓M⟩ = 0,m = 1,… ,M − 1 and ‖𝜓M‖2 = 1. An algorithm similar to that described
in Section 3.2 can be applied here to obtain the estimated �̂�M .

3.4. Smoothness Regulation
In order to control the smoothness of the estimated FECs 𝜓m(t),m = 1,… ,M, we can add a
roughness penalty in (2). That is, for any fixed M, we estimate 𝜓1(t),… , 𝜓M(t) by minimizing

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
yi𝑗 −

M∑
m=1

𝛼im𝜓m
(
t𝑗
)]2

+
M∑

m=1

𝛾m ∫
[

d2𝜓m(t)
dt2

]2

dt, (4)

subject to ⟨𝜓m, 𝜓𝓁⟩ = 𝛿m𝓁 , where m,𝓁 = 1,… ,M. The algorithm introduced in Sections 3.1–3.3
can be modified accordingly. For instance, we can estimate the first FEC by modifying Step III
in Section 3.1 as follows:
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Step III (b) Given the current value of 𝜶(𝓁)
1 , update the estimate of 𝜓 (𝓁)

1 (t) to 𝜓 (𝓁+1)
1 (t) by

minimizing

1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
yi𝑗 − 𝛼

(𝓁)
i1 𝜓1

(
ti𝑗
)]2

+ 𝛾1 ∫
[

d2𝜓1(t)
dt2

]2

dt,

subject to ‖𝜓1‖2 = 1.

The above minimization is essentially a quadratically constrained quadratic programming
(QCQP) problem. We use the R package Rsolnp (Ghalanos & Theussl, 2015) based on the
SOLNP algorithm proposed by Ye (1987) to solve it numerically. We will demonstrate the
performance of this method in our simulation studies.

When estimating each FEC, there is only one tuning parameter involved, i.e., the smoothing
parameter 𝛾m. The value of 𝛾m controls the amount of smoothness imposed on the mth FEC.
We propose to select the tuning parameter based on the leave-one-curve-out cross-validation
strategy. To be more specific, we treat one curve’s observations as the test dataset and the data
for all other curves as the training dataset. For instance, when we estimate the first FEC 𝜓1(t),
we can first obtain the estimate for the first FEC, �̂� (−i)

1 (t), using all the training data for a given
value of 𝛾1 but omitting the ith curve, and then using this estimate to predict it. Then, the score
for the test curve can be calculated by minimizing

ni∑
𝑗=1

(
yi𝑗 − 𝛼i1�̂�

(−i)
1

(
ti𝑗
))2

.

Then the prediction for yi𝑗 is ŷ(−i)
i𝑗 = 𝛼

(−i)
i1 �̂�

(−i)
1

(
ti𝑗
)
, and the mean-squared prediction error for

the ith curve is
1
ni

∑
𝑗

(
ŷ (−i)

i𝑗 − yi𝑗

)2
.

We choose 𝛾1 to minimize the cross-validation error

CV(𝛾1) =
n∑

i=1

1
ni

ni∑
𝑗=1

(
ŷ (−i)

i𝑗 − yi𝑗

)2
.

For the following FECs, we propose selecting the smoothing parameter after treating the previous
estimated FECs as fixed.

3.5. Selecting the Number of FECs
We use the AIC criterion proposed by Li, Wang & Carroll (2013) to select the number of FECs:

AIC(M) = N log
(
𝜎2

M

)
+ N + 2nM, (5)

in which M denotes the number of FECs, n denotes the number of individual curves, and
N =

∑n
i=1 ni is the total number of observations. We can estimate the noise variance, 𝜎2

M , by
using the average square of the residuals. That is

�̂�2
M = 1

n

n∑
i=1

1
ni

(
yi − ŷi,M

)⊤(
yi − ŷi,M

)
,
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where ŷi,M =
(
ŷi1,… , ŷini

)⊤ represents the fitted ith individual’s observations when the number
of FECs is selected to be M.

3.6. Recovering the Individual Trajectory
Given the first M estimated eigenfunctions �̂�1(t),… , �̂�M(t), and the observations from a new
individual denoted by y∗ =

(
y∗1,… , y∗n∗

)⊤, at time points
(
t∗1 ,… , t∗n∗

)
, we describe the method to

estimate the score vector 𝜶∗ =
(
𝛼∗1 ,… , 𝛼∗M

)⊤ in this section. Following the formulation before,
we have

y∗
𝑗
=

M∑
m=1

𝛼∗m𝜓m
(
t∗
𝑗

)
+ 𝜖∗

𝑗
,

in which 𝜖∗
𝑗
∼ N(0, 𝜎2). We also consider the mth score 𝛼∗m as a realization of a random variable

with density 𝑓m(𝜽m). We further assume that the scores are a priori mutually independent of each
other. The posterior distribution of 𝜶∗ can be expressed as

Pr
(
𝜶∗|y∗, 𝜓1,… , 𝜓m, 𝜎

)
∝ Pr

(
y∗|𝜶∗, 𝜓1,… , 𝜓m, 𝜎

)
𝑓 (𝜶∗),

in which

𝑓 (𝜶∗) =
M∏

m=1

𝑓m
(
𝛼∗m

)
Pr

(
y∗|𝜶∗, 𝜓1,… , 𝜓m, 𝜎

)
=

n∗∏
𝑗=1

g
(

y∗
𝑗
; (𝜶∗)⊤𝝍

(
t𝑗
)
, 𝜎

)
,

and g
(
y∗
𝑗
; (𝜶∗)⊤𝝍

(
t𝑗
)
, 𝜎

)
denotes the Gaussian density function evaluated at y∗

𝑗
with mean

(𝜶∗)⊤𝝍
(
t𝑗
)

and standard derivation 𝜎.
We can substitute 𝜓m and 𝜎 with the corresponding estimated �̂�m and �̂�M (Eq. (5))

in all the equations above. Then we apply the Metropolis–Hastings algorithm to draw
Markov chain Monte Carlo (MCMC) samples from the corresponding posterior distribution
Pr

(
𝜶′∗|y∗, �̂�1,… , �̂�m, �̂�M

)
. The distribution 𝑓m

(
𝜽m

)
can be estimated using the estimated

scores �̂�im, i = 1,… , n described in Sections 3.1–3.3. If the parametric form of 𝑓m(𝜽m) is known,
we can always estimate the associated unknown parameter 𝜽m by treating �̂�im, i = 1,… , n as
the realizations from this distribution; otherwise, we can use the empirical density of �̂�im as the
estimated 𝑓m(𝜽).

4. THEORETICAL RESULTS

Theorem 3 shows that our first estimated FEC will asymptotically converge to the true FEC as
the number of subjects increases. Similar results are shown in Theorem 4 for the other estimated
FECs.

Let the Mercer expansion with kernel k(s, t) = EX(s)X(t) of the stochastic process X(t) be{
𝜆k, 𝜓

0
k ∶ k = 1, 2,…

}
. That is, there are random variables ak and square-integrable functions

𝜓0
k on [0, 1] such that X(t) =

∑
ak𝜓

0
k (t). We observe that Eakal = 𝜆k𝛿kl with the 𝜆i’s positive

and strictly decreasing.

Assumption A0.
∑

k Ea4
k < ∞, and for some M,𝜓0

k (t) < M for all t ∈ [0, 1] and each k = 1, 2,….

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs.11677



2022 RECOVERING TRAJECTORIES FROM SPARSE LONGITUDINAL DATA 131

Assumption A1. The parameter set Θ = {((𝛼i), (𝛽k)) ∈ C00 ⊕ B𝓁2
} is manageable (Pollard,

1990), where C00 = {(ci) ∶ |ci| < M for some constant M, and ci = 0 for all but finitely many
i} and B𝓁2

= {(bi) ∶
∑|bi|2 ≤ 1}.

Theorem 2 (Pollard, 1990, Pollard’s ULLN). Let {𝑓i(𝜔, t) ∶ t ∈ T , 𝜔 ∈ Ω} be a sequence
of independent processes that are manageable for their envelopes

{
Fi(𝜔) = supt |𝑓i(𝜔, t)|}. If∑

i

(
EFi∕i2

)
< ∞, then

P
{
𝜔 ∶ n−1 sup

t
|Sn(w, t) − ESn(w, t)| → 0 as n → ∞

}
= 1.

Lemma 1. Let A = [ai𝑗] be an n × p matrix, r ≤ min(n, p), and define Ã =
∑r

i=1 𝜶i ⊗ 𝜷 i, where
𝜶i and 𝜷 i are the r left and r right singular eigenvectors of A, i.e., the eigenvectors of AA⊤ and
A⊤A, respectively. Then the Frobenius norm of A − B, where B is an n × p matrix of rank r, is
minimized when B = Ã.

Remark 1. If A has orthogonal columns, A⊤A has unit basis vectors as eigenvectors; i.e., the
𝜷 i’s are ei ∈ ℝp, where ei has only the ith entry non-zero, with value 1.

Given sparse observations of functional data yi𝑗 = xi
(
ti𝑗
)
+ 𝜖i𝑗 , where the observation times

ti𝑗 , 𝑗 = 1,… , ni, for subject i are uniformly drawn from [0, 1], recall the objective function in (3)

Ln(𝜶, 𝜓) =
1
n

n∑
i=1

1
ni

ni∑
𝑗=1

[
yi𝑗 − 𝛼i𝜓

(
ti𝑗
)]2

,

where 𝜶 =
(
𝛼i
)
∈ ℝn and 𝜓(t) is a function on [0, 1] with constraint ∫ 1

0 𝜓
2(t)d t = 1.

Theorem 3. Under Assumptions A0 and A1, if
(
�̂�(t),

[
�̂�i, i = 1,… , n

])
jointly minimize Ln,

then as n → ∞, ‖|�̂� − 𝜓0
1‖| → 0 in probability, and n−1 ∑n

i=1 �̂�i →< 𝜓
0
1 ,E(X) >.

Theorem 4. The estimators
{
�̂�k ∶ k = 2, 3,…

}
as obtained in Section 3.2 are consistent in

L2(0, 1).

5. APPLICATION: LONGITUDINAL CD4 PERCENTAGES

To demonstrate our proposed method, we analyzed the longitudinal CD4-count dataset. The
dataset considered here is from the multi-centre AIDS cohort study, which includes repeated
measurements of CD4 percentages for 283 homosexual men who became HIV positive between
1984 and 1991. The CD4 percentage, defined as 100 times the count of CD4 cells divided by
the total number of lymphocytes, is a commonly used marker to describe the health status of
HIV-infected persons. All subjects were scheduled to be measured at semi-annual visits. The
trajectories of 10 randomly selected subjects are shown in Figure 1. It shows that the data are
sparse with unequal numbers of repeated measurements and different visit times for individual
subjects, because many of them missed scheduled visits and the HIV infections could occur
randomly during the study. For all 283 subjects, the number of observations per subject ranged
between 1 and 14, with a median of 6 measurements.

The objective of our analysis is to recover individual longitudinal trajectories from the sparse
and irregular observations. The smoothing parameters were selected from {0, 102, 104, 108}
using leave-one-curve-out cross-validation, and the selected smoothing parameters for the first
five estimated eigenfunctions were 104, 102, 104, 102, and 104, respectively. Table 1 displays the
values of AIC defined in (5) varying with the number of FECs. It shows that AIC is minimized
when the number of FECs is 3.
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FIGURE 1: Longitudinal CD4 percentage for 10 randomly selected subjects. Each curve represents
the measurements for one single subject.

TABLE 1: Values of AIC for various numbers of FECs.

# FECs 1 2 3 4 5 6

AIC 8493.44 7632.86 7626.01 7720.19 7913.83 8059.46

Figure 2 shows the three estimated FECs and the estimated mean function. The first estimated
FEC, �̂�1(t), is decreasing and positive over the whole time interval. The first FEC score can
be interpreted as the weighted average of the longitudinal trajectory across time. The second
estimated FEC, �̂�2(t), changes its sign at time 3. The second FEC score can be interpreted as
the change of the longitudinal trajectory between [0, 2.78] and [2.78, 6]. Similarly, the third
estimated FEC, �̂�3(t), is positive in (1.6, 4.3) and negative elsewhere. So the third FEC score
represents the change of the longitudinal trajectory between [1.6, 4.3] and the other periods. The
mean function was obtained by taking the average of all the individual predicted trajectories.
The mean function shows an overall decreasing trend across individuals.

Figure 3 shows the predicted individual trajectories along with the corresponding pointwise
confidence intervals for four different individuals with various numbers of observations. It shows
that all the estimated CD4 trajectories fit the observations well. An estimated individual trajectory
generally displays the overall decreasing trend when the number of observations is small, as is the
case for individual 47. On the other hand, when an individual has sufficiently many observations,
such as individual 3 or 90 shown in Figure 3, the estimated individual trajectory is able to capture
the individual trend. Both these subjects’ trajectories gradually increase between 0 and 2 years
and then decrease afterwards. The pointwise confidence intervals, marked by the dashed line in
Figure 3, were constructed using the parametric bootstrap method. More specifically, we first
estimated the variance of the residuals, denoted by �̂�2, by pooling all the residuals from each
subject at each observed time point together; then we generated bootstrap observations ỹi𝑗 . The
pointwise interval exhibits a widening effect in those regions where no individual observation is
available.
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Mean function

FIGURE 2: Three estimated FECs along with the estimated mean function for the CD4 data.

To assess the prediction power of the SOAP method, we first selected those 224 subjects who
had at least two observations, and then treated the last observation of each subject as unknown.
We applied the SOAP method to estimate the underlying eigenfunctions and scores using all the
remaining observations from each subject. In the end, we obtained the predicted value at the last
observation’s time point with the observed value at that time point for each subject. The mean
squared error (MSE) using the SOAP method was 54.37. In comparison, the MSE using the
PACE method was 60.54.

6. SIMULATION STUDIES

6.1. Simulation I
To evaluate the performance of our proposed method, we conducted one simulation study in
comparison with the PACE method. In order to make our proposed method and the PACE method
comparable, we simulated the curves Xi(t) such that E

(
Xi(t)

)
= 0. Then, in this simulation setting,

the FPCs in PACE are equivalent to our proposed FECs. Therefore, for the rest of this section,
we refer to both of them as eigenfunctions.

The underlying true trajectories were simulated as Xi(t) = 𝛼i1𝜓1(t) + 𝛼i2𝜓2(t), i = 1,… , n,
where the true eigenfunctions 𝜓1(t) and 𝜓2(t) are shown in Figure 4, satisfying

⟨
𝜓i, 𝜓𝑗

⟩
=

𝛿i𝑗 , i, 𝑗 = 1, 2. The corresponding scores 𝛼i1 and 𝛼i2 were generated in both Gaussian and
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FIGURE 3: Estimated individual trajectories using the SOAP method (solid line) and the
corresponding observations (circles) for four individuals (47, 35, 3, and 90) with various
numbers of observations. The dashed line represents the 95% pointwise confidence interval via

bootstrapping.

non-Gaussian distributions. For the Gaussian scenario, the scores are generated from two

independent Gaussian distributions. That is, 𝛼i1
i.i.d.∼ N(0, 30) and 𝛼i2

i.i.d.∼ N(0, 10). For the
non-Gaussian scenario, the scores were first generated from two independent gamma distributions

and then were centred by subtracting the sample mean. That is, 𝛼i1 = 𝛼′i1 − �̄�
′
i1, where 𝛼′i1

i.i.d∼

Gamma(1, 0.03) and 𝛼i2 = 𝛼′i2 − �̄�
′
i2, where 𝛼′i2

i.i.d∼ Gamma(1, 0.1). We chose the parameters of
these two gamma distributions such that the standard deviations were roughly the same as in
the Gaussian scenario. The corresponding observed data for each trajectory were generated as
yi𝑗 = Xi

(
ti𝑗
)
+ 𝜖i𝑗 , in which 𝜖i𝑗 ∼ N(0, 0.052). To achieve the sparseness, the number of time

points, ni, for each trajectory was chosen randomly from a discrete uniform distribution on
{2, 3, 4, 5}. Two types of designs were considered: the regular-grid design and the uniformly
distributed design. For the regular-grid design, each curve Xi(t) was sampled from an equally
spaced grid {c0,… , c50} on [0, 365]. For the uniformly distributed design, each curve Xi(t) was
sampled uniformly from [0, 365].

To evaluate the performance of the SOAP method, we generated n sample curves in each
simulation replication. We first used our proposed method to estimate the eigenfunctions using
the training dataset, and then estimated the trajectories of the sample curves. The PACE method
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FIGURE 4: True eigenfunctions used to generate the true underlying individual trajectories. We
obtain these two FECs by conducting conventional FPCA on the Canadian temperature data

(Ramsay & Silverman, 2002).

was also applied to estimate the eigenfunctions from the training data and estimate the trajectories.
These two methods were compared by defining the integrated mean prediction error (IMPE) as

IMPE = 1
n

n∑
i=1

∫
[
x̂i(t) − xi(t)

]2dt, (6)

in which xi(t) represents the true ith curve, and x̂i(t) is the corresponding estimated trajectory.
We repeated the above procedure for 100 Monte Carlo runs.

The results are shown in Table 2. To formally assess the performance of these two methods,
a paired t-test was conducted to compare the average IMPEs under each setting. The observed
mean difference and the P-value are provided in the last two columns in Table 2. First of all,
we notice that the PACE method outperforms the SOAP method only when the underlying FPC
scores are Gaussian-distributed and the number of curves is 300. However, the average difference
between IMPEs is only 16 for both uniformly distributed and regular-grid designs. With fewer
curves or non-Gaussian scores, the SOAP method yields on average smaller IMPEs compared
to the PACE method. For instance, when the number of curves is 30 and the FPC scores are
non-Gaussian-distributed, the reduction in IMPE from using the SOAP method instead of the
PACE method is 54% for regular-grid designs and 66% for uniformly distributed designs. In
addition, we notice that the performance of the PACE significantly dropped from Gaussian to
non-Gaussian cases, whereas the SOAP method performs more robustly. For example, with a
regular-grid design and n = 300, the average IMPE of the non-Gaussian cases using the PACE
method is 197, which is about 1.68 times as large as the average IMPE, 117, of the Gaussian case.
By contrast, under the same setting, the average IMPEs using the SOAP method are 138 and 133,
respectively. Furthermore, both methods’ performance improves when the number of curves
increases and when the design switches from the uniformly distributed to the regular-grid design.

We also compared the performance of these two methods for irregular but more densely
simulated data, where the number of observations for each curve was randomly chosen from
{10, 11, 12, 13, 14, 15}. The results are shown in Table 3. First, we can see that both SOAP and
PACE’s average IMPEs are significantly reduced on switching from the sparse case to the dense
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TABLE 2: Summary results for recovering the individual trajectory using the SOAP and PACE methods
for 100 Monte Carlo runs for the sparse case.

Distribution n Design SOAP PACE MeanDiff P-value

Gaussian 30 Regular 187 (125) 334 (128) −146 (10) 1.4e−33

Uniform 194 (114) 352 (156) −158 (13) 1.7e−24

300 Regular 133 (34) 117 (24) 16 (2) 1.6e−13

Uniform 149 (44) 133 (28) 16 (3) 3.8e−06

Non-Gaussian 30 Regular 193 (157) 427 (302) −234 (23) 2.1e−20

Uniform 200 (152) 592 (801) −392 (47) 5.3e−15

300 Regular 138 (58) 197 (57) −59 (5) 2.7e−29

Uniform 147 (52) 223 (70) −76 (5) 5.0e−34

Note: Shown are the average and the corresponding standard deviation in parentheses for IMPE
(6) under different simulation settings. A paired t-test was conducted to compare the IMPEs
between the SOAP and PACE methods. “MeanDiff” represents average difference of IMSEs
between the SOAP and PACE methods with the corresponding standard deviation in parentheses.

TABLE 3: Summary results for recovering the individual trajectory using the SOAP and PACE methods
for 100 Monte Carlo runs for the dense case.

Distribution n Design SOAP PACE MeanDiff P-value

Gaussian 30 Regular 9.49 (42.5) 82.44 (39.86) −73 (1.20) 4.1e−81

Uniform 11.23 (49.4) 80.62 (35.9) −69 (1.97)) 3.6e−58

300 Regular 0.46 (0.33) 6.63 (2.2) −6 (0.04) 2.9e−114

Uniform 1.94 (15.02) 10.76 (3.67) −9 (0.93) 2.4e−16

Non-Gaussian 30 Regular 9.33 (31.83) 129.92 (137.13) −121 (3.01) 8.4e−64

Uniform 12.68 (61.3) 127.37 (115.9) −115 (0.26) 2.9e−166

300 Regular 0.53 (0.9) 14.18 (7.44) −14 (−0.22) 7.1e−82

Uniform 0.96 (1.87) 23.98 (13.33) −23 (−0.55) 4.2e−65

Note: Shown are the average and corresponding standard deviation in parentheses for IMPE (6)
under different simulation settings. A paired t-test was conducted to compare the IMPEs between
the SOAP and PACE methods. “MeanDiff” represents average difference of IMSEs between the
SOAP and PACE methods with the corresponding standard deviation in parentheses.

case. For instance, the average IMPEs for the SOAP method drop from 187 to 9.49 under the
regular-grid design with Gaussian scores and 30 simulated curves. Second, compared to the
PACE method, the SOAP method yields lower IMPEs on average across various settings for
the dense cases. For example, the largest difference of the average IMPEs between the PACE
method and the SOAP method is 121 under the regular-grid design with non-Gaussian scores
and 30 simulated curves. Even for PACE’s most ideal setting, that is, Gaussian-distributed scores
with 300 simulated curves under the regular-grid design, the SOAP method still outperforms the
PACE method and the average IMPE is reduced by 90% from 6.63 to 0.46. Third, we again notice
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that the PACE method performs worse on switching from the Gaussian case to the corresponding
non-Gaussian case, whereas the SOAP method is not sensitive to the scores’ distribution.

Besides recovering the individual trend, we also compared the estimated eigenfunctions with
the true eigenfunctions using the following integrated IMSE:

IMSE(�̂�i) = ∫
[
𝜓i(t) − �̂�i(t)

]2dt, i = 1, 2. (7)

The results are summarized in Table 4. First, the SOAP method tends to estimate the eigen-
functions well across all simulation settings. More specifically, the average IMSE

(
�̂�1

)
using

the SOAP method ranges between 2 × 10−3 and 33 × 10−3 with various settings and the average
IMSE

(
�̂�2

)
ranges between 104 × 10−3 and 218 × 10−3. Second, compared to the PACE method,

the IMSEs yielded by the SOAP method are much smaller. For instance, the average IMSE
(
�̂�1

)
of the PACE method is 84 × 10−3 for the Gaussian case under regular-grid design with n = 30,
which is almost three times as large as the average IMSE

(
�̂�1

)
using the SOAP method. We

also conducted a paired t-test to compare IMSEs for both 𝜓1 and 𝜓2, and the results suggest
that the SOAP method produces more accurate estimates for both 𝜓1 and 𝜓2. For instance,
for the Gaussian cases under a regular-grid design with 30 simulated curves, the IMSE

(
�̂�1

)
of the SOAP method is 58 × 10−3 smaller than that of the PACE method. Last but not least,
we noticed that the average IMSE for the non-Gaussian scenarios is smaller than those of the
corresponding Gaussian scenarios. For example, the average IMSE

(
�̂�1

)
of the PACE method

under the uniformly distributed design with 300 simulated curves was 70% smaller in the
non-Gaussian scenario in comparison with the Gaussian scenario. This difference is due to the
effect that the non-Gaussian distribution is more likely to generate scores with large absolute
values, making the signal within each eigenfunction easier to estimate. Similar conclusions can
be reached for the dense case as shown in Table 5. Both methods estimate the eigenfunctions
significantly better in the dense scenarios than the sparse scenarios. Overall, the SOAP method
outperforms the PACE method for the dense scenarios as well.

TABLE 4: Summary results for estimating the underlying eigenfunctions using the SOAP and PACE
methods for 100 Monte Carlo runs for the sparse case.

IMSE
(
�̂�1

)
× 10−3 IMSE

(
�̂�2

)
× 10−3

Distribution n Design PACE SOAP MeanDiff PACE SOAP MeanDiff

Gaussian 30 Regular 84 (57) 26 (26) −58 (4) 705 (598) 197 (213) −509 (45)

Uniform 91 (70) 29 (26) −62 (6) 738 (838) 210 (220) −528 (78)
300 Regular 20 (13) 2 (1) −17 (1) 557 (453) 104 (201) −453 (29)

Uniform 22 (15) 3 (2) −19 (1) 676 (489) 118 (221) −559 (41)
Non-Gaussian 30 Regular 144 (154) 30 (45) −114 (12) 798 (581) 212 (216) −586 (54)

Uniform 140 (117) 33 (45) −107 (8) 909 (633) 218 (209) −690 (46)
300 Regular 61 (59) 2 (2) −59 (4) 930 (542) 114 (200) −815 (40)

Uniform 73 (68) 3 (2) −71(5) 1064 (551) 125 (229) −938 (44)

Note: Shown are the average and the corresponding standard deviation in parentheses for IMSEs
(7) under different simulation settings. “MeanDiff” represents average difference between the
SOAP and PACE methods with the corresponding standard deviation in parentheses.
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TABLE 5: Summary results for estimating the underlying eigenfunctions using the SOAP and PACE
methods for 100 Monte Carlo runs for the dense case.

IMSE
(
�̂�1

)
× 10−4 IMSE

(
�̂�2

)
× 10−4

Distribution n Design PACE SOAP MeanDiff PACE SOAP MeanDiff

Gaussian 30 Regular 37 (21) 7 (7) −30 (1) 321 (204) 5 (7) −316 (13)

Uniform 50 (30) 8 (7) −42 (2) 581 (862) 5 (6) −576 (55)

300 Regular 461 (305) 85 (75) −376 (15) 4936 (4186) 88 (250) −4848 (216)

Uniform 479 (324) 85 (85) −394 (18) 4972 (4649) 73 (84) −4899 (271)

Non-Gaussian 30 Regular 112 (89) 6 (6) −107 (6) 1777 (2745) 4 (6) −1773 (172)

Uniform 157 (117) 8 (7) −149 (8) 3178 (3965) 5 (7) −3173 (273)

300 Regular 924 (726) 119 (252) −805 (31) 7415 (5599) 156 (566) −7259 (253)

Uniform 923 (717) 102 (249) −822 (20) 7445 (5534) 129 (517) −7316 (159)

Note: Shown are the average and the corresponding standard deviation in parentheses for
IMSEs (7) under different simulation settings. “MeanDiff” represents average difference of
IMSEs between the SOAP and PACE methods with the corresponding standard deviation in
parentheses.

6.2. Simulation II
In the second simulation study, the true underlying curves were simulated with five eigenfunc-
tions: Xi(t) =

∑5
m=1 𝛼im𝜓m(t), i = 1, 2,… , n. Similar to the eigenfunctions in the first simulation,

these five true eigenfunctions were obtained by conducting conventional FPCA on the Canadian
temperature data. For each individual, the scores 𝛼im,m = 1,… , 5, were simulated independently
with either Gaussian and non-Gaussian distributions. More specifically, for the Gaussian sce-
nario, 𝜶i =

(
𝛼i1,… , 𝛼i5

)⊤ ∼ MVN((1, 1, 1, 1, 1)⊤,Σ), in which Σ = diag(800, 160, 32, 6.4, 1.6).
For the non-Gaussian scenario, five Gamma distributions with shape parameter 1 and rate
parameters 0.03, 0.1, 0.2, 0.35, and 1.1 were used to generate the five scores for individual i.
The rate parameters were chosen such that the standard deviations were roughly the same as
in the Gaussian scenario. Note that the mean function is non-zero in both the Gaussian and
non-Gaussian cases. To achieve sparseness, the number of time points, ni, for each trajectory
was chosen randomly from a discrete uniform distribution on {2, 3, 4, 5}. We consider only the
uniformly distributed design here. That is, each curve Xi(t) was sampled uniformly in [0, 365].

In each simulation replication, we first generated n sample curves and then applied the SOAP
method and the PACE method to estimate each sampled curve’s trajectory. We repeated this
procedure for 100 Monte Carlo runs. Table 6 summarizes the IMPEs defined in Equation (6)
for recovering the individual trajectory using the SOAP method and the PACE method for 100
Monte Carlo runs. First of all, we can see that the SOAP method yields significantly smaller
IMPEs than the PACE method in the non-Gaussian scenario as well as in the Gaussian scenario
when the number of sample curves is small (n = 30). Furthermore, even in the Gaussian scenario
with a large number of sample curves (n = 300), the SOAP method’s performance still appears
better than that of the PACE method, although the paired t-test, with a P-value of 0.14, fails to
show a significant difference between the average IMPEs in this scenario.

Table 7 shows the IMSEs defined in (7) for estimating the five underlying eigenfunctions
using the SOAP method and the PACE method. It shows that the SOAP method provided a
smaller average IMSE for all five eigenfunctions in all simulation scenarios except for the first
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TABLE 6: Average of the integrated mean prediction errors (IMPEs) defined in (6) for recovering the
individual trajectory using the SOAP method and the PACE method for 100 Monte Carlo runs in the

second simulation with five true eigenfunctions and non-zero mean function.

Distribution n SOAP PACE MeanDiff P-value

Gaussian 30 258 (177) 304 (124) −46 (15) 1.6e−03

300 172 (103) 158 (28) 14 (13) 1.4e−01

Non-Gaussian 30 205 (129) 337 (171) −131 (10) 1.4e−23

300 152 (51) 197 (55) −45 (10) 1.1e−05

Note: The corresponding standard deviations of IMPE are given in parentheses. A paired t-test
was conducted to compare the IMPEs between the SOAP and PACE method. “MeanDiff”
represents the average difference of IMSEs between the SOAP method and the PACE method
with the corresponding standard deviation in parentheses.

TABLE 7: Average of the integrated mean square errors (IMSEs) (×10−3) defined in (7) for estimating the
underlying eigenfunctions using the SOAP method and the PACE method for 100 Monte Carlo runs.

n = 30 n = 300

Distribution Eigenfunction PACE SOAP PACE SOAP

Gaussian The first 117 (99) 106 (158) 23 (15) 48 (118)

The second 659 (565) 208 (182) 227 (336) 76 (98)

The third 1412 (527) 407 (144) 768 (470) 334 (112)

The fourth 1545 (485) 356 (193) 1331 (442) 279 (121)

The fifth 1775 (742) 671 (117) 1532 (395) 647 (66)

Non-Gaussian The first 164 (172) 78 (142) 36 (29) 3 (1)

The second 882 (592) 237 (210) 698 (580) 109 (158)

The third 1565 (482) 512 (160) 1157 (479) 338 (232)

The fourth 1573 (493) 518 (187) 1322 (452) 546 (245)

The fifth 1863 (749) 712 (135) 1576 (338) 537 (258)

Note: The corresponding standard deviations of IMSE (×10−3) are given in parentheses.

eigenfunction in the case where the scores followed a Gaussian distribution and the number of
curves was large (n = 300). The improvement from using the SOAP method is greater when the
scores are non-Gaussian.

7. CONCLUSIONS

In this article, we proposed a novel SOAP method for recovering the underlying individual
trajectories as well as the major variation patterns from sparse and irregularly longitudinal
observations. The SOAP method directly estimates the empirical functional components from
the best approximation perspective. This perspective is different from most conventional methods,
such as PACE, which first estimates the covariance function from the centred data and then
eigen-decomposes the resulting covariance function to obtain the estimated FPCs. This new
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best-approximation perspective enables the SOAP method to recover the individual trajectories
without estimating the mean and covariance functions and without requiring that the underlying
FPC scores have a Gaussian distribution.

We illustrated the SOAP method by analyzing a dataset of CD4-cell percentages, in which
the longitudinal measurements for each individual were sparsely and irregularly observed. Our
SOAP method was able to recover the individual CD4 trajectories and explore the major
variational sources across all subjects. We also compared the prediction performance of the
SOAP method with the PACE method by treating the last observation of each individual
as unknown and found that the SOAP method produced better predictions than the PACE
method.

Furthermore, we evaluated the performance of the SOAP method and the PACE method in a
simulation study. Generally speaking, the SOAP method outperforms the PACE method in both
predicting the individual trajectory and recovering the optimal empirical basis functions.
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