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ABSTRACT
Classification and clustering methods based on univariate functions
havebeenwell developed. Recentworkhas extended the techniques
to the domain of bivariate functions by incorporating the techniques
based on mixtures of spatial spline regression with mixed-effects
models. An Expectation Maximization (EM) algorithm is imple-
mented to facilitatemodel inference. In this paper, we further extend
the mixtures of spatial spline regression with mixed-effects model
under the Bayesian framework to accommodate streaming image
data. First, we derive a Markov chain Monte Carlo (MCMC) algorithm
as an alternative approach to the EM algorithm to make inference
on the model. However, MCMC is not scalable to streaming image
data since it requires all observed information to update the poste-
rior distribution of the parameters. To tackle this issue, we propose
a sequential Monte Carlo (SMC) algorithm to analyse online fashion
image data. The existence of model sufficient statistics improves the
efficiency of the proposed online SMC algorithm. Instead of saving
all batch data for inference, we only require storage of the model
sufficient statistics and every data point is only used once, which
is well suited for large-scale stream type data. In addition, the pro-
posed algorithm provides an unbiased estimator of the marginal
likelihood as a by-product of the approach, which can be used for
model selection. Numerical experiments are used to demonstrate
the effectiveness of our method. Our implementation is available at
https://github.com/ShufeiGe/Online-Bayesian-learning-for-MMSRm.
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1. Introduction

Classification and clustering of random objects has received substantial attention in func-
tional data analysis. James and Hastie [1] proposed the functional linear discriminant
analysis, which can perform the classification of curves, by extending the classical method
of linear discriminant analysis [2] to functional data. Motivated by radar-range problems,
Hall et al. [3] developed the classification of Gaussian process regression to do real-time
discrimination in the context of signal analysis based on principal coordinates analysis.
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James and Sugar [4] generalized the clustering of functional data based on mixtures of lin-
ear mixed models, and their method is particularly well suited for sparsely sampled data.
Müller [5] extended generalized functional linear models to model sparse and irregular
predictors for classification. Chamroukhi et al. [6] proposed the clustering of curves by
combing the piecewise polynomial regression with a discrete hidden regression model to
accommodate abrupt or smooth changes in curves. Cheng et al. [7] proposed an efficient
parameter estimation method in a generalized partially linear additive models for both
longitudinal and clustered data. The nonparametric part of the model is approximated
by splines. Huang et al. [8] developed a general framework to jointly model and cluster
functional trajectories.

Although not as abundant as univariate functions, bivariate functional data analysis has
also been well developed as a statistical tool in surface smoothing and estimation. Math-
eron [9] introduced a geostatistical procedure called ‘kriging’, which predicts the value
of a spatial process at any arbitrary location via a weighted average of available samples.
Duchon [10] proposed the use of thin-plate splines as an interpolationmethod for surfaces
and a penalty term was introduced to control the smoothness of the fitted surface. Malfait
and Ramsay [11] proposed a spatial spline regression (SSR) model to deal with functional
time series. Wood et al. [12] showed that conventional smoothing methods may not work
well for complex domains, due to poor performance at the boundary of these domains.
These authors discuss a technique known as soap film smoothing which can be applied
to smoothing over difficult subregions of R

2. Xun and Cao [13] investigated a historical
functional linear model with an unknown historical forward time lag. The triangular basis
functions are used to model the coefficient function. The aforementioned work has a main
focus on surface smoothing and estimation for a single population rather than clustering
of surfaces from several populations.

Nguyen et al. [14] proposed a new application of bivariate functions to do clustering
and classification for surfaces by extending the clustering techniques of [4] to mixtures
of spatial spline regression with mixed-effects model. We will refer to mixture of spatial
spline regression with mixed-effects as ‘MSSRm’ in what follows. Nguyen et al. [14] fit-
ted the MSSRm model using the Expectation-Maximization (EM) algorithm [15]. In the
E-step the expectation of the log-likelihood function is computed over the latent vari-
ables conditioned on the observations and the current parameter estimates. In the M-
step the expected log-likelihood obtained in the E-step is maximized over the model
parameters. Srivastava et al. [16] developed an asynchronous distributed expectation
maximization (DEM) algorithm for large-scale data sets with the divide-and-conquer
technique. In DEM, the E-step is run in parallel on multiple worker processes, and the
managers perform the M-step with a fraction of the results from the local expectation
step.

Markov chain Monte Carlo (MCMC) [17,18] is a standard approach to make infer-
ence for latent variable model in the Bayesian framework. Besides point estimates, MCMC
provides uncertainty quantification for the parameters of interest. In addition, the inclu-
sion of prior knowledge arises naturally in the Bayesian framework. Chamroukhi [19],
Chamroukhi and Nguyen [20] consider Bayesian approaches to the problem of static esti-
mation for spatial spline regression. However, there are several constraints for an MCMC
algorithm to be implemented for inference in an online problem. First of all, the storage
of such big data may cause memory issues in practice. Second, the MCMC has to be rerun
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to update parameters when a new observation arrives, which is inefficient for dynamic
problems. Finally, the marginal likelihood is expensive and challenging to compute in an
MCMC algorithm.

Sequential Monte Carlo (SMC) [21–23], aka Particle Filtering, provides a sequential
approximation of the posterior distribution using sampled particles (samples), and is often
used to learn the distribution of latent variables. SMC has been demonstrated as a gold
standard for dynamic problems, which leads to interest in implementing this method to
many batch problems as an alternative to traditional Bayesian computation methods (e.g.
MCMC). The sequential scheme in SMCmakes online inference in latent variable models
possible. Some sophisticated work has been done on mixture models using SMC [24–26].
When a new observation arrives, within this framework we only need to update the uncer-
tainty immediately using this new observation and the low dimensional sufficient statistics
we have stored, which means every observation is only used once. This is especially suit-
able for large-scale stream type data. In addition, another advantage of our proposed SMC
algorithm over MCMC is that the marginal likelihood, which can be used for model selec-
tion, can be conveniently calculated. The posterior cluster allocation is also obtained from
the algorithm.

In this paper, we build a Bayesian hierarchical model based on the MSSRm as described
in Section 3.1, in which we take the cluster labels as latent variables. The latent variables
of the model are discrete and evolve with time. We apply the SMC scheme to learn the
distribution of these latent variables and static parameters of the model. As described
in Algorithm 2, we take the Resample-Propagate strategy to reduce the approximation
errors since both the resample and propagate step will be informed by the new observation
[24,27,28]. In addition, we includeMCMCmoveswithin the SMCalgorithm tomutate par-
ticles so as to prevent the progressive degeneration [29,30]. Moreover, with the adoption of
model sufficient statistics, instead of requiring storage of an entire data set, only sufficient
statistics are required to summarize the data in the MCMC move, and this scheme makes
the SMC algorithm computationally more efficient.

In this paper, we have three main contributions. First, we derive the full MCMC
(Gibbs) sampling scheme for the MSSRm model. Second, we propose an online SMC
algorithm for image clustering based on the MSSRm model, which allows us to conduct
model inference for sequential images efficiently. Our proposed method is related to the
work in [24]. Their method is applied to relatively simple mixture models. In contrast,
our spatial spline mixture has a more complicated model structure, high dimensional
model parameters and a large number of random effects. Third, we numerically assess
the performance of our algorithm with different number of latent states (clusters) and
observations.

The remainder of this article is organized as follows.We introduce themixture of spatial
spline regression model in Section 2. In Section 3, we derive the Gibbs sampling algorithm
for themixture of spatial spline regression and propose an online inference scheme for this
model. In Section 4, we introduce themodel selection criteria for the proposed online SMC
algorithm. In Section 5, we use a numerical study to assess and compare the performance
of EM, DEM, MCMC and the proposed online SMC algorithm. In Section 6, we apply
the methods to hand writing recognition data and brain image magnetoencephalography
(MEG) data. We list all notations in Appendix 1.
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2. Mixture of spatial spline regressionmodel

The spatial spline regression (SSR) dates back to [11,31]. Malfait and Ramsay [11] first
applied the SSR model to functional time series. Sangalli et al. [31] refined the SSR model
and showed that it can be extended to data with three dimensions, including volumes and
surfaces that are embedded in three-dimensional spaces. Nguyen et al. [14] implemented
this methodology to surface clustering and classification by extending the SSR model to
the MSSRm model. In this section, we will describe the MSSRm model.

2.1. Mixture of spatial spline regressionmodel withmixed effects

Let t be an index for time, at time t, t = 1 ≤ t ≤ T. Denote yt , an mt × 1 vector, as the
observation at time t, where mt is the length of observation yt . Suppose observations
y1, . . . , yT can be grouped into K clusters.

Let St be the spatial covariates matrix at time t. The matrix St has dimension mt × d
and is calculated from the tent shaped piecewise linear nodal basis functions (NBFs) [11],
which will be introduced in Section 2.2, and d is fixed and refers to the number of basis
functions. Let βk, a d × 1 vector, be the model fixed effects for the kth cluster and πk be the
corresponding cluster allocation probability for observations. We use btk, a d × 1 vector,
to denote the random effect coefficients of the kth cluster for yt . We let etk, a d × 1 vector,
represent the random error of the kth cluster for observation t. The MSSRm model for the
observation at time t can be expressed as

yt =
K∑

k=1

πk(Stβk + Stbtk + etk), (1)

where btk ∼ MVN(0, ξ 2k Id) and etk ∼ MVN(0, σ 2
k Imt ). Here MVN(·, ·) denotes the mul-

tivariate normal distribution, and Il denotes an identity matrix with dimension l × l. Let
ᵀ be a symbol denoting the transpose of a vector or matrix. Denote π = ({πk}Kk=1)

ᵀ, β =
({βk}Kk=1)

ᵀ, σ 2 = ({σ 2
k }Kk=1)

ᵀ and ξ 2 = ({ξ 2k }Kk=1)
ᵀ. Our interest is to conduct Bayesian

inference for θ = (πᵀ,βᵀ, (σ 2)ᵀ, (ξ 2)ᵀ)ᵀ.

2.2. Linear nodal basis function

In this section, we focus on the nodal basis functions (NBFs) [11]. While B-splines are
often used to approximate the univariate functions, NBFS can be used in a similar way
to approximate surfaces. As argued by [14], the linear NBFs [11] are useful for problems
involving clustering and classification.

The linear NBF is a ‘tent shaped’ piecewise linear function with shape parameter
δ = (δ1, δ2)ᵀ, centre parameter c = (c1, c2)ᵀ and coordinates x1, x2 on a rectangular
domain, where δ1, δ2 are positive real numbers representing the horizontal shape param-
eter and vertical shape parameter separately. For any coordinates η = (η1, η2)ᵀ on a
rectangular domain R = [η−

1 , η
+
1 ] × [η−

2 , η
+
2 ], let η

′
1 = (η1 − c1)/δ1, η′

2 = (η2 − c2)/δ2,
η′ = (η′

1, η
′
2)

ᵀ. The exact form of linear NBF of η is defined in Equation (2) [11] as
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follows:

s(η; c, δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + η2
′ if η′ ∈ {η′ : −1 ≤ η′

1 ≤ 0, −1 ≤ η′
2 ≤ η′

1},
1 + η1

′ if η′ ∈ {η′ : −1 ≤ η′
1 ≤ 0, η′

1 ≤ η′
2 ≤ 0},

1 + η1
′ − η2

′ if η′ ∈ {η′ : −1 ≤ η′
1 ≤ 0, 0 ≤ η′

2 ≤ η′
1 + 1},

1 − η1
′ + η2

′ if η′ ∈ {η′ : 0 ≤ η′
1 ≤ 1, η′

1 − 1 ≤ η′
2 ≤ 0},

1 − η1
′ if η′ ∈ {η′ : 0 ≤ η′

1 ≤ 1, 0 ≤ η′
2 ≤ η′

1},
1 − η2

′ if η′ ∈ {η′ : 0 ≤ η′
1 ≤ 1, η′

1 ≤ η′
2 ≤ 1},

0 otherwise.

(2)

Similarly to B-splines, the number of nodal basis functions used to approximate surfaces
has to be specified. Suppose we use d = d1 × d2 basis functions to approximate the sur-
faces over a fixed rectangular domain. The rectangular domain is divided into (d1 − 1)×
(d2 − 1) small grids evenly, d1 − 1 grids in each row and d2 − 1 grids in each column.
Nodes on the grids are centres of these nodal basis, and the horizontal length and vertical
height on small grids are δ1 = (η+

1 − η−
1 )/(d1 − 1), δ2 = (η+

2 − η−
2 )(d2 − 1), respectively.

The covariates matrix St for yt , 1 ≤ t ≤ T, is defined as

St = [s(ηt,i; cj, δ)]1≤i≤mt ,1≤j≤d, (3)

where s(ηt,i; cj, δ) represents the element in the ith row and jth column of St , ηt,i, 1 ≤
i ≤ mt , are coordinates of yt , and cj = (cj1, cj2)ᵀ, j = 1, . . . , d are the centres and can
be obtained by setting c1 = (η−

1 , η
−
2 )

ᵀ, c2 = (η−
1 + δ1, η−

2 )
ᵀ, . . . , cd−1 = (η+

1 , η
−
2 + (d2 −

1)δ2)ᵀ, cd = (η+
1 , η

+
2 )

ᵀ. For example, given a fixed rectangular domain R = [−1, 1] ×
[−1, 1], suppose we set the number of NBFs d = 3 × 3, therefore δ1 = δ2 = 1, and
the corresponding 9 NBFs centres are c1 = (−1,−1)ᵀ, c2 = (−1, 0)ᵀ, c3 = (−1, 1)ᵀ, c4 =
(0,−1)ᵀ, c5 = (0, 0)ᵀ, c6 = (0, 1)ᵀ, c7 = (1,−1)ᵀ, c8 = (1, 0)ᵀ and c9 = (1, 1)ᵀ.

3. Model inference

In this section, we introduce two methodologies to make inference on the mixture of
spatial spline regression model. Before introducing the inference methods, we discuss
the Bayesian framework for this MSSRm model. We first incorporate the auxiliary vari-
able zt (t = 1, . . . ,T) in the mixture model to indicate the cluster label of observation yt .
Denote Y = ({yᵀ

t }Tt=1)
ᵀ, Z = ({zt}Tt=1)

ᵀ, b = ({bᵀ
t }Tt=1)

ᵀ, bt = {bᵀ
t1, . . . , b

ᵀ
tK}ᵀ. Recall that

θ = (πᵀ,βᵀ, (σ 2)ᵀ, (ξ 2)ᵀ)ᵀ, conditional on zt , bt and θ , we have

f (yt|zt , bt , θ) =
K∏

k=1

{
φ(yt ; Stβk + Stbtk, σ 2

k Imt )
}1k(zt) , (4)

where φ(·; Stβk + Stbtk, σ 2
k Imt ) denotes the density of a multivariate normal distribu-

tion with mean Stβk + Stbtk, and covariance σ 2
k Imt . Here 1(·) is an indicator function:

1k(zt) = 1 if zt = k; otherwise 1k(zt) = 0.
The joint density (likelihood) of Y conditional on Z, b, θ can be written as

f (Y|Z, b,π ,β , ξ 2, σ 2) =
T∏
t=1

K∏
k=1

{
φ(yt ; Stβk + Stbtk, σ 2

k Imt )
}1k(zt) . (5)
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3.1. Bayesian framework

In this section, we build a hierarchical MSSRm model under the Bayesian framework. Let
a Dirichlet distribution with hyperparameters (α1, . . . ,αK) be the prior for the allocation
parameter π , a multinomial distribution with parameter π be the prior for the label zt ,
1 ≤ t ≤ T, a multivariate normal distribution with hyperparametersμ0,	0 be the prior of
the fixed-effects coefficients.Weuse an inverse-gammadistributionwith a shape parameter
a0 (or g0) and a scale parameter b0 (or h0) as the prior for the variance parameter ξ 2k (or σ

2
k )

for 1 ≤ k ≤ K and use a multivariate normal distribution with parameters ξ 2k to model the
random-effects coefficients btk for 1 ≤ k ≤ K, 1 ≤ t ≤ T. Hobert and Casella [32] showed
that improper selection of prior distributions for mixed model may lead to an improper
posterior, while inference method may not give warning (e.g. Gibbs chain). Hence, it is
important to check that the posterior distribution is proper. Hobert and Casella [32] pro-
vide theorems and numerical examples for this issue, and we refer readers to their work for
a more detailed discussion.

The hierarchical MSSRm model can be expressed as follows:

yt|zt = k,βk, btk, σ
2
k ∼ MVN(Stβk + Stbtk, σ 2

k Imt ), (6)

π ∼ Dir(α1, . . . ,αK), (7)

zt ∼ Mult(π1, . . . ,πK), (8)

βk ∼ MVN(μ0,	0), (9)

btk|ξ 2k ∼ MVN(0d, ξ 2k Id), (10)

ξ 2k ∼ IG(a0, b0), (11)

σ 2
k ∼ IG(g0, h0), (12)

where 1 ≤ k ≤ K, 1 ≤ t ≤ T, a0, b0, g0, h0,α1, . . . ,αK ,μ0,	0 are hyperparameters.
Therefore, the normalized posterior distribution for (θᵀ, bᵀ,Zᵀ)ᵀ can be written as

p(θ , b,Z|Y) = 1
f (Y)

× f (π)
K∏

k=1

f (βk)f (ξ
2
k )f (σ

2
k )

×
T∏
t=1

K∏
k=1

f (btk|ξ 2k )
{
φ(yt|Stβk + Stbtk, σ 2

k Imt )πk
}1k(zt) ,

where f (·) refers generically to the density of its argument, and f (Y) refers to the marginal
likelihood and can be evaluated by

f (Y) =
∫
. . .

∫
f (π)

K∏
k=1

f (βk)f (ξ
2
k )f (σ

2
k )

T∏
t=1

K∏
k=1

{
f (btk|ξ 2k )

× {
φ(yt|Stβk + Stbtk, σ 2

k Imt )πk
}1k(zt) } dθ db dZ. (13)

However, the integral in Equation (13) is intractable since it involves integrating over all
possible values of Z, b, θ . We propose two methods to estimate the normalized posterior
distribution for θ , which will be described in the next two sections.
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Figure 1. Graphical representation of a simple state space model.

Under the above Bayesian framework, we have

f (yt , bt , zt|θ) =
K∏

k=1

f (btk|ξ 2k )
{
φ(yt|Stβk + Stbtk, σ 2

k Imt )πk
}1k(zt) . (14)

Taking integration of Equation (14) over bt , we have

f (yt , zt|θ) =
K∏

k=1

{φ(yt ; Stβk, ξ
2
k StS

ᵀ
t + σ 2

k Imt )πk}1k(zt). (15)

Taking integration of Equation (15) over zt , we have

f (yt|θ) =
K∑

k=1

πkφ(yt ; Stβk, ξ
2
k StS

ᵀ
t + σ 2

k Imt ). (16)

3.2. Markov chainMonte Carlo

Markov chain Monte Carlo is the most commonly used approach for the implementation
of Bayesian inference. The basic idea is to construct an ergodic irreducible Markov chain
which admits the normalized posterior as its stationary and limiting distribution. The
algorithm is run sufficiently long for a burn-in period so that subsequent draws after this
period are approximate draws from the posterior. The availability of the conditional pos-
terior distribution for all parameters of interest allows us to estimate the mixture of spatial
spline regression in the Gibbs sampling framework. See Algorithm 3 in Appendix 2 for the
MCMC inference of the hierarchical MSSRm model. Also the full conditional distributions
are derived in Appendix 2.

3.3. Online sequential Monte Carlo with Gibbsmoves

Sequential Monte Carlo methods [22,23] were developed to analyse dynamical models.
The most popular application is in state space models. In a state space model, which is
graphically displayed in Figure 1, we let xt denote the latent variable at time t, and assume
it is specified by fθ (xt|xt−1), where θ refers to the model static parameter. Let yt denote the
observation at time t. We assume that the observations yt ’s are independent conditional
on xt ’s, and the distribution of yt is specified by fθ (yt|xt). For simplicity, we adopt the
notation a1:t to be an abbreviation of {a1, . . . , at}. The target distribution is pθ (x1:T |y1:T) ∝∏T

t=1 fθ (xt|xt−1)fθ (yt|xt), where fθ (x1|x0) = fθ (x1).
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To approximate pθ (x1:T |y1:T)using a standard SMCalgorithmdescribed inAlgorithm1,
we introduce a sequence of intermediate target distributions pθ (x1:t|y1:t) (t = 1, 2, . . . ,T).
Each intermediate target distribution is approximated by a set of weighted samples, also
called particles in the SMC literature. More specifically, at time t, pθ (x1:t|y1:t) is approxi-
mated by {x(i)1:t ,W(i)

t }1≤i≤N . In our notation, superscripts and subscripts respectively refer
to the particle and time indices.

The standard SMC algorithm iterates between the following three steps to approximate
the intermediate targets: resampling, propagating and weighting. At each iteration t, we
first conduct a resampling step to prune particles at iteration t−1 with small weights. The
path degeneracy issue is well known in SMC literature [33,34,53]. The earlier approxi-
mation of intermediate target distributions may collapse as t increases. The purpose of
resampling step is to alleviate the path degeneracy issue. A commonly used resampling
algorithm is multinomial resampling. Equally weighted particles are produced after multi-
nomial resampling. Then we propose new particles from a proposal distribution. Finally,
we compute the weights for each proposed particle.

In Algorithm 1, qt,θ (·) denotes the proposal distribution for xt , w
(i)
t refers to the unnor-

malized weight and we use W(i)
t to represent the normalized version. If we choose the

proposal distribution for x(i)t to be the prior fθ (xt|x(A
i
t)

t−1 ), we can obtain a simplified weight

update form of w(i)t = fθ (yt|x(i)t ). However, fθ (xt|x(A
i
t)

t−1 ) does not take advantage of any

Algorithm 1 Standard sequential Monte Carlo for a simple state space model.
1: Input: data y1:T , parameter θ .
2: Output: {x(i)1:T ,W(i)

T }1≤i≤N .
3: for i = 1 to N do
4: Draw x(i)1 ∼ q1,θ (·|y1).
5: Update weightsW(i)

1 = w(i)1 /
∑N

i=1 w
(i)
1 , where

w(i)1 = fθ (y1|x(i)1 )fθ (x(i)1 )
q1,θ (x

(i)
1 |y1)

. (17)

6: end for
7: for t = 2 to T do
8: for i = 1 to N do
9: Resample the ancestor index Ai

t ∼ Mult({W(j)
t−1,θ }1≤j≤N).

10: Sample x(i)t ∼ qt,θ (·|x(A
i
t)

t−1 , yt).
11: Update weightsW(i)

t = w(i)t /
∑N

i=1 w
(i)
t , where

w(i)t = fθ (yt|x(i)t )fθ (x(i)t |x(A
i
t)

t−1 )

qt,θ (x
(i)
t |x(A

i
t)

t−1 , yt)
. (18)

12: end for
13: end for
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Table 1. Notations of a general state spacemodel and a hierarchical MMSRm model.

Notations Simple state space model Hierarchical MSSRm model

Observation yt yt
Latent variable xt xt = (zt , b

ᵀ
t )

ᵀ , bt = {bᵀ
t1, . . . , b

ᵀ
tK }ᵀ

Static Parameter θ (known) θ = (πᵀ ,βᵀ , (σ 2)ᵀ , (ξ 2)ᵀ)ᵀ (unknown)

Prior fθ (xt|xt−1) fθ (xt|xt−1) = fθ (xt)

Proposal pθ (xt|xt−1, yt) pθ (xt|xt−1, yt) = pθ (xt|yt)
Weightwt fθ (yt|xt−1) fθ (yt|xt−1) = f (yt|xt−1, θ) = f (yt|θ)

information carried by the observations. With this choice of simple proposal distribution,
the performance of SMC algorithm will be inefficient if the observations are informative.
A more efficient importance proposal distribution is the ‘partial posterior’ distribution
[24,27,28] (also known as ‘optimal proposal distribution’ in the literature), qt,θ (xt) =
pθ (xt|x(A

i
t)

t−1 , yt) = fθ (xt|x(A
i
t)

t−1 )fθ (yt|xt)/fθ (yt|x
(Ai

t)
t−1 ), in which the numerator is the same as

the numerator in Equation (17) and Equation (18) and therefore it can be cancelled. In this
case, the unnormalized weight takes the form w(i)t = fθ (yt|x(A

i
t)

t−1 ).
Now we extend the above standard SMC scheme to the MSSRm model to conduct

online inference. All the notations related to the MSSRm model in this section are con-
sistent with the notations used before. Recall that zt is the cluster label (latent variable)
in the model and θ is a vector of unknown static parameters, and bt = {bt,1, . . . , bt,K},
where bt,k is the random effect coefficients of cluster k for yt . Let xt = (zt , bt). The hierar-
chical MMSRm model specified in Section 3.1 is also a state space model, with notations
listed in Table 1. We choose the ‘partial posterior’ as proposals for the latent variable, i.e.
qt,θ (xt) = pθ (xt|xt−1, yt) = pθ (xt|yt) = pθ (zt , bt|yt) = p(zt|yt , θ)p(bt|zt , yt , θ), which is a
product of p(zt|θ , yt), partial posterior of zt and p(bt|zt , yt , θ), full conditional distribution
of bt . Using p(zt|θ , yt) ∝ f (zt|θ)f (yt|zt , θ), p(zt|θ , yt) can be expressed as

p(zt|θ , yt) ∼ Mult(1; τ ∗
t1, . . . , τ

∗
tK), (19)

where τ ∗
tk ∝ φ(yt ; Stβ t,k, ξ 2t,kStS

T
t + σ 2

t,kImt )πt,k and
∑K

k=1 τ
∗
tk = 1.

Our objective is to sequentially approximate p(θ |y1:T) ∝ fθ (y1:T)f (θ), where f (θ) is the
prior distribution of θ : f (θ) = f (π)

∏K
k=1 f (βk)f (ξ 2k )f (σ

2
k ). Direct estimation of the poste-

rior distribution of p(θ |y1:T) is complicated. In order to approximate p(θ |y1:T), we combine
the latent variable x1:T with the model static parameters θ to conduct model inference. We
aim to estimate the posterior distribution p(x1:T , θ |y1:T) = p(z1:T , b1:T , θ |y1:T) in the SMC
framework.

Conditional on (y1:t , z1:t , b1:t), for t = 1 ≤ t ≤ T, sufficient statistics st for the parame-
ters θ in MSSRm is given in Proposition 3.1.

Proposition 3.1: The sufficient statistics st for the parameters θ in MSSRm model given
(y1:t , z1:t , b1:t) for 1 ≤ t ≤ T can be written as

st =
{ t∑
t′=1

bᵀ
t′kbt′k,

t∑
t′=1

1k(zt′),
t∑

t′=1

1k(zt′)S
ᵀ
t′y

∗
t′ ,

t∑
t′=1

1k(zt′)y∗
t′

ᵀy∗
t′ ,

t∑
t′=1

1k(zt′)S
ᵀ
t′St′

}K

k=1

,

where y∗
t′ = yt′ − St′bt′k for 1 ≤ t′ ≤ t.
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Since st is a function of st−1 and yt , zt , bt , we denote it as st = T(st−1, yt , zt , bt).
Appendix 3 provides the proof of existence of sufficient statistics for the model static
parameters.

Similar to the general particle learning (i.e. SMC) procedures of state space models
in [27], when model static parameter θ is unknown and its sufficient statistics exists,
the online SMC learning of the hierarchical MSSRm model iterates between the follow-
ing 4 steps at time t: Resample ancestor index, Propagate latent variable, Update sufficient
statistics, update model static parameters θ using one Gibbs Move:

Step 1. Resample Sample ancestor index Ai
t , i = 1, . . . ,N, from a multinomial distribu-

tionwith event probabilities {W(j)
t−1}1≤j≤N , W

j
t−1 ∝ f (yt|θ (j)t−1) according to Equation (16).

We introduce another set of notations {s(A
i
t)

t−1 , θ
(Ait)

t−1}1≤i≤N to represent particles after resam-
pling.

Step 2. Propagate latent variable Sample zt(i) from p(zt(i)|θ (A
i
t)

t−1 , yt) according to

Equation (19). Then sample bit according to Equation (A5) in Appendix with (θ (A
i
t)

t , z(i)t ).
Step 3. Update sufficient statistics Update sufficient statistics s(i)t by letting s(i)t =

T(s(A
i
t)

t−1 , yt , z
(i)
t , b(i)t ) according to Proposition 3.1.

Step 4. Gibbs moveUpdate θ
(i)
t with one Gibbs move. Details are shown in Algorithm 2.

Algorithm 2 provides a detailed description for our proposed online SMC algorithm.
Once a new observation, for example a new image, arrives, we iterate between the above
‘Resample-Propagate-Update’ steps with one Gibbs Move to update the parameters. After
obtaining the particles {z(i)1:T , b(i)1:T , θ (i)T }Ni=1, we get the approximated marginal posterior
density p̂(θ |y1:T) = ∑N

i=1 1θ
(i)
T
(θ)/N by dropping particles z(i)1:T and b(i)1:T , where 1θ

(i)
T
(θ) =

1 if θ = θ
(i)
T , otherwise 1

θ
(i)
T
(θ) = 0.

As specified in Algorithm 2, we do not run MCMC within SMC to update the model
static parameters θ

(i)
t until t = n.min. The purpose is tomake sure our algorithm is numer-

ically well behaved as MCMC may be degenerate for models with a very small number of
observations. In our numerical experiments, we set n.min to a small number (e.g. a value
falls between 20 and 100), and we observe this is sufficient. As the size of first batch of
input for the proposed online SMC algorithm reaches n.min, we start to update the static
parameters when new observations arrive.

As argued by [29] and [30], including MCMC moves within SMC to mutate particles
can alleviate the progressive degeneration.With the existence of model sufficient statistics,
this online SMC learning algorithmwill be computationally efficient. Instead of using all of
the data in the MCMCmove, only sufficient statistics are required to summarize the data.

Recall that K is the total number of clusters, and N∗ is the total number of iterations
in the MCMC algorithm, as described in Algorithm 3. The MCMC algorithm would take
O(tKN∗)-time to update model parameters when a new observation yt arrives, because we
have to re-run the algorithm in order to use all data information y1:t . The cost of MCMC
algorithm is a function of the total number of observations t, total number of MCMC iter-
ations N∗ and total number of clusters K. In contrast, the computation of the proposed
online SMC algorithm Algorithm 2 at time t takes O(NK)-time, which does not depend
on the number of observations t with the adoption of sufficient statistics in the algorithm.
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The cost only depends on the total number of clusters K and total number of particles N.
Consequently, the proposed online SMC algorithm is computationally more efficient than
the MCMC algorithm, especially when t is large.

Algorithm 2 Online learning for mixtures spatial spline regression model.
1: Input: data y1:T , number of clusters K, initial value {θ0}.
2: Output: {θ (i)ᵀ1:T , s(i)ᵀ1:T ,W(i)ᵀ

T }ᵀ1≤i≤N .
3: if t = 1 then
4: for i = 1 to N do
5: Draw z(i)1 ∼ p(·|y1, θ0) according to Equation (19).
6: for k = 1 to K do
7: Draw b(i)1k ∼ p(·|y1, θ0, z(i)1 ) according to Equation (A5) in Appendix.
8: end for
9: Update the model sufficient statistics s(i)1 according to Proposition 3.1.
10: end for
11: end if
12: if t > 1 then
13: for i = 1 to N do
14: Compute weights {W(j)

t−1}Nj=1, W
(j)
t−1 ∝ f (yt|θ (j)t−1) according to Equation (16).

15: Sample the ancestor index of particle i at time t, Ai
t ∼ Mult({W(j)

t−1}1≤j≤N).

16: Sample z(i)t ∼ pt(·|yt , θ (A
i
t)

t−1 ) according to Equation (19).
17: for k = 1 to K do
18: Sample b(i)tk ∼ p(·|yt , θ (A

i
t)

t−1 , z
(i)
t ) according to Equation (A5) in Appendix.

19: end for
20: Update the model sufficient statistics s(i)t conditional on s(A

i
t)

t−1 and yt , b
(i)
tk , z

(i)
t via

Proposition 3.1.
21: if t > n.min then
22: Sample π

(i)
t ∼ p(·|y1:t , z(i)1:t ,β

(Ai
t)

t−1 , σ
2(A

i
t)

t−1 , ξ
2(Ai

t)
t−1 , b

(i)
t , s(i)t ) according to

Equation (A3) in Appendix.
23: for k = 1 to K do
24: Sample β

(i)
t,k ∼ p(·|y1:t , z(i)1:t ,π (i)t , σ 2(A

i
t)

t−1,k, ξ
2(A

i
t)

t−1,k, b
(i)
t,k, s

i
t) according to

Equation (A4) in Appendix.
25: Sample σ 2

t,k
(i) ∼ p(·|y1:t , z(i)1:t ,π (i)t ,β(i)t,k, ξ

2(A
i
t)

t−1,k, b
(i)
t,k, s

i
t) according to

Equation (A6) in Appendix.
26: Sample ξ 2t,k

(i) ∼ p(·|y1:t , z(i)1:t ,π (i)t ,β(i)t,k, σ
2(i)
t,k, b

(i)
t,k, s

i
t) according to

Equation (A7) in Appendix.
27: end for
28: else
29: Set θ (i)t = θ

(Ai
t)

t−1 .
30: end if
31: end for
32: end if
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3.4. Label switching

There is a parameter nonidentifiability issue in the posterior distribution of mixturemodel
as the likelihood function is identical for the permutation of a part of parameters [35]. The
nonidentifiable parameters include the cluster labels. Therefore, this is known as the label
switching issue. Due to label switching, the posterior distributions are multimodal with a
multiple of K! symmetric modes in case of exchangeable priors. Typically Markov chains
would have trouble to visit all those modes in a symmetric manner. Especially, when Gibbs
samplers are used for mixture models, label switching often does not occur, which leads
to inefficient samplers [36,37]. Although such inefficient samplers often can only obtain
samples for onemode of the posterior distribution, they can adequately provide satisfactory
parameter estimates in practice.

Our model belongs to Bayesian mixture models and, therefore, has the parameter
nonidentifiability issue. Since the proposed online SMC is based on Gibbs moves, label
switching may not occur and the samples will be concentrated around one mode of the
posterior distribution. However, the marginal likelihood estimate using only samples from
one mode would be biased, which will be addressed in Section 4. In case that Markov
chains can switch cluster labels and visit multiple modes, the label switching problem can
be addressed by posing artificial identifiability constraints [35] and relabeling the mixture
components [38].

4. Model selection

Model selection is an important task in the BayesianMSSRm model framework as in many
scenarios we are not able to know the optimummodel. The goal is to compute themarginal
likelihood p(y1:T). Numerousmethods have been proposed to estimate themarginal likeli-
hood [39–42]. These algorithms require substantial additional effort in both computation
and implementation to compute the marginal likelihood, which is not accessible to stream
type data.

One advantage of the standard sequential Monte Carlo method is that it can provide an
unbiased marginal likelihood estimator as a by-product of the algorithm. This marginal
likelihood estimator admits a concise form, which is the product of average unnormalized
weights. In the following proposition, we show that the marginal likelihood estimator pro-
vided by our proposed algorithm is unbiased, with specific conditions. The proof of this
proposition is presented in Appendix 4.

Proposition 4.1: If we update θ
(i)
t with multiple Gibbs moves until convergence

achieved, such that θ
(i)
t ∼ p(θ |x1:t , y1:t). The product of average unnormalized weights∏T

t=1
∑N

i=1 p(yt|θ (i)t−1)/N is an unbiased estimator of the marginal likelihood p(y1:T),

E

( T∏
t=1

1
N

N∑
i=1

p(yt|θ (i)t−1)

)
= p(y1:T). (20)

Practically we only use one Gibbs move to update θ
(i)
t , and the marginal likelihood esti-

mator is generally not unbiased as the condition displayed in Proposition 4.1 is broken.
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Figure 2. True surfaces versus fitted surfaces: the top row displays the true surfaces of simulated by
functions f1, . . . , f6 uniformly over the rectangular domain [−1, 1] × [−1, 1], and the bottom row is the
corresponding MCMC fitted mean surfaces with d = 6 × 6.

In our real data analysis, we compare our model selection criteria with information cri-
terion (i.e. Watanabe–Akaike information criteria (WAIC), expected predictive deviance
(EPD), expected Akaike information criterion (EAIC) and expected Bayesian information
criterion (EBIC)) [41,42] and demonstrate it works in practice.

Due to the label switching issue described in Section 3.4, we hardly obtain samples
that can explore the complete posterior distribution for the mixture models, especially for
high-dimensional models. When the samples are concentrated around a single mode of
the posterior distribution, the estimated log marginal likelihood based on these samples
should be corrected by adding log(K!) [43].

5. Simulation study

We evaluate the proposed algorithms using simulation studies. Assume for each surface
cluster k, k = 1, . . . , 6, its common features fk(η1, η2) over a rectangular domain [−1, 1] ×
[−1, 1] admit the following functional forms:

f1(η1, η2) = η31 + η32 + 3√
1 + η21 + η22

, f2(η1, η2) = η21 + η22 + 1√
4 + η21 + η2/4

,

f3(η1, η2) = 1 − sin(η21 + 1)+ cos(1 + η22)

2
, f4(η1, η2) = sin(η1η2),

f5(η1, η2) = cos(η1 + η2)+ sin(η21)+ cos(η22), f6(η1, η2) = η1 + η2.

(21)

A surface yt belonging to cluster k is simulated through

yt = (fk(ηt,1), . . . , fk(ηt,mt ))
ᵀ + Stbtk + etk,

where (fk(ηt,1), . . . , fk(ηt,mt ))
ᵀ is the common feature for surfaces in cluster k – the

mean surface for cluster k, and ηt,1, . . . , ηt,mt are distributed uniformly over the domain,
each surface contains mt = 12 × 12 points. St is the basis covariates function defined in
Equation (3). The observed surface is then yt = (yt,1, . . . , yt,mt ). The random effects and
the errors of themodel are simulated from btk ∼ MVN(0, ξ 2k Id) and etk ∼ MVN(0, σ 2

k Imt ).
The number of nodal basis functions we used in the simulation study is d = 6 × 6. The
6 panels in the first row of Figure 2 display the mean surfaces simulated by functions
(fk(ηt,1), . . . , fk(η1,mt ))

ᵀ in Equation (21).
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Figure 3. MCMC estimates of σ 2
k and ξ 2k , (k = 1, . . . , 6). The dashed blue lines represent 95% equal

tailed credible interval, the solid blue lines indicate the mean value of the estimates and the solid red
lines imply the true values of the estimates.

5.1. Surface fitting

In this section, we use a relatively simple experiment to illustrate the MSSRm model fit-
ting using the MCMC algorithm. We use Equation (21) to generate the common feature
for surfaces in each cluster. A data set comprising 600 images in total (100 for each clus-
ter) is simulated. We set σ 2

k = 0.1 and ξ2k = 0.3 for k = 1, . . . , 6. The total number of
MCMC iterations is set to 5000, and we discard the first 1000 iterations as burn-in. Figure
2 displays a comparison between the true surfaces we simulated (upper panels) and the
estimated mean surfaces provided by running the MCMC algorithm (bottom panels). As
indicated in Figure 2, the fitted mean surfaces, Stβk, recover the common features of the
true surfaces. In Figure 3, we show the histogram of the posterior distributions of σ 2

k and
ξ 2k obtained from runningMCMC. The red line represents the true value of parameter and
the blue line represents the mean value of estimated posterior. The dashed blue lines are
the 2.5% and 97.5% quantiles of the posterior distribution. Figure 3 indicates that all of
the true values of the parameters can be covered by the associated 95% credible intervals.
The estimated posterior means of both σ 2

k and ξ 2k are very close to the corresponding true
values.

5.2. Comparison of online SMCwithMCMC, EM andDEM

In this section, we simulate two data sets to evaluate the performance of online SMC,
MCMC, EM and DEM in terms of sequential image clustering. For MCMC, we use the
Gelman–Rubin diagnostic [44] to assess the convergence of the Markov chain. For SMC,
we use two ways to check the correctness of our Monte Carlo procedure. The first one
is based on the joint distribution testing methodology of [45]; the second one is based
on unbiasedness of the marginal likelihood estimate from SMC [46]. We also compare
our proposed online SMC to the EM and the Distributed EM (DEM), we refer readers to
[16,47] for the details of the EM and DEM, and we set γ = 0.7 in the DEM as in [16], the
convergence is reached when the relative change in the log likelihood between two succes-
sive iterations is less than 10−4. All experiments were run on Intel E5-2683 v4 Broadwell
@2.1Ghz machines.

In both data sets, we simulate images in an online fashion where the observation arrives
one by one, and the data keep accumulating until the total number of observations reaches
T = 10, 000. The number of particles we set in the online SMCalgorithm isN = 1000. The
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Figure 4. Estimated parametersπk , σ 2
k with 95% equal tailed credible interval of online SMC algorithm

versus MCMC, EM and DEM, when K = 3 and the number of observations increases from t = 20 to 10,
000.

number of MCMC iterations is set to 5000 to guarantee the convergence of the algorithm
and we burn-in the first 20% of the chain. In our experiments, we observe the sam-
ples of both SMC and MCMC are concentrated around a single mode of the posterior
distribution.

In the first experiment, we simulate a data set with a relatively small number of clus-
ters,K = 3. The common features of images are generated by f1, f2 and f3 of Equation (21).
The allocation probability is set to π = (1/3, 1/3, 1/3). We assume the variance of random
effects and error are σ 2

k = 0.1 and ξ2k = 0.3 for k = 1, 2, 3. In online SMC algorithm, we
do not update the model parameters until we have received a small batch of images, here
we set n.min = 20, a relative small number. The initial value of parameters are obtained
by running MCMC on the first 20 images. After that, we update the model parame-
ters once when we obtain a new image. We update the MCMC, EM and DEM with
T = nmin, 100, 500, 1000, 2000, . . . , 10000 images. Figure 4 displays the comparison of πk,
σ 2
k as a function of t provided by online SMC,MCMC, EM and DEM. The horizontal lines

represent the point estimates (i.e. posterior mean provided by MCMC and SMC, MLE
provided by EMs) of different methods. The vertical lines represent the 95% credible inter-
vals for online SMC and MCMC. We only display the credible intervals for online SMC at
T = nmin, 100, 500, 1000, 2000, . . . , 10, 000 for the purpose of making a comparison with
theMCMCalgorithm. As indicated in Figure 4, all algorithms achieve similar performance
in terms of estimating parameters πk (k = 1, 2, . . . ,K), while the EM and the DEM tend to
underestimate σ 2

k . With the increment of observations, the posterior mean of bothMCMC
and online SMCgets closer to the true value, and the credible interval tends to get narrower,
as expected.

In our second experiment, we simulate from the MSSRm model with more latent
states by setting K = 6. The common features are simulated from the six functions
listed in Equation (21). The allocation probability πk, random effects ξ 2k and variance
of the error σ 2

k are set to π = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6), σ 2
k = 0.1 and ξ 2k = 0.3 for
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Figure 5. Estimated parametersπk , σ 2
k with 95% equal tailed credible interval of online SMC algorithm

versus MCMC algorithm (EM, DEM) when K = 6 and the number of observations increases from t = 40
to 10, 000.

k = 1, . . . , 6. Our online SMC algorithm does not update the parameters until we have
n. min = 40 observations. Figure 5 displays the parameter estimates (SMC, MCMC, EM
and DEM) and 95% credible intervals (SMC and MCMC) for πk and σ 2

k as a function
of time t.

All the algorithms achieve similar performance in terms of estimating parameters πk,
for k = 1, 2, . . . ,K, while the EM and the DEM underestimate σ 2

k . With the increment of
the number of images, the posteriormeans ofπk and σ 2

k for both theMCMCand the online
SMC tend to converge to the corresponding true value.
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Figure 6. Estimated ARI of online SMC algorithm versus MCMC, EM and DEM K = 3 (top left panel) and
K = 6 (top right panel) and running time ratio of MCMC algorithm over online SMC algorithm when
K = 3 and (bottom right panel) when K = 6 (bottom right panel).

In both experiments, we also apply the Adjusted Rand Index (ARI) [48] to measure
the performance of clustering. As indicated in Figure 6, both the online SMC algorithm
and the MCMC algorithm can achieve quite a good performance in terms of ARI. How-
ever, the running time ratio of MCMC over online SMC increases almost linearly as time
evolves, which indicates that online SMC is more scalable to stream type data. For exam-
ple, as a new observation arrives, it takes less than 10 seconds whenK = 3 and less than 20
seconds when K = 6, to update the model with our proposed online algorithm, while the
computational cost of the re-run of theMCMC algorithm is 6.43 hours (t = 3000, K = 3),
12.77 hours (t = 6000, K = 3), 7.51 hours (t = 3000, K = 6) and 15.11 hours (t = 6000,
K = 6). Both experiments indicate that the online SMC algorithm is at least several
orders of magnitude faster than the MCMC algorithm in terms of computational cost
when t is large (> 2000 ). Instead of a re-run of the MCMC method, our proposed
online SMC algorithm only needs to update the sufficient statistics in Proposition 3.1
in order to achieve model updating, which leads to efficient computation relative to
that of MCMC for sequential image data. With the increment of observations, both
algorithms can achieve good performance in terms of parameter estimation and image
clustering.

6. Real data analysis

In this section, we apply our proposed online SMC algorithm to two real data sets: one
handwritten image data and one brain imaging dataset where brain activity is recorded
using MEG. In real applications, one challenge in clustering is the lack of information for
the number of clusters. This generally requires some model selection technique to choose
the optimum model. As we have alluded in the previous section, the computation of the
marginal likelihood p(y1:T) in Bayesian statistics is a challenge, but online SMC can pro-
vide an unbiased estimator of the marginal likelihood as a by-product of the algorithm,
which is a big advantage of SMC over MCMC. Our SMC algorithm is inefficient to sample
the full posterior distribution with K! identical modes, and it only explores one mode of
the posterior distribution. We adjust the computation of marginal likelihood as described
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Table 2. Distribution of Hindu–Arabic handwritten numbers in the sample.

Number 0 1 2 3 4 5 6 7 8 9 Total

Frequency 904 723 500 385 413 344 443 419 408 461 5000

in Section 4. In this section, we investigate the performance of marginal likelihood of
online SMC and treat Watanabe–Akaike information criteria (WAIC), expected predic-
tive deviance (EPD), expected Akaike information criterion (EAIC), expected Bayesian
information criterion (EBIC) [41,42] as baselines for comparison. The implementation of
WAIC, EPD, EAIC and EBIC for our model can be found in Appendix 6.

6.1. Handwritten number images

The first real application we consider is the analysis of handwritten number images. We
apply our proposed online SMC algorithm to a subset of the ZIP code data set used in [49].
Every image consists of 16 × 16 grid of pixels, i.e. each image contains 256 observations
and we use 5000 images in total. The images distribution is shown in Table 2.

We set K = 8, 10, 12, and for each K, let d = 6 × 6, 8 × 8 separately. Hence, we have 6
MSSRm models in total. We mimic a scenario where the images arrive one by one. For the
online SMC algorithm, we do not update themodel parameters until we have n.min = 100
images. After t = 100, we update the parameters once one image arrives. The number of
particles we use is N = 1000. For each pair of K and d, we try several sets of initial values.

The information criterion (i.e. WAIC, EPD, EAIC, EBIC) and log(p(y1:T)) provided
by online SMC are shown in Table 3. The model with a larger number of basis functions
has higher marginalized likelihood and smaller information criterion values, which indi-
cates a larger number of basis function is more preferable. And the performance of the
MSSRm model gets better as K increases as shown in Table 3. The information criterion
and log(p(y1:T)) all indicate the MSSRm model with K = 12 and d = 8 × 8 is the optimal
model for those considered. However, the information criterion are computationally more
expensive, as it takes an extraO(TN)-time to compute.We display the common features of
the image digits provided by MSSRm model with K = 12 in Figure 7. The MSSRm model
is able to recover all the common features of the 10 digits as well as multiple sub-groups for
0 (the 2nd, 7th clusters), 2 (the 4th, 9th, 11th clusters), 5 (5th, 10th clusters). The 1st cluster
indicates that handwritten digit 9 shares some common features with handwritten digit
7, the 6th cluster indicates that handwritten digit 8 shares some common features with 3
and the 9th indicates that some of the handwritten digit 8 share same common features as
some handwritten digits 2. The common features of models with K = 8 and K = 10 are
displayed in Appendix 5.

6.2. Brain images

In this section, we apply the online SMC algorithm to a subset of images collecting during
a neuroimaging study examining the neural response to different natural stimuli. The data
are collected using 204MEG sensors located around the scalp where each sensor measures
a time series representing the magnetic field at its location. The magnetic field at a given
location is an indirect measurement of the electric neural activity within the brain [50,51].
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Figure 7. Online SMC estimated common features fromMSSRm model of handwritten number images
by cluster when K = 12, d = 8 × 8, labelled as the 1st cluster to the 12th cluster in left-to-right, top-to-
bottom order.

Table 3. Comparison of EPD, EAIC, EBIC and log(p(y1:T)) for MSSRm model
with K = 8, 10, 12 and d = 6 × 6, 8 × 8 for handwritten number images.

No. of clusters

Criteria d K = 8 K = 10 K = 12

log(p(y1:T )) 6 × 6 −1452763 −1443349 −1442419
8 × 8 −1294875 −1277139 −1274552

EPD 6 × 6 2901649 2883574 2881265
8 × 8 2582130 2548121 2541554

EAIC 6 × 6 2902273 2884354 2882201
8 × 8 2583202 2549461 2543162

EBIC 6 × 6 2904307 2886895 2885251
8 × 8 2586695 2553827 2548402

WAIC 6 × 6 2901789 2883780 2881520
8 × 8 2582337 2548418 2541894

The sensor data at a given time point are projected onto a 2D grid and represented through
a 2D image and each recording ismade at 200Hz for 1 second resulting in 200 imagesmade
in each recording. The study involves over 700 such recordings, where each is associated
with one of the five visual stimuli (1. Artificial: screen savers showing animated shapes or
text; 2. Nature: clips from nature documentaries, showing natural scenery like mountains
or oceans; 3. Football: clips taken from (European) football matches of Spanish La Liga; 4.
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Table 4. Distribution of stimuli in the sample data.

Stimulus 1 2 3 4 5

Frequency 1183 1003 706 887 1221

Table 5. Comparison of EPD, EAIC, EBIC and WAIC for MSSRm model with
K = 5, 7, 9 and d = 6 × 6, 8 × 8 for brain images.

No. of Clusters

Criteria d K = 5 K = 7 K = 9

log(p(y1:T )) 6 × 6 −1549598 −1545574 −1543843
8 × 8 −1466517 −1460026 −1456718

EPD 6 × 6 3098016 3089599 3085886
8 × 8 2930890 2917079 2909405

EAIC 6 × 6 3098406 3090145 3086588
8 × 8 2931560 2918017 2910611

EBIC 6 × 6 3099677 3091924 3088876
8 × 8 2933743 2921073 2914541

WAIC 6 × 6 3098131 3089754 3086072
8 × 8 2931129 2917420 2909831

Mr. Bean: clips from the episodeMind the Baby,Mr. Bean of theMr. Bean television series;
5. Chaplin: clips from the Modern Times feature film, starring Charlie Chaplin).

The neuroimaging data set contains a time series of 200 images for each of 727 record-
ings. Each time series (sample) is associated with one of the aforementioned five stimuli,
that is, what the subject waswatchingwhen the time series of imageswas recorded. Figure 8
shows 2D images of three randomly drawn recordings against the same stimulus at the
beginning (t = 1, 2, 3), middle (t = 101, 102, 103) and end (t = 198, 199, 200) of the 1
second recording period. Figure 8 demonstrates the variability in brain activity across dif-
ferent recordings for the same stimulus and thus shows that the type of stimulus associated
with a given recording does not clearly distinguish the images from each other, at least by
eye.We apply our classifier to decode the images in order to reveal the common stimuli via
clustering. We focus our analysis of this application on model selection.

In this application, we use 5000 images, the corresponding stimuli associated with each
image is distributed as shown in Table 4. Each image originally consists of 512 × 512
pixels, the high dimensionality of these images makes the implementation challenging.
Hence, we begin by removing redundant zeros around the boundaries for each image and
compressing the images to a more coarse level, 14 × 18 pixels to save computational cost.

We set K = 5, 7, 9, and d = 6 × 6, 8 × 8 for each K. We assume that the images are
received one by one or batch by batch. We do not update the model parameters until we
haven.min = 100 images. After t = 100, we update the parameters once one image arrives.
The number of particles we use is N = 1000. For each pair of K and d, we try several sets
of initial values. The information criterion and log(p(y1:T)) provided by online SMC are
shown in Table 5. log(p(y1:T)) and information criterion all indicate the model performs
better when more basis functions are used. And the performance of MSSRm model gets
better as K increases as shown in Table 5. They all indicate the MSSRm model with K = 9
and d = 8 × 8 is the optimum.

As indicated in Figure 9, compared to K = 5, when K = 7, 9, the MSSRm model is
able to capture more common features of several subtle subgroups. As we mentioned in
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Figure 8. Brain images of three different recordings against same stimulus at the beginning (t = 1, 2,
3), middle (t = 101, 102, 103) and end (t = 198, 199, 200) of the experimental period.
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Figure 9. Online SMC estimated common features fromMSSRm model for Brain Images when K = 5, 7,
9 and d = 8 × 8.
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Section 3.3, the computational cost of updating parameters in the online SMC algorithm
is O(NK). Thus the larger is K, the higher is the computational cost. To balance the com-
putational cost and the performance of estimation, in this application of brain images we
suggest to take 7 as the appropriate K for the MSSRm model, since its estimates result in
more subtle discrimination than that of when K = 5 and its computational cost is lower
than that of when K = 9.

7. Discussion

In this article, we derive an MCMC algorithm under the Bayesian framework as an alter-
native approach to do model inference for the MSSRm models. Moreover, we propose an
online SMC algorithm to deal with the stream type of image data efficiently via adoption
of sufficient statistics and augment variables. When new data arrive, our proposed online
SMC algorithm achieves parameter updating in a constant time, which is more adapt-
able to large sequential image data. In contrast, the required computation time for the
MCMC algorithm is a linear function of the total number of observations at time t since
it always has to be re-run when new data arrive. Our simulation studies demonstrated
that the proposed online SMC algorithm is more efficient than the MCMC algorithm in
terms of computing time, while both algorithms can achieve good performance from the
perspective of model inference.

Model selection is an important but challenging task in Bayesian statistics.We show that
the marginal likelihood estimator provided by our proposed algorithm is unbiased, and it
serves as a by-product of the algorithm. We compare this estimator with existing model
selection criterion (e.g. WAIC, EPD, EAIC, EBIC) and showed that the same models are
selected via information criterion and the estimated log(p(y1:T)) from SMC. But informa-
tion criterion requires extra cost to compute and the computational complexity increases
linearly with artificial time T.

In the posterior distribution of MSSRm models, the likelihood function is identical
for all K! permutation of labels. This may induce the label switching and complicate the
inference, whichmakes it difficult to justify the convergence ofMCMC[35].Our developed
online SMC algorithm based on importance sampling can circumvent the complicated
diagnosis of convergence ofMarkov chains. On one hand, our currentmethod is inefficient
to sample the full posterior distribution with K! modes, which is common for methods
based on Gibbs moves for mixture models; on the other hand, it is easier to use the sam-
ples that are concentrated on one posterior mode than applying complicated and possibly
unsatisfactory strategies to address the label switching issue. Our numerical experiments
demonstrate our proposed online algorithm provides an appropriate discrete approxima-
tion to the distributions of interest. If we use more efficient proposal distributions rather
than the Gibbs moves, we may obtain samples from multiple posterior modes. In that
case, we can explore various approaches in the literature that are developed to address the
label switching issue [17,35–38,52] of mixture models. But this is out of the scope of this
paper.

There are several lines for our future work to improve surface clustering. First of all,
one limitation of the current model is that we fix the number of clusters. It is of interest
to automatically select the number of clusters K by model and data. One possible way to
loosen this constraint is to treat K as a parameter and introduce a Dirichlet process prior



24 S. GE ET AL.

for K. Second, the covariance matrix of the random effects is proportional to an identity
matrix. A more realistic assumption is to incorporate spatial correlation in the random
effects. For example, assuming the random effects arise from a Gaussian process with a
suitable spatial covariance. Images for one specific cluster share common features. Another
line of future work is to conduct clustering based on the common features by principle
component analysis for image data.
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Appendices

Appendix 1. List of notations

Table A1. List of notations used in this paper.

Notation Description
ᵀ transpose symbol of a vector or matrix
T total number of observations
N∗ total number of Gibbs sampling iterations.
N total number of particles in online SMC algorithm
K number of clusters
d number of Nodal basis functions
k index for cluster k, for 1 ≤ k ≤ K
t time index, takes value from 1 ≤ t ≤ T
mt length of observation yt , for 1 ≤ t ≤ T
yt amt × 1 vector, observation at time t, for 1 ≤ t ≤ T
η η = (η1, η2), arbitrary coordinates
ηt,1, . . . , ηt,mt

coordinates for yt , for 1 ≤ t ≤ T
c c = (c1, c2), centre parameter for a Nodal basis function
cj cj = (cj1, cj2), centre parameter for jth Nodal basis function, 1 ≤ j ≤ d
δ δ = (δ1, δ2), shape parameter for a Nodal basis function
s(·) Nodal basis function
St amt × dmatrix, spatial coordinates matrix of observation, yt , for 1 ≤ t ≤ T
βk a d × 1 vector, fixed effects for cluster k, for 1 ≤ k ≤ K
btk a d × 1 vector, random effects of cluster k for yt , for 1 ≤ k ≤ K , 1 ≤ t ≤ T
etk a d × 1 vector, random error of cluster k for yt , for 1 ≤ k ≤ K , 1 ≤ t ≤ T
σ 2
k , ξ

2
k variance parameter for cluster k, 1 ≤ k ≤ K

π π = (π1, . . . ,πK ), cluster allocation probability for observations
zt cluster label of yt for 1 ≤ t ≤ T
Y , Z, b, bt Y = {yt}Tt=1, Z = {zt}Tt=1, b = {bt}Tt=1, bt = {btk}Kk=1 for 1 ≤ k ≤ K
θ θ = {π ,β , σ 2, ξ 2}
MVN, Dir,Mult, IG abbreviations for multivariate normal distribution, Dirichlet distribution,

multinomial distribution and inverse-gamma distribution, respectively
φ(·) density function of a multivariate normal distribution,
f (·), fθ (·), p(·), pθ (·) density functions, usually f (·)(fθ (·)) for a prior and p(·)(pθ (·)) for a posterior,

and p(zt = k) refers to probability of zt = k for 1 ≤ k ≤ K , 1 ≤ t ≤ T
a0, b0, g0, h0 hyper parameters
{αk}Kk=1,μ0,	0 hyper parameters
1(·) indicator function
b1:t , z1:t , x1:t , y1:t abbreviations of b1, . . . , bt ,z1, . . . , zt , x1, . . . , xt , y1, . . . , yt , for t = 1 ≤ t ≤ T
w(i)t ,W(i)

t unnormalized and normalized weight, respectively, for 1 ≤ i ≤ N, 1 ≤ t ≤ T
A(i)t ancestor index for particle i at time t for 1 ≤ i ≤ N, 1 ≤ t ≤ T
qt,θ (·) proposal distribution for xt for 1 ≤ t ≤ T
st sufficient statistics for the MSSRm model given ( y1:t , z1:t , b1:t ) for 1 ≤ t ≤ T
T(·) function of (st−1 , yt , zt , bt), and takes st as return, for 2 ≤ t ≤ T
fk(·) function used to simulate surfaces from cluster k, 1 ≤ k ≤ K

Appendix 2. Derivations for the Gibbs Sampling Algorithm.

In this section, we derived the full conditional distributions for zt ,π ,βk, btk, σ 2
k and ξ 2k and described

the Gibbs sampler.
Given the hierarchical priors of the Bayesian mixture of spatial spline regression with mixed

effects model described in Section 3.1, the full joint posterior distribution of π ,β , b, σ 2, ξ 2,Z can be
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Algorithm 3Markov chain Monte Carlo (MCMC) algorithm – Gibbs sampler.
1: Input: data y1:T , initial parameters {θ (0)ᵀ, b(0)ᵀ}ᵀ, where θ (0)ᵀ =
(π (0)ᵀ,β(0)ᵀ, σ 2(0)ᵀ, ξ 2(0)ᵀ)ᵀ.

2: Output: {θ (i)ᵀ, b(i)ᵀ}ᵀ1≤i≤N∗ , where θ (i)ᵀ = (π (i)ᵀ,β(i)ᵀ, σ 2(i)ᵀ, ξ 2(i)ᵀ)ᵀ, N∗ is total
number of iterations.

3: for i = 1 to N∗ do
4: for t = 1 to T do
5: Sample z(i)t ∼ p(·|yt ,π (i−1),β(i−1), σ 2(i−1), ξ 2(i−1), b(i−1)) according to

Equation (A2) in Appendix.
6: end for
7: Sample π(i) ∼ p(·|Y ,Z(i),β(i−1), σ 2(i−1), ξ 2(i−1), b(i−1)) according to

Equation (A3) in Appendix.
8: for k = 1 to K do
9: Sample β

(i)
k ∼ p(·|Y ,Z(i),π (i), σ 2(i−1)

k , ξ 2(i−1)
k , {b(i−1)

tk }Tt=1) according to
Equation (A4) in Appendix.

10: for t = 1 to T do
11: Sample b(i)tk ∼ p(·|Y ,Z(i),π (i),β(i)k , σ 2(i−1)

k , ξ 2(i−1)
k ) according to

Equation (A5) in Appendix.
12: end for
13: Sample σ 2

k
(i) ∼ p(·|Y ,Z(i),π (i),β(i)k , ξ 2(i−1)

k , {b(i)tk }Tt=1) according to
Equation (A6) in Appendix.

14: Sample ξ2k
(i) ∼ p(·|Y ,Z(i),π (i),β(i)k , σ 2(i)

k , {b(i)tk }Tt=1) according to Equation (A7)
in Appendix.

15: end for
16: end for

expressed up to a marginal likelihood as

p(π ,β , b, σ 2, ξ 2,Z|Y) ∝ f (π)f (β2)f (ξ 2)f (σ 2)f (Y ,Z|β , b, ξ 2, σ 2)

∝ f (π)×
K∏

k=1

f (βk)×
K∏

k=1

f (ξ 2k )×
T∏
t=1

K∏
k=1

f (btk|ξ 2k ))×
K∏

k=1

f (σ 2
k )

×
T∏
t=1

K∏
k=1

{
φ(yt|Stβk + Stbtk, σ 2

k Imt )p(zt = k)
}1k(zt)

∝ f (π)×
K∏

k=1

f (βk)f (ξ
2
k )f (σ

2
k )×

T∏
t=1

K∏
k=1

f (btk|ξ 2k ))

×
T∏
t=1

K∏
k=1

{
φ(yt|Stβk + Stbtk, σ 2

k Imt )p(zt = k)
}1k(zt)

∝ f (π)×
K∏

k=1

f (βk)f (ξ
2
k )f (σ

2
k )(ξ

2
k )

− dT
2
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×
K∏

k=1

exp{− 1
2ξ 2k

T∑
t=1

bᵀ
tkbtk − log(σ 2

k )
d
2

T∑
t=1

1k(zt)+ log(πk)
T∑
t=1

1k(zt)}

×
K∏

k=1

exp{− 1
2σ 2

k
[

T∑
t=1

1k(zt)(yt − Stbtk)ᵀ(yt − Stbtk)

− 2
T∑
t=1

1k(zt)βkS
ᵀ
t (yt − Stbtk))

+
T∑
t=1

1k(zt)(β
ᵀ
k S

ᵀ
t Stβk)]}. (A1)

Full conditional distribution of zt

p(zt|Y ,π ,β , b, σ 2, ξ 2) ∝
K∏

k=1

{φ(yt ; Stβk + Sibtk, σ 2
k Imt )p(zt = k)}1k(zt).

Therefore,
zt = k|Y ,π ,β , b, σ 2, ξ 2 ∼ Mult(1; τt1, . . . , τtK), (A2)

where

τtk = φ(yt ; Stβk + Stbtk, σ 2
k Imt )πk∑K

j=1 φ(yt ; Stβ j + Stbtj, σ 2
j Imt )πj

,

for 1 ≤ k ≤ K, 1 ≤ t ≤ T.

Full conditional distribution of π

p(π |Y ,Z,β , b, σ 2, ξ 2) ∝ p(π)
T∏
t=1

K∏
k=1

p(zt = k)1k(zt)

∝
K∏

k=1

π
(αk+nT,k)−1
k .

Therefore,
π |Y ,Z,β , b, σ 2, ξ 2 ∼ Dir(α1 + nT,1, . . . ,αK + nT,K), (A3)

where nT,k = ∑T
t=1 1k(zt), for1 ≤ k ≤ K.

Full conditional distribution of βk

p(βk|Y ,Z,π , b, σ 2, ξ 2) ∝ f (βk|μ0,	0)

T∏
t=1

{
φ(yt|Stβk + Stbtk, σ 2

k Imt )
}1k(zt)

∝ exp

{
−1
2
β

ᵀ
k

(
	−1

0 +
T∑
t=1

1k(zt)
Sᵀ
t St
σ 2
k

)
βk

}

× exp

{
β

ᵀ
k

(
	−1

0 μ0 +
T∑
t=1

1k(zt)
Sᵀ
t (yt − Stbtk)

σ 2
k

)}
.
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Therefore,

βk|Y ,Z,π , b, σ 2, ξ 2 ∼ MVN(μβk
,	βk), (A4)

where 1 ≤ k ≤ K, μβk
= 	βk(	

−1
0 μ0 +∑T

t=1 1k(zt)S
ᵀ
t (yt − Stbtk)/σ 2

k ) and 	−1
βk

= 	−1
0

+∑T
t=1 1k(zt)S

ᵀ
t St/σ 2

k .

Full conditional distribution of btk

p(btk|Y ,Z,π ,β , σ 2, ξ 2)

∝ f (btk|0d, ξ 2k Id)φ(yt ; Stβk + Stbtk, σ 2
k Imt )

1k(zt)

∝ exp

{
−1
2

[
bᵀ
tk

(
1
ξ 2k

Id + 1k(zt)
Sᵀ
t St
σ 2
k

)
btk − 2bᵀ

tk1k(zt)
Sᵀ
t (yt − Stβk)

σ 2
k

]}
.

Therefore,

btk|Y ,Z,π ,β , σ 2, ξ 2 ∼ MVN(μbtk ,	btk), (A5)

where 	−1
btk = 1

ξ2k
Id + 1k(zt)

Sᵀ
t St
σ 2k

, and μbtk = 1k(zt)	btk
Sᵀ
t (yt−Stβk)

σ 2k
, for 1 ≤ t ≤ T, 1 ≤ k ≤ K.

Full conditional distribution of σ 2
k

p(σ 2
k |Y ,Z,π ,β , b, ξ 2) ∝ f (σ 2

k )f (Y|Z,βk, btk, σ
2
k , ξ

2
k ,πk)

∝ (σ 2
k )

−
{
g0+mt

2
∑T

t=1 1k(zt)
}
−1

× exp

⎧⎨
⎩−h0 +

∑T
t=1 1k(zt)(yt−Stβk−Stbtk)ᵀ (yt−Stβk−Stbtk)

2
σ 2
k

⎫⎬
⎭ .

Therefore,

σ 2
k|Y , Z, π , b, β , ξ 2 ∼ IG(g∗

0 , h
∗
0), (A6)

where g∗
0 = g0 + nT,k

2 mt , h∗
0 = h0 +

∑T
t=1 1k(zt)(yt−Stβk−Stbtk)ᵀ (yt−Stβk−Stbtk)

2 ,nT,k = ∑T
t=1 1k(zt), for

1 ≤ k ≤ K.

Full conditional distribution of ξ2k

p(ξ 2k |Y ,Z,π ,β , b, σ 2) ∝ f (ξ 2k )
T∏
t=1

f (btk|ξ 2k )

∝ (ξ 2k )
−(a0+ nd

2 )−1exp

{
−b0 + 1

2
∑T

t=1 b
ᵀ
tkbtk

ξ 2k

}
.

Therefore,

ξ 2k |Y ,Z,π , b,β , σ 2 ∼ IG(a∗
0, b

∗
0), (A7)

where a∗
0 = a0 + Td

2 , b
∗
0 = b0 + 1

2
∑T

t=1 b
ᵀ
tkbtk, for 1 ≤ k ≤ K.
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Appendix 3. Proof of Proposition 3.1

As indicated by Equation (A1) in A, the joint posterior distribution of π ,β , σ 2, conditional on
z1:t , b1:t , y1:t can be expressed up to a marginal likelihood as

p(π ,β , σ 2, ξ 2|z1:t , b1:t , y1:t) ∝ f (π)f (β2)f (ξ 2)f (σ 2)f (y1:t , z1:t|β , b1:t , ξ 2, σ 2)

∝ f (π)×
K∏

k=1

f (βk)f (ξ
2
k )f (σ

2
k )(ξ

2
k )

− dt
2

×
K∏

k=1

exp{− 1
2ξ 2k

t∑
t=1

bᵀ
t′kbt′k − log(σ 2

k )
d
2

t∑
t=1

1k(zt′)+ log(πk)
t∑

t′=1

1k(zt′)}

×
K∏

k=1

exp{− 1
2σ 2

k

t∑
t′=1

1k(zt′)[(yt′ − St′bt′k)ᵀ(yt′ − St′bt′k)

− 2βkS
ᵀ
t′(yt′ − St′bt′k)+ β

ᵀ
k S

ᵀ
t′St′βk]}

∝ f (π)×
K∏

k=1

f (βk)f (ξ
2
k )f (σ

2
k )(ξ

2
k )

− dt
2

×
K∏

k=1

exp{− 1
2ξ 2k

t∑
t′=1

bᵀ
t′kbt′k − log(σ 2

k )
d
2

t∑
t′=1

1k(zt′)+ log(πk)
t∑

t′=1

1k(zt′)}

×
K∏

k=1

exp{− 1
2σ 2

k
[

t∑
t′=1

1k(zt′)(yt′ − St′bt′k)ᵀ(yt′ − St′bt′k)

− 2βk

t∑
t′=1

1k(zt′)S
ᵀ
t′(yt′ − St′bt′k)+ β

ᵀ
k (

t∑
t′=1

1k(zt′)S
ᵀ
t′St′)βk]}.

Denote y∗
t′ = yt′ − St′bt′k, the sufficient statistics st for the MSSRm model given (y1:t , z1:t , b1:t) for

1 ≤ t ≤ T can be written as

st =
{ t∑
t′=1

bᵀ
t′kbt′k,

t∑
t′=1

1k(zt′),
t∑

t′=1

1k(zt′)S
ᵀ
t′y

∗
t′ ,

t∑
t′=1

1k(zt′)y∗
t′

ᵀy∗
t′ ,

t∑
t′=1

1k(zt′)S
ᵀ
t′St′

}K

k=1

.

Appendix 4. Proof of Proposition 4.1

Our online SMC algorithm is run for time steps t = 1, . . . ,T, samples the random variables θ t =
{θ (i)t }Ni=1, xt = {x(i)t }Ni=1, At = {A(i)t }Ni=1. The distributions of these random variables are:

A(i)t ∼ W(i)
t−1, (A8)

x(i)t ∼ p(xt|θA
(i)
t

t−1, yt), (A9)

θ
(i)
t ∼ p(θ t|x(i)1:t , y1:t). (A10)

Note that Equation A10 is true only if the Gibbs chain for θ
(i)
t reaches stationary.
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The distribution of all random variables is

ψN,T(x1:T−1, θ0:T−1,A1:T−1) =
{ N∏
i=1

p(θ (i)0 )

} T−1∏
t=1

{ N∏
i=1

WA(i)t
t−1p(xt|θ

A(i)t
t−1, yt)

×p(θ t|x(i)1:t , y1:t)
}
. (A11)

To prove

EψN,T(x1:T−1,θ0:T−1,A1:T−1)

( T∏
t=1

1
N

N∑
i=1

p(yt|θ (i)t−1)

)
= p(y1:T), (A12)

we solve the integral

EψN,T(x1:T−1,θ0:T−1,A1:T−1)

( T∏
t=1

1
N

N∑
i=1

p(yt|θ (i)t−1)

)

=
∫ T∏

t=1

1
N

N∑
i=1

p(yt|θ (i)t−1)

{ N∏
i=1

p(θ (i)0 )

} T−1∏
t=1

{ N∏
i=1

WA(i)t
t−1p(xt|θ

A(i)t
t−1, yt)

×p(θ t|x(i)1:t , y1:t)
}
dx1:T−1 dθ0:T−1 dA1:T−1

=
∫ {∫

1
N

N∑
i=1

p(yT |θ (i)T−1)

{ N∏
i=1

W
A(i)T−1
T−2 p(xT−1|θA

(i)
T−1

T−2 , yT−1)

×p(θT−1|x(i)1:T−1, y1:T−1)
}
dxT−1 dθT−1 dAT−1

}

×
T−1∏
t=1

1
N

N∑
i=1

p(yt|θ (i)t−1)

{ N∏
i=1

p(θ (i)0 )

}

×
T−2∏
t=1

{ N∏
i=1

WA(i)t
t−1p(xt|θ

A(i)t
t−1, yt)p(θ t|x(i)1:t , y1:t)

}
dx1:T−2 dθ0:T−2 dA1:T−2.

We first consider the integral over (xT−1, θT−1,AT−1),

∫
1
N

N∑
i=1

p(yT |θ (i)T−1)

{ N∏
i=1

W
A(i)T−1
T−2 p(xT−1|θA

(i)
T−1

T−2 , yT−1)

×p(θT−1|x(i)1:T−1, y1:T−1)
}
dxT−1 dθT−1 dAT−1

=
N∑
i=1

W(i)
T−2p(yT |θ (i)T−2, x

(i)
1:T−2, y1:T−1).
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Hence,

EψN,T(x1:T−1,θ0:T−1,A1:T−1)

( T∏
t=1

1
N

N∑
i=1

p(yt|θ (i)t−1)

)

=
∫ {∫ N∑
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1
N
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W
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A(i)t
t−1, yt)

×p(θ t|x(i)1:t , y1:t)
}
dx1:T−2 dθ0:T−2 dA1:T−2.

We then consider the integral over (xT−2, θT−2,AT−2),

∫ N∑
i=1
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T−2p(yT |θ (i)T−2, x
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×
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W
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×
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=
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W(i)
T−3p(yT−1:T |θ (i)T−3, x

(i)
1:T−3, y1:T−2).
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Similarly, we can integrate over (xt , θ t ,At) (t = T − 3,T − 4, . . . , 1) and get

EψN,T(x1:T−1,θ0:T−1,A1:T−1)

( T∏
t=1

1
N

N∑
i=1

p(yt|θ (i)t−1)

)

=
∫ N∑

i=1
W(i)

0 p(y2:T |θ (i)0 , y1)× 1
N

N∑
i=1

p(y1|θ (i)0 )×
N∏
i=1

p(θ (i)0 ) dθ0

=
∫

1
N

N∑
i=1

p(y1|θ (i)0 )p(y2:T |θ (i)0 , y1)×
N∏
i=1

p(θ (i)0 ) dθ0

=
∫

1
N

N∑
i=1

p(y1:T |θ (i)0 )×
N∏
i=1

p(θ (i)0 ) dθ0

= p(y1:T).

This proves the proposition.

Appendix 5. Results of simulation study

As shown in Figures A1–A2, the estimated mean surfaces of proposed online SMC algorithm
(common features) for each cluster is comparable as that of the MCMC algorithm.

As indicated in Figure A3, online SMC algorithm achieves similar performance as the MCMC
algorithm in terms of ξ 21 , ξ

2
2 , ξ

2
3 .

As indicated in Figure A4, online SMC algorithm achieves similar performance as the MCMC
algorithm in terms of ξ 21 , ξ

2
2 , ξ

2
3 , ξ

2
4 . And there exists a small bias between the true value and the

posterior mean provided by online SMC method for ξ 25 , ξ
2
6 and the bias gets smaller as t increases.

Figure A1. True surfaces versus estimated common features based on MSSRm model: the top row
displays the true surfaces of simulated by functions f1, . . . , f3 uniformly over the rectangular domain
[−1, 1] × [−1, 1], the middle row and bottom row are the corresponding MCMC fitted mean surfaces
and online SMC fitted mean surfaces at T = 5000 with d = 6 × 6, n. min = 20.



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 35

Figure A2. True surfaces versus estimated common features based on MSSRm model: the top row
displays the true surfaces of simulated by functions f1, . . . , f6 uniformly over the rectangular domain
[−1, 1] × [−1, 1], the middle row and bottom row are the corresponding MCMC fitted mean surfaces
and online SMC fitted mean surfaces at T = 5000 with d = 6 × 6, n.min = 40.

Figure A3. Estimated parameter of ξ 2k , k = 1, 2, 3 with 95% equal tailed credible interval of online SMC
algorithm versus MCMC algorithm (EM, DEM) when K = 3 and the number of observations increases
from t = 20 to 10, 000.

Figure A4. Estimated parameter ξ 2k , k = 1, . . . , 6 with 95% equal tailed credible interval of online SMC
algorithm versus MCMC algorithm (EM, DEM) when K = 6 and the number of observations increases
from t = 40 to 10, 000.
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Appendix 6. Real data analysis

Predictive information criteria

Predictive information criterion, such as expected predictive deviance (EPD), expected Akaike
information criterion (EAIC), expected Bayesian information criterion (EBIC), Watanabe–Akaike
information criterion (WAIC) are often used to measure model predictive accuracy in Bayesian
framework [41,42]. In our proposed online SMC algorithm, we compute EPD, EAIC, EBIC, WAIC
at time T after obtaining all the estimates of model parameters via Equations (A13)–(A16).

EPD = −2
T∑
t=1

logEθ [p(yt|θ)]. (A13)

EAIC = −2
T∑
t=1

logEθ [p(yt|θ)] + 2vθ . (A14)

EBIC = −2
T∑
t=1

logEθ [p(yt|θ)] + vθ log(T). (A15)

WAIC = −2
T∑
t=1

logEθ [p(yt|θ)] + 2
T∑
t=1

V(log(p(yt|θ))). (A16)

Here vθ in EAIC and EBIC denotes the number of parameters in the model, and in our proposed
online SMC algorithm, we use

∑N
i=1 p(yt|θ (i)T )/N to approximate Eθ [p(yt|θ)], and V(log(p(yt|θ)))

is approximated via follows:

∑N
i=1(log(p(yt|θ iT)))2 − (

∑N
i=1 log(p(yt |θ (i)T )))2

N
N − 1

,

and p(yt|θ (i)T ) is estimated by
∑K

k=1 p(yt|θ (i)T , zt = k)p(zt = k).

Handwritten number images

As indicated in Figure A5 and Figure A6, when K = 8, the MSSRm model is able to capture the
common features of the most of the 10 digits as well as subgroup of 0, except 3, 8, and as indicated
by the 1st cluster, 7, 9 share some same common features. As indicated in Figure A6, when K = 10,
theMSSRm model is able to capture the common features formost of the 10 digits as well as subgroup
of 0, 2, except 3, and 7, 9 (the 1st cluster) share some common features, as well as 8 and 2 (the 9th
cluster).
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Figure A5. Online SMCestimated common features fromMSSRmmodel of handwritten number images
by cluster when K = 8, d = 8 × 8, labelled as the 1st cluster to the 8th cluster in left-to-right, top-to-
bottom order.

Figure A6. Online SMCestimated common features fromMSSRmmodel of handwritten number images
by cluster when K = 10, d = 8 × 8, labelled as the 1st cluster to the 10th cluster in left-to-right, top-to-
bottom order.
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