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ABSTRACT

Genetic similarity is a measure of the genetic relatedness among individuals. The standard
method for computing these matrices involves the inner product of observed genetic variants.
Such an approach is inaccurate or impossible if genotypes are not available, or not densely
sampled, or of poor quality (e.g., genetic analysis of extinct species). We provide a new method for
computing genetic similarities among individuals using phylogenetic trees. Our method can
supplement (or stand in for) computations based on genotypes. We provide simulations sug-
gesting that the genetic similarity matrices computed from trees are consistent with those com-
puted from genotypes. With our methods, quantitative analysis on genetic traits and analysis of
heritability and coheritability can be conducted directly using genetic similarity matrices and so
in the absence of genotype data, or under uncertainty in the phylogenetic tree. We use simulation
studies to demonstrate the advantages of our method, and we provide applications to data.

Keywords: genetic similarity, infinite sites model, phylogenetic tree.

1. INTRODUCTION

The computation of genetic similarities among samples (or taxa, or subjects, or individuals) is a key

step in the analysis of quantitative genetic traits and in estimating the heritability of traits through

variance component approaches (Chen and Witte, 2007; Tzeng and Zhang, 2007; Malo et al., 2008). For

example, linear mixed models (LMMs) are popular methods for genome-wide association studies, and

matrix-variate normal methods are popular for heritability and coheritability analyses. Both of these ap-

proaches demand efficient methods to determine genetic relatedness among samples (Kang et al., 2010;

Lippert et al., 2011; Listgarten et al., 2013). The genetic relatedness among samples is usually specified

through a genetic similarity matrix (Patterson et al., 2006; Thompson, 2013) derived empirically from genetic
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sequences, or from a kinship matrix (Boyce, 1983; Kirkpatrick et al., 2019) derived from a pedigree. Genetic

sequences are often described by a series of genome locations at which mutations may be observed in the

ancestry of the subjects. We consider single-nucleotide polymorphisms (SNPs), locations at which a single

DNA base pair can appear with more than one form (or, allele). The most common form is known as the major

allele, and the less common forms are the minor alleles. We refer to the matrix resulting from the inner

products of genetic sequences as the empirical genetic similarity matrix. This matrix is formed according to

the following definitions. For the SNP at locus m, let Gm denote the column vector of alleles. The genetic

similarity between samples i and j for a haploid sample is defined as follows:

KG
ij =

1

M

XM

m = 1

(Gim - lm)(Gjm - lm)

r2
m

: (1)

Here Gim is the genotype of leaf i at marker m (Gim 2 f0‚ 1g), lm, r2
m are the empirical mean and

variance of the SNPs at marker m, and M is the total number of loci genotyped (Patterson et al., 2006). We

assume that Gim = 1 indicates the event that sample i inherits the minor allele at marker m, and Gim = 0

indicates the event that sample i inherits the major allele at marker m. The minor allele is defined as the

allele that occurs less often among all of the samples. Note that permutations of the loci do not affect the

empirical genetic similarity. This formulation of genetic similarity is used in LMMs (Listgarten et al.,

2012), and multiphenotype models (Yang et al., 2011). The matrix entry KG
ij represents the expected genetic

contribution to the correlation between phenotypes for samples i and j, and thus, KG may be used as a fixed

effect. Other methods for computing relatedness (e.g., patristic distance or identity-by-descent [IBD]) have

closed forms, but are not directly exploitable in fixed effects models.

The computation of genetic similarity among samples using Equation (1) requires genotyped sequences,

and several challenges may arise in the computation. First, the genetic sequences may not be readily

available. This may be the case when extinct species are examined. Second, it is hard to assess the un-

certainty for empirical genetic similarities in cases for which the genotyped sequences have low quality, or

are homoplastic. This case may arise when examining bacterial genomes or de novo sequences. These

challenges motivate us to propose an approach that does not involve genetic sequences.

In this article, we develop a method for estimating expected values for the entries of a genetic similarity

matrix using a phylogeny [i.e., a closed form for the expected value of Eq. (1), conditioned on a tree].

Our proposed approach does not require that the sequences for individuals be genotyped (or measured). Our

method allows analysis based on Equation (1), such as analysis using fixed effects models, to proceed

for situations in which genotypes are not available but an approximation of the molecular phylogeny is, or

for situations in which there is uncertainty in Equation (1) stemming from low-quality genotyping or short

genomes. For example, in some studies of extinct species, genotypes might not be available but an

approximate molecular phylogeny, based on morphological data and geological dates, might be. Instead

of requiring individual genotypes, we assume that a phylogeny is given.

The relatedness among samples is computed by integrating over all mutations occurring in the branches

of a tree, under the assumption of an infinite sites model (Ma et al., 2008), with a constant mutation rate for

the evolutionary process. The infinite sites model is a popular and simple model for mutations in genome

evolution, and it is a reasonable model when the genome is large. The infinite sites model postulates that

new mutations are always at novel loci (and not re-entrant). Genetic recombination among samples is not

considered in this approach (however, the approach for samples with recombination is clear), as we mainly

consider genetic similarities at the species level. We numerically demonstrate that our proposed expected

genetic similarity matrix is asymptotically equivalent to the empirical genetic similarity matrix, with an

infinite number of genotyped loci (provided that the tree is correct).

The main application of our work is to provide a correspondence between phylogenetic trees and the nor-

malized genetic similarity matrices (Patterson et al., 2006) that are standard in LMMs and heritability analysis.

Often, many sampled molecular phylogenies are provided conditioned on genotypes (e.g., with the Bayesian

Evolutionary Analysis Sampling Trees (BEAST) software; Drummond and Rambaut, 2007). Our work allows

computation of the expected value of the standard and normalized genetic similarity matrix (Patterson et al., 2006)

for each of the sampled trees. These matrices can then be used to average over LMMs applied to each sample

(respecting the uncertainty in the genetic similarity matrix), or they can be used in Bayesian models extending

the usual LMM paradigm. In contrast, work based on computing Equation (1) directly from genotypes provides a

point estimate of the genetic similarity matrix (without respecting the uncertainty implied by the genotypes).
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In our simulations, the expected genetic similarity matrix is invariant to the number of samples and to the

mutation rate in the infinite sites models. Our approach is more accurate than the multidimensional scaling

(MDS) approach implemented in the software package pyseer (Lees et al., 2018) and Gaussian distance

similarity matrices (Ickstadt et al., 2005; González-Recio et al., 2008). The MDS approach for genetic

similarity matrix estimation also operates on phylogenies, but is not based on integration over all mutations.

We use our approach to compute the genetic similarity matrix for a set of ancient hominin species, with

the phylogeny found using BEAST on the set of morphological phenotypes used in Dembo et al. (2016).

Genetic similarity matrices are often used to partition the covariance matrix into additive components that

arise from genetic, environmental, or random factors (Wang et al., 2011; Dahl et al., 2016). Given this

estimated genetic similarity matrix, we compute the component of genetic covariance that is inherited

along the tree (before and after speciation events) for the heights of the ancient hominin species. In

particular, we apply an LMM (Yang et al., 2011) to compartmentalize the covariance matrix of the heights

of the species, such that the genetic component is a scaled version of our estimate for the genetic similarity

matrix. This demonstrates how our estimate can be used to determine genetic aspects without access to

measured genotypes (instead, with access to a tree that we assume approximates the correct phylogeny). In

addition, we apply our algorithm to evaluate the uncertainty of genetic similarities among hominin species.

1.1. Related work

Genetic similarity is a basic aspect of many approaches in genetic analysis. IBD (Whittemore and

Halpern, 1994) is a popular measure for genetic similarity, based on the identification of stretches of

genetic sequences that have identical ancestral origin. Kinship coefficients describe the probability that two

random alleles from a pair of individuals are IBD, and these coefficients are commonly used to measure

genetic similarity between a pair of individuals. There are several ways to compute kinship coefficients,

including from genetic data, and also based on pedigree graphs (Maruyama and Yasuda, 1970). The idea of

using trees to define similarity matrices (for use as fixed effects) is explored in Housworth et al. (2004).

However, that work uses estimates of similarity matrices based on pedigrees (and does not use the defi-

nition of genetic similarity as a normalized inner product of genetic sequences, as is standard in appli-

cations of LMMs to genome-wide association studies; Listgarten et al., 2013). Similarly, in Abney (2009), a

novel graphical algorithm for computing the kinship coefficients using graph traversal is developed:

‘‘kinship graph,’’ and in Thornton et al. (2012) a robust method ‘‘REAP’’ is developed, to estimate

IBD-sharing probabilities and kinship coefficients for admixtures. However, neither of these methods is

designed to estimate the normalized inner product of genetic sequences [Eq. (1)].

Computational concerns for kinship matrices have also been considered: Kirkpatrick et al. (2019) pro-

pose a fast algorithm for calculation of kinship coefficients for individuals in large pedigrees. Our work

provides an algorithm with similar computational complexity.

In further lines of research, if genetic sequences are observed, a variety of measures have been used to

compute genetic similarities using categorical data clustering (Ickstadt et al., 2005; González-Recio et al.,

2008) by creating dissimilarity scores for genotypes and then converting the dissimilarity scores to simi-

larity scores. For example, Murray et al. (2017) present the k-mer weighted inner product, an assembly-

based estimator of computation of genetic similarities among individuals that is also alignment-free. The

pairwise similarity is obtained from k-mer counts. In contrast, less work has been done in assessing the

statistical relationship between phylogenetic trees (rather than pedigrees or alignment-free methods) and

genetic similarity matrices. The most similar approach is based on MDS, which has been applied to the

control of LMMs (Lees et al., 2018). This MDS approach also provides a deterministic function that

outputs a similarity matrix given a fixed tree. In typical protocols, the fixed tree used in the production of

the similarity matrix may be produced from genotypes using BEAST.

2. METHODS

Let T be an unrooted binary tree with leaves i 2 f1‚ . . . ‚ Ng. The phylogeny T represents relationships

among N taxa through a tree topology s and a set of branch lengths e = (e1‚ e2‚ . . . ‚ e2N - 3). The leaves of

a sampled tree T are the samples in the study. Each interior node of T represents the most recent common

ancestor of the two children of that node, and the branch lengths are proportional to the evolutionary
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distances between pairs of nodes. An unrooted tree represents the relatedness of leaves without making

assumptions about an earliest common ancestor. In contrast, a rooted binary tree describes the relatedness

for a set of leaves in the tree from a single common ancestor at the root.

In computational genetics, the infinite sites model is commonly used to model genetic variation (Kimura,

1969). In this model, we assume that polymorphism arises by single mutations of unique sites at locations

within the genetic sequence, with all mutations occurring at different positions, implying that all genetic

variants are biallelic. Let G = [G1‚ G2‚ . . . ‚ GM] denote genotype data observed at M genetic variants,

with Gm denoting a column vector of alleles for the m-th SNP for all N subjects. The genetic similarity

matrix of the leaves (Patterson et al., 2006) is an N · N symmetric matrix K defined in Equation (1), in

which KG
ij denotes the genetic similarity between sample i and sample j. Our goal is to compute the

expected value of KG
ij given a tree T. By additivity of expectations, from Equation (1) we arrive at the

following expectation through integration over all mutations:

KT
ij = E[KG

ij jt = T] = E
(Gi - l)(Gj - l)

r2
jt = T

� �
: (2)

Here Gi is a random variable giving the genotype of a marker placed at a random location of the tree, and

l, r2 are random variables giving the mean and variance of Gi as an element of the set f0‚ 1g (assuming

haplotype data).

To compute Equation (2), we integrate the location of the marker over the tree, noting that expectation

splits linearly over the union of the domain of integration. Assuming a neutral model with a constant

mutation rate, the values of Gi are completely determined by the location of the marker, and they are

constant over each edge of the tree. So, Equation (2) can be rewritten as a weighted sum over edges of the

tree. The weights are given by jedj=jT j, where jedj is the branch length of an edge ed and jTj is the sum of

the branch lengths of all edges in the tree. The expected value on the right hand side of Equation (2) is thus

given by the following:

KT
ij =

X
ed

jedj
jTj

(Gied
- led

)(Gjed
- led

)

r2
ed

: (3)

The values Gied
, led

, r2
ed

are found by considering a mutation on each edge ed. Note that Equation (3) is

an approximation of expected value of genetic similarity found by assuming that the tree provides the

correct phylogeny. Hence, it represents the genetic similarity between taxa i and j. Under our assumptions,

led
, r2

ed
are summary statistics for G, and KT is a deterministic function of these variables according to

Equation (1). These values can be computed by considering the following steps for each element of the sum

from Equation (3).

1. Let c0 and c1 be the bipartition of taxa induced by segregation over edge ed in the unrooted tree T.

Figure 1 shows an example of this operation. Without loss of generality, we assume that the number

of leaves in c0 is greater than or equal to that of c1. This means that each leaf in c0 will have the major

allele, and each leaf in c1 will have the minor allele.

2. The genotype Gied
is 1 if leaf i is in c1 and Gied

is 0 if leaf i is in c0.

3. The mean led
is the number of leaves in c1, divided by the total number of leaves.

FIG. 1. Bipartition of taxa induced by an unobserved genetic variant on edge ed. Only the membership of each taxon

in the bipartitioned set is needed in the computation of the expected mean led
, and variance r2

ed
.
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4. r2
ed

is the variance of the Bernoulli distribution implied by the allele:

r2
ed

= led
(1 - led

): (4)

Note that if c0 and c1 are the same size, then led
= 1 - led

= 0:5, and
(Gied

- led
)(Gjed

- led
)

r2
ed

does not depend on

which allele is assigned to 0 or 1 (i.e., breaking ties for c0 and c1 one way or the other leaves KT
ij

unchanged). Equation (3) thus suggests the following O(N3) algorithm (Algorithm 1) for computing the

expected genetic similarity matrix, given the tree T. In this algorithm, A0 denotes the transpose of the matrix

A. We provide an open source software implementation for this method (https://github.com/shijiaw/

Expected-Genetic-Similarity-Matrices).

Algorithm 1. From Phylogeny to Expected Genetic Similarity Matrix

1: Inputs: A phylogenetic tree T with a tree topology s and a set of branch length e = (e1‚ e2‚ . . . ‚ e2N - 3).

2: Output: An N · N expected genetic similarity matrix KT.

3: Initialize KT
ij )0.

4: Compute the total tree distance jTj by adding up branch lengths e.

5: for ed 2 fe1‚ e2‚ . . . ‚ e2N - 3g do

6: Compute led
and r2

ed

7: for i 2 f1‚ 2‚ . . . ‚ Ng do

8: for j 2 fi‚ . . . ‚ Ng do

9: Set KT
ij )Kij + jedj=jTj � (Gied

- led
)(Gjed

- led
)=r2

ed
.

10: Set LowerTriangle KTð Þ)LowerTriangle KT 0ð Þ.
11: return K.

3. EXPERIMENTS

In our numerical experiments, we use the ms software (Hudson, 2002) to simulate binary trees and

genetic variation (ms is a coalescent simulator that generates genetic samples under the assumption of the

neutral model and the infinite sites assumption). We also assume constant effective population size N. The

branch lengths are thus in units of 2N generations. We simulate genetic sequences for haploidy of pop-

ulation and assume no recombination during the history (this assumption is appropriate for evolutionary

timescales with species for which lateral transfer is negligible).

3.1. Simulation 1

In this simulation study, we numerically demonstrate the consistency of our algorithm. We simulate data

sets for three scenarios: A, B, C. In scenario A, we simulate 100 trees, with N = 20 samples (or subjects, or

taxa) for each tree. Also, for each tree, we simulate two sets of genetic sequences, each with M = 1000 or

20 loci. In scenario B, we simulate 100 trees with N = 6 taxa, each with M = 1000 loci. In scenario C, we

simulate 100 trees with N = 20‚ M = 1000, and for each tree we simulate SNPs with a neutral mutation rate

of l = 7:5 mutations on the entire sequence per generation. In the ms software, the mutation parameter

h = 2Nl (Hudson, 2002).

For each scenario, we compute the empirical genetic similarity matrix using the simulated genotypes to

form a ground truth. Then, we compute the expected genetic similarity matrix using Algorithm 1 and the

simulated tree. Figure 2 displays scatter plots comparing our method for computing genetic similarity

matrices to the ground truth [the ground truth is found by applying Equation (1) to the simulated geno-

types]. Figure 2 shows that for a higher value of M, the correlation among the entries of the genetic

similarity matrices computed from trees and from genotypes may be stronger than it is for low values of M

(the number of loci). This figure also shows that even a small number of samples may produce unbiased

estimates of the genetic similarity matrix. We also show that for situations with small numbers of samples,

the estimates may still improve for higher values of M.

The entries of genetic similarity matrices computed from trees and genotypes become closer together as

we increase M on the genotype from 20 to 1000, providing evidence for consistency of our methods over

the range of M considered. In addition, these simulations suggest that the expected genetic similarity matrix

is invariant to the number of individuals and the neutral mutation rate.
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We conduct an additional set of experiments to investigate the difference between entries of the expected

genetic similarity matrix and the ground truth as (A): a function of number of loci for each sequence; (B): a

function of number of samples (or subjects, or taxa). For (A), we simulate 100 trees, with N = 50 samples

(or subjects, or taxa) for each tree. In addition, we simulate eight sets of genetic sequences, each with

M = 10, 30, 100, 300, 1000, 3000, 10,000, or 30,000 loci, for each tree. Figure 3 displays the difference

between the expected genetic similarity matrices and the ground truth with different numbers of loci for

each fixed number of sequences. The violin plots denote the entrywise difference between the expected

genetic similarity matrices and the ground truth (KG
ij - KT

ij ). This figure indicates that for a higher value of

M, the correlation among the entries of the genetic similarity matrices computed from trees and from

genotypes is larger than it is for low values of M.

For (B), we simulate six sets of trees, each with N = 10, 30, 100, 300, 1000, 3000 taxa for each tree, and

with 100 trees for each set. We simulate genetic sequences, with 1000 loci, for each tree. Table 1 shows the

summary statistics (mean, standard deviation, 2:5%, 25%, 50%, 75%, 97:5% quantiles) for entrywise

A B

C D

FIG. 2. Comparison of simulated genetic similarity matrices from trees and genotypes. Scatter plots are provided for

entrywise differences between the genetic similarity matrices produced by our method and the ground truth [from

Equation (1), applied to the simulated genotypes]. The top left and top right panels show the entrywise differences for

the two conditions for scenario (A), and the bottom left and bottom right panels show the entrywise differences for

scenarios (B, C), (respectively).
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differences between the genetic similarity matrices produced by our method and the ground truth

(KG
ij - KT

ij ). This table indicates that the correlation among the entries of the genetic similarity matrices

computed from trees and from genotypes is invariant to the number of taxa ðNÞ. This invariance is further

supported in Supplementary Figure S1 through identical violin plots.

3.2. Simulation 2

In our second simulation study, we compare our tree-based genetic similarity matrix approach with other

approaches that measure genetic similarities using phylogenies. The first approach we compare with is a

Gaussian distance similarity matrix (González-Recio et al., 2008; Ickstadt et al., 2005), in which we first

compute the distance between two samples i and j, dij, by computing the length of the shortest path be-

tween them on the tree. Then we convert the distance to a similarity matrix through the equation

KS
ij = exp ( - kdij=jT j). Here k is a fixed bandwidth. We refer to Supplementary Appendix SA1 for more

details of this approach. This approach is similar to Ickstadt et al. (2005) and González-Recio et al. (2008),

but with distances computed through the phylogeny. The second approach we compare with is the MDS

approach implemented in the software package pyseer (Lees et al., 2018). In the MDS approach, the

similarity between each pair of samples is calculated based on the shared branch length between the pair’s

most recent common ancestor and the root. MDS is then performed on the resulting similarity matrix. We

denote the genetic similarity matrix computed via pyseer by KMDS
ij (note that we do not perform the MDS

itself, and instead compare the similarity matrices directly).

We simulate 100 trees, with N = 20 taxa in each tree. For each tree, we simulate genetic sequences with

M = 1000 loci. We compute the genetic similarities via KT
ij (our method, based on the tree), KS

ij, KG
ij (the

inner product from the sampled genotypes), and KMDS
ij . Figure 4 displays the comparison of genetic

similarity matrices using trees. The violins denote the differences between KG
ij - KT

ij (red), KG
ij - KS

ij (green),

and KG
ij - KMDS

ij (blue). The empirical and expected genetic similarity matrices are closer to each other than

they are to the Gaussian distance similarity matrix, and are closer to each other than they are to the MDS

similarity matrix.

Note that the simulation conditions of the comparison between our method and the empirical genetic

similarity matrix are the same as the upper left panel of Figure 2. For the KG
ij - KS

ij condition, we note that

Table 1. Comparison of Simulated Genetic Similarity Matrices from Trees

and Genotypes As a Function of Number of Taxa

No. of taxa Mean SD 2.5% 25% 50% 75% 97.5%

10 0.000 0.028 -0.054 -0.013 0.000 0.012 0.057

30 0.000 0.033 -0.055 -0.011 0.000 0.012 0.054

100 0.000 0.034 -0.049 -0.011 0.000 0.011 0.050

300 0.000 0.035 -0.039 -0.010 0.000 0.010 0.044

1000 0.000 0.034 -0.041 -0.009 0.000 0.010 0.036

3000 0.000 0.036 -0.055 -0.008 0.002 0.012 0.038

The summary statistics (mean, SD, 2.5%, 25%, 50%, 75%, 97.5% quantiles) for entrywise differences between the genetic similarity

matrices produced by our method and the ground truth are close. This observation is further supported in Supplementary Appendix SA2.

SD, standard deviation.

FIG. 3. Comparison of simulated genetic simi-

larity matrices from trees and genotypes. The

violins are provided for entrywise differences

between the genetic similarity matrices produced

by our method and the ground truth.
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the median difference is far from zero (as the range of the Gaussian distance method is positive). However,

KG
ij and KS

ij are still correlated (q = 0:27, p < 0:001). Here q denotes the correlation between entries of KG
ij

and KS
ij, and p denotes the p-value for the null hypothesis that q is equal to 0. For the KG

ij - KMDS
ij condition,

the median difference is still far from zero, but less far than it is for the KG
ij - KS

ij condition. The KG
ij - KS

ij still

involves correlation between the entries of the similarity matrices (q = 0:56, p < 0:001).

3.3. Ancient hominin data

We consider two experiments on ancient hominin data. In the first experiment, we apply our method to

compute the genetic similarities between eight hominin species. Fossil remains of a previously unknown

ancient hominin species (Homo naledi) were discovered in South Africa (Berger et al., 2015) and the DNA

of this ancient hominin species remains unsequenced. While some ancient hominin species have been

sequenced, often geological, paleontological, morphological, or anthropological observations are used to

assess the evolutionary relationships among extinct species (Dembo et al., 2016). In this way, a tree

approximating the molecular phylogeny can still be constructed. We assume that the branch lengths of the

molecular phylogeny are proportional to the phylogeny inferred from paleontological dates (and in exper-

iments described later in this section we assume that molecular phylogeny is proportional to morphological

trees). Recent work in hominin phylogeny suggests that morphological trees broadly match molecular

phylogeny (Wiens, 2004; Wood and Boyle, 2017). However, convergent evolution and high substitution

rates modulate the validity of this assumption (Berger et al., 2017; Scally et al., 2012). Our method allows

us to compute genetic similarity matrices that could then be used in the analysis of heritability or coher-

itability (as is done in Dahl et al., 2016), in the absence of any genetic sequences.

We use our proposed approach to compute the expected genetic similarity matrix for Homo sapiens and

seven extinct cousins or ancestors of humans (Homo habilis, Homo rudolfensis, Georgian Homo. erectus,

African Homo erectus sapiens, Asian Homo erectus sapiens, Homo antecessor, and Homo neandertha-

lensis). The phylogenetic tree for the species that we consider is provided and computed in Dembo et al.

(2016) using geological dates. While Dembo et al. (2016) reconstruct the phylogenetic tree of 24 species,

we consider the 7 hominin species most closely related to humans, as well as humans themselves (yielding

8 species). Figure 5 shows the heatmap for the expected genetic similarity matrix for the eight hominins

considered in this article. The genetic similarities between H. rudolfensis and Georgian H. erectus, H.

rudolfensis and H. habilis, and Georgian H. erectus and H. habilis are larger than the rest.

We also provide the specific values of the heatmap in Figure 5 of the similarities in Supplementary

Table S1 of Supplementary Appendix SA3. This table could be used in conjunction with models such as

FIG. 4. Comparison of expected genetic similarity matrix approaches: KG
ij - KT

ij (our method, bottom), KG
ij - KS

ij

(middle), and KG
ij - KMDS

ij (top). The entries of the expected genetic similarity matrices (the red violin, thin) are close to

the empirical genetic similarity matrix. They are closer to the empirical genetic similarity matrix than are the entries of

the Gaussian distance similarity matrices (the green violin), or the multidimensional scaling similarity matrices (the

blue violin).
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Dahl et al. (2016) to conduct heritability or coheritability analysis on traits of the species considered. To

that end, we consider a heritability analysis on the average heights of genetic males in the eight hominin

species. We gather these average heights of ancient hominins from the following references: Carretero et al.

(1999); Helmuth (1998); Lordkipanidze et al. (2007); and McHenry and Coffing (2000). We estimate

variance components from an LMM (a standard model for methods such as genome-wide complex trait

analysis; Yang et al., 2011). The form of this model is as follows:

y = b + e; b*N (0‚ r2
gKT )‚ e*N (0‚ r2

eI):

Here y denotes the standardized phenotypes (genetic male heights), and I is an identity matrix. The

random effects b are the genetic effects. The term e encodes the environmental effect.

Narrow sense heritability, denoted h2, is the fraction of the variance of y due to the genetic component.

This quantity is defined as follows:

h2 = r2
g=(r2

g + r2
e):

We fit the LMM with KT (our expected genetic similarity matrix) computed earlier in this section. We

conducted inference using Markov chain Monte Carlo (Gibbs sampling) (MCMC) for the parameters of the

LMM, using 10,000 iterations, of which the first 5000 are discarded for burn-in. Figure 6 shows the MCMC

trace plots of r2
g and r2

e . The red dashed lines indicate posterior means for r2
g and r2

e with the burn-in

discarded. Figure 7 shows the histograms for posterior samples of r2
g, r2

e , and h2 with the burn-in discarded.

The red lines indicate the posterior means, and the blue dash lines indicate the 95% credible intervals.

We obtain posterior means and 95% credible intervals r̂2
g = 0:640 (0:185‚ 1:754) and r̂2

e = 0:526

(0:160‚ 1:415). Therefore, from r̂2
g and r̂2

e we estimate that the narrow sense heritability for this trait isbh2 = r̂2
g=(r̂2

e + r̂2
g) = 0:538, with 95% credible interval given by (0:176‚ 0:870). Note that the validity of these

estimates depends crucially on the assumptions of the model: First, that the paleontological tree is pro-

portional to the phylogeny, and also that the assumptions of the neutral model and infinite sites model hold.

For humans, the narrow-sense heritability of height suggested by Yang et al. (2015) is between 0.6 and 0.7.

3.4. Uncertainty assessment in hominin species

In this section, we present a second experiment on hominin data. We apply our approach to evaluate the

uncertainty for genetic similarities for 24 hominin species. The DNA sequences of some hominin species

FIG. 5. Genetic similarity matrix for eight hominin species as a heat map, computed using geological dates and

Algorithm 1.
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remain unavailable (e.g., Sahelanthropus tchadensis). We compute the genetic similarity matrix for a

posterior sample of phylogenetic trees for the hominin species. We used 10,000 posterior tree samples

(after thinning) created through MCMC with BEAST2 (Bouckaert et al., 2014). Details of the BEAST2 run

are provided in Supplementary Appendix SA4. The morphological data used are provided in Dembo et al.

(2016), but BEAST2 was used rather than Mr. Bayes 3.2.4 (Ronquist et al., 2012).

The resulting matrices represent the uncertainty of genetic similarities among the hominin species.

Figure 8 displays the uncertainty of genetic similarities between Ardipithecus ramidus and Aus-

tralopithecus anamensis, Gorilla gorilla and Pan troglodytes, Parantropus robustus and Homo naledi, and

P. troglodytes and Australopithecus afarensis. We refer readers to Supplementary Appendix SA5 (Sup-

plementary Figs. S2–S4) for the posterior mean and the 95% credible interval for a heatmap of the genetic

similarity matrix for all 24 hominin species.

4. DISCUSSION

We provide an unbiased estimate for the genetic similarity matrix of samples, conditioned on a phy-

logenetic tree. This can be used to perform heritability and coheritability estimates based on models such as

Dahl et al. (2016), and can be used as a building block for LMM-like models in which uncertainty about

FIG. 7. Histograms for posterior samples of r2
g, r2

e , and h2. The red lines indicate posterior means for r2
g, r2

e , and h2,

and the blue dash lines indicate the 95% credible intervals.

FIG. 6. MCMC trace plots of r2
g and r2

e . The red dashed lines indicate posterior means for r2
g and r2

e with initial 5000

iterations as burn-in. MCMC, Markov chain Monte Carlo.
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inferred trees is modeled jointly with LMM regression parameters. As a proof-of-concept, we provide

estimations of the genetic component for human and ancient hominin heights. To our knowledge, this is the

first work to describe the integrals and expectations involved. The assumptions include haploidy (and no

recombination), neutral models of evolution, and the infinite sites model. These assumptions can be chal-

lenged by data in which samples undergo nontree-like evolution, incomplete lineage sorting, hybridization,

or homoplasy. However, these assumptions are appropriate for evolutionary timescales with limited lateral

transfer (e.g., in hominins, where lateral transfer such as from Neanderthal to humans accounts for only a

small proportion of the modern human genome; Sánchez-Quinto et al., 2012), or for trees derived from

highly clonal bacteria such as tuberculosis.

Our numerical experiments demonstrate consistency between the empirically calculated genetic simi-

larity matrix and our proposed algorithm. We also apply our method to compute genetic blue for eight

hominin species, based on phylogenetic trees inferred from geological dates. Although our methods are

based on the expected value of genetic similarity (i.e., molecular phylogeny), we assume that geological

dates are proportional to molecular phylogeny. Our method can be used to provide genetic similarity

matrices for heritability analyses (Dahl et al., 2016) in cases for which genotypes are not available. We also

conduct a heritability analysis on the average heights of genetic males for hominin species. Even though the

evolution of hominin species involves recombination and some lateral transfer, which is not accounted in

our analysis, the main effects in molecular phylogeny at evolutionary timescales involve mutation at the

species level.

In cases where genotypes are available, our work can be applied if phenotypes or geography suggests a

mismatch between phylogeny and genotype. This can happen in application of LMMs for multivariate

genome-wide association studies with low-quality or low-coverage genotypes. This can also happen when

genetic variation is low, but the examined phenotype is still under selection, causing homoplasy, which

could bias estimates of a similarity matrix based on genotypes. When multiple samples of the phylogeny

are available (e.g., after running MCMC inference for the phylogeny), our algorithm can be used to

compute the expected genetic similarity matrix for each posterior sample. The resulting matrices represent

the uncertainty of genetic similarities among species, and could be combined with LMMs to better identify

population stratification and correct for spurious association.

Our current approach is limited to the computation of genetic similarities among species, or samples

without recombination. One future direction for this work would be to consider genealogies with recom-

bination events. The ancestral recombination graph (ARG) describes the coalescence and recombination

events among individuals (Rasmussen et al., 2014). The ARG is composed of a set of coalescent trees

separated by break points. To compute the expected genetic similarity matrix for samples given an ARG,

we could first compute the expected genetic similarity matrices for each of the coalescent trees in the ARG,

and then compute weighted average for those expected genetic similarity matrices. The weights would be

proportional to the number of loci between each consecutive pair of break points. This would constitute a

FIG. 8. Uncertainty of genetic similarities be-

tween Ardipithecus ramidus and Australopithecus

anamensis, Gorilla gorilla and Pan troglodytes,

Parantropus robustus and Homo naledi, and

P. troglodytes and Australopithecus afarensis.
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straightforward extension of our method. Another future direction would be to incorporate more advanced

evolutionary, mutation, or selection models (relaxing the infinite sites and neutral assumptions). Finally,

there are strong similarities between genetic and linguistic evolution (Cavalli-Sforza, 1997; Colonna et al.,

2010). These two subjects both involve evolution and variation in a similar manner, and phylogenetic

methods have been applied to construct trees for language data (Atkinson and Gray, 2005; Jordan, 2007).

Our work could be extended to compute similarities for languages using linguistic trees.
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Sánchez-Quinto, F., Botigué, L.R., Civit, S., et al. 2012. North African populations carry the signature of admixture

with Neandertals. PLoS One 7, e47765.

Scally, A., Dutheil, J.Y., Hillier, L.W., et al. 2012. Insights into hominid evolution from the gorilla genome sequence.

Nature 483, 169–175.

Thompson, E.A. 2013. Identity by descent: Variation in meiosis, across genomes, and in populations. Genetics 194,

301–326.

Thornton, T., Tang, H., Hoffmann, T.J., et al. 2012. Estimating kinship in admixed populations. Am. J. Hum. Genet. 91,

122–138.

PHYLOGENY-BASED GENETIC SIMILARITY MATRICES 599



Tzeng, J.-Y., and Zhang, D. 2007. Haplotype-based association analysis via variance-components score test. Am. J.

Hum. Genet. 81, 927–938.

Wang, X., Guo, X., He, M., et al. 2011. Statistical inference in mixed models and analysis of twin and family data.

Biometrics 67, 987–995.

Whittemore, A.S., and Halpern, J. 1994. Probability of gene identity by descent: Computation and applications.

Biometrics 50, 109–117.

Wiens, J.J. 2004. The role of morphological data in phylogeny reconstruction. Syst. Biol. 53, 653–661.

Wood, B., and Boyle, E. 2017. Hominins: Context, origins, and taxic diversity. In On Human Nature. Academic Press.

Yang, J., Bakshi, A., Zhu, Z., et al. 2015. Genetic variance estimation with imputed variants finds negligible missing

heritability for human height and body mass index. Nat. Genet. 47, 1114–1120.

Yang, J., Lee, S.H., Goddard, M.E., et al. 2011. GCTA: A tool for genome-wide complex trait analysis. Am. J. Hum.

Genet. 88, 76–82.

Address correspondence to:

Dr. Lloyd T. Elliott

Department of Statistics and Actuarial Science

Simon Fraser University

8888 University Drive

Burnaby V5A 1S6

Canada

E-mail: lloyd.elliott@sfu.ca

600 WANG ET AL.


