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Background: Many countries have implemented pop-
ulation-wide interventions to control COVID-19, with 
varying extent and success. Many jurisdictions have 
moved to relax measures, while others have intensi-
fied efforts to reduce transmission. Aim: We aimed to 
determine the time frame between a population-level 
change in COVID-19 measures and its impact on the 
number of cases. Methods: We examined how long it 
takes for there to be a substantial difference between 
the number of cases that occur following a change in 
COVID-19 physical distancing measures and those that 
would have occurred at baseline. We then examined 
how long it takes to observe this difference, given 
delays and noise in reported cases. We used a suscep-
tible-exposed-infectious-removed (SEIR)-type model 
and publicly available data from British Columbia, 
Canada, collected between March and July 2020. 
Results: It takes 10 days or more before we expect a 
substantial difference in the number of cases follow-
ing a change in COVID-19 control measures, but 20–26 
days to detect the impact of the change in reported 
data. The time frames are longer for smaller changes 
in control measures and are impacted by testing and 
reporting processes, with delays reaching ≥ 30 days.
Conclusion: The time until a change in control meas-
ures has an observed impact is longer than the mean 
incubation period of COVID-19 and the commonly 
used 14-day time period. Policymakers and practition-
ers should consider this when assessing the impact 
of policy changes. Rapid, consistent and real-time 
COVID-19 surveillance is important to minimise these 
time frames.

Introduction
In response to the coronavirus disease (COVID-19) 
pandemic, many countries have implemented large-
scale non-pharmaceutical interventions (NPI), with 
a particular focus on physical distancing measures. 
The details of physical distancing vary substantially 
between and within countries. Differences in the sever-
ity and timeliness of the response, different patterns of 

social contact within a community and varying public 
compliance modulate the effect of distancing meas-
ures on a region’s epidemic trajectory. Accordingly, 
countries experiencing increasing case counts have 
considered, and need to continue considering, what 
degree of distancing measures to implement in order 
to reduce COVID-19 spread while minimising negative 
effects, such as adverse health and economic impacts. 
Understanding the possible trajectories that may arise 
from changing physical distancing measures is crucial, 
as is consideration of the timescale of such trajectory 
changes to ensure that they result in the desired impact 
within the expected time frame. Quantifying the time-
scale of such changes can contribute to, for example, 
healthcare capacity forecasting and delivery of timely 
advice and instructions to communities.

A number of recent studies have examined the effec-
tiveness of government measures on the spread of 
COVID-19 [1-8]. One approach has been to retrospec-
tively compare observed data to baseline model out-
put [2,3]. Several studies have focused on estimating 
changes in the effective reproduction number over time 
[4,9,10]. Similarly, Anderson et al. directly estimated 
the impact of control measures on COVID-19 transmis-
sion patterns using a Bayesian model with explicit 
physical distancing [1]. However, these studies do not 
focus on reporting the predicted time until a given 
amount of change occurs across many simulations of 
future case counts. Instead, they compare simulations 
to a constant baseline, or report quantitative measures 
on only a few simulations.

We used a likelihood-based approach to determine 
when we may expect to see the effects of implement-
ing or relaxing physical distancing measures using case 
count data. This is in contrast to the work described 
above which focuses on quantifying the effect of such 
measures. We used a susceptible-exposed-infectious-
removed (SEIR)-type model to simulate scenarios over 
a broad range of simulation parameters. We considered 
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the impact of data collection delays and inconsisten-
cies on the time to detect a change in distancing and 
applied our methods to publicly available case count 
data from British Columbia (BC), Canada. We focused 
on the first implementation of physical distancing 
measures between March and April 2020 and the first 
relaxation of measures in between May and July 2020. 
As regions adjust their measures and mandates, par-
ticularly in response to COVID-19 vaccination uptake 
and emergence of new variants, it is crucial to under-
stand the time frame over which we would expect to 
see the impact of such changes in order to properly 
assess their effects.

Methods
We used a deterministic SEIR-type model, a compart-
mental model describing susceptible, exposed, infec-
tious and removed individuals, first developed by 
Anderson et al. in 2020 [1]. We fitted the model to data 
on daily case counts and incorporated knowledge of 
the incubation period and duration of the infectious 
period in the model. The model includes a fixed pro-
portion of the population who are willing and able to 
practise physical distancing, although individuals can 
move between distancing and non-distancing modes. 
A schematic diagram for this model is shown in Figure 
1. 
The strength of physical distancing is represented by 
parameter 0 ≤ ƒ(t) ≤ 1,  ƒ(t) = 1 indicating no physical 
distancing and ƒ(t) = 0 indicating a complete avoidance 
of all contacts. Distancing individuals transmit infec-
tion at a reduced rate and are less likely to encounter 

others. We modelled the introduction and relaxation of 
distancing as follows:

To relate observed daily case numbers to the underly-
ing transmission model, we took the mean number of 
new cases reported on day  t, μt  to be a weighted sum 
of those who became symptomatic at some time s days 
ago:

Here  wc  represents the distribution of delay between 
symptom onset and a reported positive test,  ψt  is the 
fraction of eligible cases on day t that will be tested and 
reported, and M represents the maximum delay (here, 
twice the mean delay of 8.78 days, see Supplementary 
Table S1). We sought to determine (i) how soon 
changes in distancing measures may cause substan-
tial changes in the number of prevalent cases; and (ii) 
how soon we may be able to estimate the strength of 
these measures given uncertainty about the trajectory 
and delays and noise in reporting. We used a nega-
tive binomial likelihood for the observational model 
with mean  µt  and dispersion parameter φ, NB(Ct │ μt, 
φ) as in [1], to write the likelihood of the data Ct  on 
day  t  given the model parameters, where dispersion 
φ accounts for sources of variability in observation: 
this may include, for example, test-seeking behaviour, 
lag times, and test availability/processing. This model 
framework has been demonstrated to capture popula-
tion-scale dynamics of COVID-19 case counts in BC as 
well as other provinces, states and countries [1,11].

We introduced a method for determining the first 
date at which the prevalence in two model scenarios 
(a change in physical distancing vs baseline) begin to 
diverge. We computed the empirical probability that 
there is a difference between the two models, accord-
ing to the distributions of prevalence they imply. These 
distributions are obtained by considering uncertainty 
in the basic reproduction number  R  0,  which captures 
uncertainty in transmission and duration of infection. 
In this model

Figure 1
Schematic diagram of the compartmental model for 
COVID-19 transmission incorporating physical distancing
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Compartments are: susceptible to the virus (S); exposed (E 1); 
exposed, pre-symptomatic, and infectious (E 2); symptomatic 
and infectious (I); quarantined (Q); and removed (recovered 
or deceased; R). There are analogous states for individuals 
practising physical distancing (bottom row). An individual in 
state X can begin distancing and move to the corresponding 
distanced state Xd at rate ud . The reverse transition occurs at 
rate ur . The model quickly settles on a fraction e = ud /(ud  + ur 
) participating in distancing, and dynamics depend on this 
fraction, rather than on the rates ud and ur The red and tinted 
red squares represent the compartments that we identify as 
active cases. The orange/orange tinted, and red/red tinted 
compartments indicate infectious cases.

This schematic diagram was adapted from Anderson et al. [1].
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in the absence of distancing (i.e. when  ƒ = 1), 
where  β  is the infection rate,  q  is the quarantine 
rate, γ is the recovery rate and k 2 is the rate of moving 
from the  E  2  to  I  compartment (i.e. 1/k  2  is the mean 
length of the pre-symptomatic infectious period). 
Given information about the duration, the transmission 
parameter  β  can simply be scaled in order to match 
the exponential growth rate for the early stage of the 
epidemic. Ordinary differential equations (ODEs) which 
describe the compartmental model are simulated 
numerically, drawing  R  0  from the prior and keeping 
other parameters fixed. This procedure induces a 
distribution over the case counts seen on each day. To 
compute the empirical probability that a substantial 
difference occurs on a given day after introducing 
distancing measures, we considered the proportion of 
simulated samples for which the model with physical 
distancing shows fewer active cases (prevalent, 
symptomatic) than the non-distancing model by at 
least 10. Alternatively, if distancing measures are 
being relaxed, prevalent cases would increase, and the 
comparison is reversed.

We computed the above empirical probability daily 
after a change in distancing. The first day on which it 
is at least 0.95 is the ‘days until threshold’ i.e. our esti-
mate for the first day at which the effect of modifying 
physical distancing is substantial. We compared sev-
eral strengths of change in physical distancing, and for 
each we considered 100 replicates, each with a value 
of R 0 drawn from the prior. We performed an additional 
analysis in which the active cases threshold was varied. 
In BC, 10 cases corresponded to approximately 5% of 
the incident cases reported on the day distancing was 
introduced; the threshold could be modified for other 
jurisdictions.

In the second part of the analysis, we explored the time 
it would take to observe such differences in reported 
case counts, taking into account observation noise 
and delay. The negative binomial likelihood expression 
(fully detailed in the  Supplementary material) relates 
predicted case counts from the SEIR-type model to 
reported case counts, corrected for the delay between 
symptom onset and reporting. This likelihood, written 
as a function of a given strength of physical distanc-
ing fx , (e.g. f 1 or f 2) may be maximised to find f n MLE the 
maximum likelihood estimate (MLE) of  fx  on day  n. 
Estimation of  f  n  MLE  uses data from the start of the 
outbreak up to and including day n. As well as delays 
between new cases being infected and becoming 
symptomatic, and becoming symptomatic and being 
reported, noise in daily case counts introduces consid-
erable variation in the day-by-day MLEs, particularly 
in the days following a change in distancing. We intro-
duced a stopping rule in which an estimate  f  n  MLE  is 
‘accepted’ once the MLE changes by less than 5% over 
a 3-day period.

We used the daily MLE approach to estimate the 
value of  ƒ  1  in the period following the introduction of 
distancing recommendations in BC (18 March 2020), 
using daily case counts reported between 1 March and 
22 April 2020. We found a credible band by simulating 
the compartmental model with 50 different values of 
the baseline  R  0  parameter, sampled from a normal 
distribution with mean R 0 = 2.57 as estimated by a pre-
distancing model fit and with standard deviation 0.05. 
We performed a similar analysis to estimate the value 
of f 2 in the period following the relaxation of distancing 
recommendations, using case counts reported between 
1 May and 1 July 2020. We used 17 May as a start day 
of the relaxation of distancing recommendations, 
coinciding with the holiday weekend on which BC 
ended Phase 1 of its COVID-19 restrictions [12]. For 
credible bands, we increased the standard deviation to 
0.2 to obtain a similar level of variation compared with 
the introduction-of-distancing estimation. To explore 
this further, we also simulated data in which distanc-
ing was relaxed to 50%, 65%, and 90% of the normal 
(unrelaxed) level, under the assumption that the case 
count observation noise and delay remained as during 
March and April in BC (φ = 5, delay shape 9.85, delay 

Figure 2
Projected active cases (I + Id ) after a change in physical 
distancing, British Columbia, Canada, March–July 2020
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Vertical dashed lines indicate when there is a 0.95 probability of a 
substantial difference of 10 active cases between the baseline 
and the altered trajectory.

A. Three models are considered: a baseline model (grey) in which 
physical distancing is not introduced, and two models in which 
the amount of physical distancing is modified to be f 1 = 0.7 
(orange line), or f 1 = 0.4 (green line). For f 1 = 0.4 a significant 
change is identified in the model after 10 days, and for f 1 = 0.7 a 
significant change is identified after 17 days.

B. Three levels of relaxation are considered corresponding to 
f 2 = 0.5, f 2 = 0.65, and f 2 = 0.9. For the relaxation level f 
2 = 0.5, no difference is seen for the period under question 
(the curves for the f 2 = 0.5 and baseline conditions broadly 
overlap). For f 2 = 0.5 and f 2 = 0.9, significant changes are 
seen after 44 and 14 days, respectively.
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scale 1.73 [1]), and found the time taken to accept the 
MLE of f 2.

We investigated the impact of the noise in case count 
reporting on the time to detect a change in the strength 
of physical distancing by simulating outbreaks in which 
we varied the observation dispersion parameter φ. We 
controlled the variance in the number of daily reported 
cases: note that this is not the same as the dispersion 
parameter about  R  0,  commonly referred to as  k.  We 
also simulated outbreaks in which we varied the shape 
and scale parameters of the onset-to-reporting Weibull 
distribution, to explore the impact of this delay. We then 
performed the same daily MLE estimation procedure 
on each of these simulated time series.

A full description of the model, likelihood and meth-
ods is available in Supplement S1. Values of the model 
parameters for our analysis using BC data are available 
in Supplementary Table S1. All statistical analysis was 
performed in R software version 4.0.3 (R Foundation, 
Vienna, Austria), and datasets and R code are available 
on GitHub under an open source license [13].

Ethical statement
All data were collected from publicly available sources; 
therefore, ethical approval was not required.

Results

Time for a change in COVID-19 measures to 
impact cases and reported case counts
We found that it took 10–17 days (18 March until 28 
March or 4 April) before there was a substantial differ-
ence between the baseline trajectory (no distancing) 
and a trajectory with distancing measures of  f  1 = 0.4, 
0.7 respectively. However, it took 26 days to observe 
the difference and estimate the strength of distancing 
using reported data. The situation is similar for relax-
ing measures: it took 44 days until a substantial dif-
ference arose after relaxing distancing from  f  1 = 0.36 
to  f  2 = 0.65, and 20 days to detect such a difference 
using observed cases. If more drastic relaxation of 
measures takes place, from  f  1 = 0.36 to  f  2 = 0.9, a 
substantial difference in the model trajectories occurs 
over a much shorter time frame i.e. 14 days.  Figure 
2  shows declining case trajectories when distancing 
is introduced, and inclining ones when distancing is 
relaxed, and illustrates the dependence of the timing 
on the severity of the change. When the change was 
weak (e.g. a weak relaxation from f 1 = 0.36 to f 2 = 0.5) 
there was no discernible difference between the trajec-
tories before 1 July (45 days). 

Impact of parameter choices on model 
projections
The time until a substantial difference arises depends 
on what is considered to be a substantial difference, 
and on the underlying uncertainty. We explored the 
impact of different threshold choices and extents of 
relaxation measures on time taken to reach a sub-
stantial difference (Figure 3). Stronger relaxation of 
measures (up to baseline contact levels with  f  2 = 1) 
produced a difference quickly, within 10 to 20 days. 
Similarly, a smaller threshold difference of five cases 
is reached relatively soon. Overall, it took between 
10 and 60 days for a substantial difference to arise, 
unless the change was small and the threshold was 
large, in which case our methods may not have found 
a substantial difference by the end of the simulation 
period (120 days). 

The uncertainty in  R  0  and other parameters also 
impacts the time until there is a substantial difference 
in trajectories (Supplementary Figure S1). We found 
that halving uncertainty in the underlying growth rate 
(by reducing the standard deviation in  R  0) reduced 
the time until detection from between 20 and 40 days 
to between 12 and 25 days. Uncertainty in other fixed 
parameters does not have a strong impact on the time 
(Supplementary Figure S1b) unless the relaxation con-
ditions are weak (f 2 ≤ 0.7). Epidemiological parameters 
are now well established for COVID-19 [14], but we are 
less certain of the true value of parameters (q, ur , ud ) 
that are influenced by behaviours.

Figure 3
The size of the threshold used to define a substantial 
difference impacts the time until such a difference occurs, 
as does the severity of the change in the strength of 
physical distancing f, British Columbia, Canada, May–July 
2020
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ODE: ordinary differential equation.

The baseline model has f 1 = 0.36 (17 May 2020), and so a change 
to f 2 = 1 is a complete relaxation of distancing measures, and 
is detected sooner than a partial relaxation. We varied the 
threshold for the number of cases of interest in the set {5, 10, 
15, 20}. Missing values on the y-axis (for example for values of 
the active cases level of 0.6) indicate that our methods could 
not differentiate between the models with and without relaxed 
physical distancing when the active cases threshold was 15 or 
20 cases. For each f 2 and threshold level, we simulated 10,000 
ODEs with random initial R 0 values drawn independently from 
a normal distribution with mean 2.5 and variance 0.15, and for 
each group of 100 simulated ODEs we computed the days since 
17 May 2020 until the excess active cases threshold is detected 
between the baseline and the condition.
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Figure 4
Daily maximum likelihood estimate for the strength of physical distancing using daily reported case count data, British 
Columbia, Canada, March–July 2020
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MLE: maximum likelihood estimate.

Grey bands, turning blue after the MLE is accepted, correspond to a 95% credible region obtained from 50 samples of R 0. The reported daily 
case counts are provided above each figure for reference.

A. Daily maximum likelihood estimate after implementing physical distancing. 26 days to accept the MLE.

B. Daily maximum likelihood estimate after relaxing physical distancing. 20 days to accept the MLE.
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We explored the impact of the viral incubation period 
upon the time until a substantial difference arises, and 
found little impact (Supplementary Figure S2). This is 
largely because a few days’ uncertainty in the incuba-
tion period is insignificant relative to the overall time 
scale and threshold of 10 cases to define a substantial 
difference. In some instances, we could not differenti-
ate between trajectories for the models with distancing 
and the models without distancing (these are the miss-
ing values in the related figures). Also, if the standard 
deviation in the underlying parameter R 0 is too large, it 
may not be possible to predict a substantial difference 
within the time frame of interest.

Time to detect and quantify a change in 
distancing measures using reported data
We have conceptually separated the time until there 
is any substantial difference in model trajectories and 
the time until we would be able to estimate the impact 
of a change in distancing using reported case counts. 
These times may differ as a result of reporting delay, 
but in some circumstances it may also be possible to 
observe signals of a change in distancing in reported 
data before the threshold is met in model projections, 
due to unmodelled effects or under a lower probability 
threshold for example.

Figure 4 shows the daily maximum likelihood estimate 
of the physical distancing parameter  f  over time, 
in both implementation and relaxation of physical 
distancing scenarios. We found that it took 26 days to 
accept the value of f 1 (that is, the MLE changed by less 
than 5% over a 3-day period, as described in Methods). 
We estimated  f  1  to be 0.22 on the day of acceptance 
(13 April 2020), but this estimate increased to 0.36 by 
22 April, 35 days after distancing and taken to be the 
end of the observation period. Several larger cluster 
outbreaks had begun to be observed in BC by this time 
[15], which may have contributed to this increase in the 
estimated distancing parameter.

In the first few days after the introduction of distanc-
ing, we saw considerable noise in the daily MLEs. This 
is expected, as having only several days of data to 
inform the estimate means that even small variations 
in the case counts can have a large effect. The likeli-
hood is flat for a period around the first week after dis-
tancing is introduced. The credible intervals are thus 
more informative than the point estimates. For the 
introduction of distancing, the time at which the cred-
ible interval no longer includes 1.0 may indicate the 
time at which we are confident that distancing has had 
a positive effect (even if we cannot yet determine the 
size of this effect). We were able to observe this over 
a much shorter time frame: 8 days until the 95% inter-
val drops below  f  1 = 0.99 and 11 days until it drops 
below f 1 = 0.9, in contrast to the 26 days to accept the 
MLE estimate.

In  Figure 4B, we considered the relaxation of physi-
cal distancing in BC and calculated daily estimates 

of parameter  f  2. We found that it took 20 days to 
accept the value of  f  2, at which time (6 June) we esti-
mated  f  2  to be 0.73, decreasing to 0.64 by the end of 
the observation period 45 days after distancing: 1 July. 
We note again the importance of interpreting the daily 
MLEs in conjunction with the credible intervals, since 
fluctuations in daily reported cases immediately after a 
change in distancing measures will have a large impact 
on the MLE. We also performed the same analysis 
with simulated data in place of observed case counts, 
under f 2    values 0.5, 0.65 and 0.9 and assuming that the 
observation noise and delay remain as pre-relaxation 
during March and April in BC (Supplementary Figure 
S3). We estimated that it would take 30 (f  2 = 0.5) or 
23 (f  2 = 0.65 or 0.9) days from initiating relaxation of 
distancing until accepting the MLE f n MLE.

Comparison with time-dependent reproductive 
number R 
For comparison, we estimated the time-dependent 
reproductive number [16] (Rt  ) directly from reported 
cases, using an assumed serial interval of 5 (standard 
deviation: 1) days (Supplementary Figure S4). The 95% 
quantile for  Rt  dropped below unity 14 days after dis-
tancing was introduced (1 April 2020), and it took 18, 24 
days after distancing was relaxed for Rt’s 95% quantile 
to be above unity for  f  2 = 0.9 and 0.65, respectively. 
Even with weekly smoothing, the  Rt  values fluctuated 
greatly, particularly after relaxation of distancing. In 
contrast, the estimates of  f  1 and  f  2 did not. However, 
they are not directly comparable to Rt because we esti-
mated a single  f  value over an extended time period, 
whereas Rt is a daily (smoothed) value. Our model also 
allows explicit exploration of the effects of delays in 
reporting and dispersion in case counts (for example 
from inconsistencies in testing or the impact of spa-
tial spread), which this simple approach for estimat-
ing Rt does not.

Impact of noise and delay in reported case 
counts
The time to observe the strength of distancing is 
impacted by both the level of noise in the case counts 
and the delay between symptom onset and reporting. 
We explored the effects of this in Figure 5. As the noise 
in the daily case counts is reduced (Figure 5A), so is 
the time to detect the strength of distancing. Under a 
level of noise realistic for observed case counts in BC 
(observation dispersion φ = 5), we estimated 26 days 
to accept  f  n  MLE. When φ was doubled (corresponding 
to halving the variance, approximately, when on the 
order of 50 cases are observed per day), this reduced 
to 21 days. Under the most optimistic scenario, where 
there was no noise but still an average 8.7-day delay, 
the time to accept was 13 days.

A longer delay between symptom onset and case 
reporting also results in a longer time taken to estimate 
the strength of distancing (Figure 5B). With a Weibull 
distributed delay of shape 1.73 and scale 9.85 (mean: 
8.78; variance: 27.4) and φ = 5, as estimated for BC in 
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A. Time to detect the strength of physical distancing depends on noise in daily case counts 

B. Time to detect the strength of physical distancing depends on the onset-to-reporting delay

Figure 5
The time to detect the strength of distancing depends on noise in daily case counts and on the onset-to-reporting delay

MLE: maximum likelihood estimate.

Physical distancing implemented on day 18 at strength f 1 = 0.36. 95% credible band produced from 50 samples of R 0 is shown, and MLE 
accepted window is highlighted with vertical bars. Results are coloured grey before the MLE is accepted. Simulated daily case counts are 
provided for reference (top panels).

A. We varied the observation dispersion parameter φ for the daily case counts. Blue: φ = 5, 26 days to accept MLE. Orange: φ = 10, 21 days. 
Green: no noise, 13 days.

B. We varied the onset-to-reporting delay (mean, variance). Blue: (8.78, 27.4), 31 days to accept. Orange: (4.43, 5.37), 20 days. Green: (0.95, 
0.01), 14 days.
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[1], we estimated 31 days to accept the MLE of f 1. When 
the delay was reduced to shape 2 and scale 5 (mean: 
4.43; variance: 5.37), the time to accept was 20 days. 
Lastly, with a delay shape 10 and scale 1 (mean: 0.95; 
variance: 0.013), the time to accept was 14 days.

Discussion
As jurisdictions begin to ease or reimplement physical 
distancing measures, we must understand how long it 
may take to observe a statistically significant differ-
ence in reported case counts. We found that it gener-
ally takes between 10 and 70 days before changes in 
distancing have a substantial and detectable impact on 
the underlying model trajectory, depending on the level 
of parameter uncertainty and the degree of distancing 
change. In certain cases, we found that these methods 
are unable to differentiate between the scenarios with 
relaxed physical distancing and strict physical distanc-
ing; for example, if the deviation in R 0 is high and the 
relative change in physical distancing is low. However, 
through computing daily estimates of the parameter 
controlling strength of physical distancing in our model 
we found that, at least under public health systems 
in BC, the time taken to detect changes in distancing 
was 3–4 weeks. Halving the case count dispersion or 
the mean onset-to-reporting delay in BC during March 
and April 2020 could have reduced the time taken to 
understand the strength of physical distancing by ca 
20% and 35%, respectively. This highlights the benefit 
of improved, consistent surveillance systems, and 
perhaps contact tracing apps if they are able to mini-
mise delays, weekly patterns, or discrepancies in case 
reporting. Dispersion in observed cases will also occur 
when spread is inconsistent spatially as well as tempo-
rally, for example local clusters or outbreaks. Although 
spatial spread was not modelled explicitly in this work, 
we can observe the effects of it through dispersion in 
daily case counts.

Our analysis has a number of limitations. Although 
policy changes happen at defined times, if distancing 
behaviour and other COVID-19 control practices do not 
change instantaneously then the time frame to detect 
changes may become longer than we have estimated. 
We have not explored a wide range of growth rates or 
baseline prevalence levels and these may affect the 
results. The transmission model used was a determin-
istic SEIR variant and did not include stochastic effects 
(except in the observation model), or age or risk struc-
ture. The model includes a fraction of the population 
practising physical distancing, thereby reducing their 
contact rates, but does not otherwise include hetero-
geneity in contact patterns. In particular, we focused 
on the delay between case onset and reporting, but 
certain high-risk groups such as healthcare workers 
may be more likely to get tested and have expedited 
testing available. Our methodology could readily be 
extended to structured models, but this requires strati-
fied data and knowledge of mixing patterns across 
those strata. Indeed, any disease model will include 
exponential growth and decay; this work is somewhat 

model-agnostic in that, whatever level of detail goes 
into producing this exponential behaviour, we can still 
perform the same eventual inference.

Our approach to determine when the effect of modify-
ing measures is observable relies on using case count 
data as the indicator for increased community-based 
transmission. However, public health officials may find 
outbreaks, even where they do not contribute to sta-
tistically higher case counts, by noting epidemiological 
links among cases (e.g. links through workplace, fam-
ily, healthcare or gatherings). Changes in these smaller 
outbreaks may be detected much faster than our 3–4 
week estimates, but it remains the case that measures 
directed towards the general population are the main 
intervention for COVID-19. Our results focus on estimat-
ing impacts on this broader population level and this 
has long time scales. Sentinel surveillance systems, 
contact tracing and outbreak detection are among the 
tools used by public health agencies to gather rapid 
and more detailed information than case counts dur-
ing a disease outbreak. These form multifaceted sur-
veillance networks including hospitals, primary care 
and symptom trackers, which may often be faster 
than confirmed and laboratory-tested cases. However, 
these networks also have complex limitations and vary 
greatly by jurisdiction. Their data are not always con-
sistently or widely published to those outside of public 
health decision-making. Confirmed case counts remain 
an informative and comparable source for population-
level understanding of COVID-19 control, particularly 
for modellers seeking a broad assessment of COVID-19 
in multiple jurisdictions to compare policy on borders 
and travel or effectiveness of control measures.

While we focused on the first implementation and 
relaxation of physical distancing measures for COVID-
19, our model can also be used to detect the first time 
one would expect to see a change in reported case 
counts in response to modifications of any NPI. For 
example, we could use this model to explore the effects 
of introducing digital contact tracing or improved test-
ing for severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2). Our model may also be applied to any 
region or country with case reporting to determine the 
relevant time lags, and as such may be used to distin-
guish the international, national, provincial or regional 
scales of such effects. For example, SEIR-type models 
are used to forecast COVID-19 elsewhere e.g. in all 50 
states in the United States with the ‘Covid Act Now’ 
project [17]: each state is associated with a COVID-19 
risk level based on how soon their projections arrive at 
certain constant thresholds on measures such as case 
counts and intensive care unit headroom used. Our 
methods could support such regional work by allowing 
the parameters and baselines to be calibrated, reflect-
ing population density, testing protocols, demograph-
ics and cultural factors regarding social contact. The 
times to observe the impacts of changes in control 
measures are likely to be region-specific.
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We found that the time to detection for a return to 
widespread transmission owing to relaxed physical 
distancing measures can be long, indeed considerably 
longer than the mean incubation period [14,18] or the 
often used 14-day time period [19-21]. Policymakers 
need to ensure they have observed the impact of 
changes in distancing measures before assessing the 
effect of such changes. In order to decrease the time to 
detection, we need less noisy testing and faster ways 
to monitor community transmission. Outbreaks within 
communities or other sporadic super-spreading events 
contribute both to ‘noise’ in case counts and to uncer-
tainty in R0R0 , particularly if they reveal areas of pre-
vious underdetection. It is therefore also important to 
maintain consistent spatial and temporal surveillance.

Other surveillance techniques could facilitate faster 
and smoother case detection but suffer from their own 
limitations. Consistent sentinel surveillance e.g. as are 
seen in influenza-like illness data, may have a slightly 
longer delay, but ultimately less noise. Symptom 
tracker apps could show changes in incidence sooner 
than laboratory-confirmed case counts, but could suf-
fer from false positive results and may be affected by 
coverage and usage limitations. Digital contact tracing 
may also support rapid case finding but will ultimately 
rely on testing for confirmation. However, case confir-
mation delays in a contact tracing context are often 
considerably shorter than in symptom-based testing 
[22]. Recent research has also investigated detection 
of SARS-CoV-2 in wastewater [23,24], which, although 
potentially not revealing of individual-level infec-
tion, may provide an early warning system. Similarly, 
investigation of live mobility data during the disease 
outbreak may reveal changes in population behaviour, 
even if such work requires some assumptions about 
the link to changes in incidence [25,26].

Conclusion
Given the long time frames to detect changes in COVID-
19 measures from case count data, the development of 
robust combinations of diverse surveillance systems 
is urgent. For those seeking an overview of COVID-19 
trajectories without reference to multifaceted local 
surveillance data, perhaps at the national level or to 
support decisions about travel to and from other juris-
dictions, it is important not to over-interpret short-term 
fluctuations in reported case counts.

Acknowledgements
Funding: The work was funded by the Genome BC COVID-19 
Rapid Response Funding Initiative (project code COV-142). 
JES and CC were supported by the federal government of 
Canada’s Canada 150 Research Chair Program. The funders 
had no role in the study design, data analysis or writing of 
this article.

Conflict of interest
None declared.

Authors’ contributions
JS conceived the ideas and wrote the manuscript. CC direct-
ed the work, organised and directed the ideas. LTE, NM, RD, 
JM and LW contributed to the methods and preparation of the 
manuscript.

References
1. Anderson SC, Edwards AM, Yerlanov M, Mulberry N, Stockdale 

JE, Iyaniwura SA, et al. Quantifying the impact of COVID-19 
control measures using a Bayesian model of physical 
distancing. PLOS Comput Biol. 2020;16(12):e1008274.  https://
doi.org/10.1371/journal.pcbi.1008274  PMID: 33270633 

2. Courtemanche CJ, Garuccio J, Le A, Pinkston JC, Yelowitz A. 
Did social-distancing measures in Kentucky help to flatten 
the COVID-19 curve? Working Paper 29. Institute for the Study 
of Free Enterprise. Louiseville: University of Kentucky; 2020. 
Available from: https://uknowledge.uky.edu/isfe_papers/1

3. Varghese C, Xu W. Quantifying what could have been - The 
impact of the Australian and New Zealand governments’ 
response to COVID-19. Infect Dis Health. 2020;25(4):242-4.  
https://doi.org/10.1016/j.idh.2020.05.003  PMID: 32507662 

4. Wu J, Tang B, Bragazzi NL, Nah K, McCarthy Z. Quantifying 
the role of social distancing, personal protection and case 
detection in mitigating COVID-19 outbreak in Ontario, Canada. 
J Math Ind. 2020;10(1):15.  https://doi.org/10.1186/s13362-020-
00083-3  PMID: 32501416 

5. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, 
et al. , Centre for the Mathematical Modelling of Infectious 
Diseases COVID-19 Working Group. The effect of control 
strategies to reduce social mixing on outcomes of the COVID-19 
epidemic in Wuhan, China: a modelling study. Lancet Public 
Health. 2020;5(5):e261-70.  https://doi.org/10.1016/S2468-
2667(20)30073-6  PMID: 32220655 

6. Tuite AR, Fisman DN, Greer AL. Mathematical modelling 
of COVID-19 transmission and mitigation strategies in the 
population of Ontario, Canada. CMAJ. 2020;192(19):E497-505.  
https://doi.org/10.1503/cmaj.200476  PMID: 32269018 

7. Kissler SM, Tedijanto C, Lipsitch M, Grad Y. Social distancing 
strategies for curbing the COVID-19 epidemic. medRxiv. 
2020:03.22.20041079.  https://doi.org/10.1101/2020.03.22.2
0041079 

8. Di Domenico L, Pullano G, Sabbatini CE, Boëlle PY, Colizza V. 
Impact of lockdown on COVID-19 epidemic in Île-de-France 
and possible exit strategies. BMC Med. 2020;18(1):240-240.  
https://doi.org/10.1186/s12916-020-01698-4  PMID: 32727547 

9. Flaxman S, Mishra S, Gandy A, Unwin HJT, Mellan TA, 
Coupland H, et al. , Imperial College COVID-19 Response Team. 
Estimating the effects of non-pharmaceutical interventions on 
COVID-19 in Europe. Nature. 2020;584(7820):257-61.  https://
doi.org/10.1038/s41586-020-2405-7  PMID: 32512579 

10. Chen D, Zhou T. Evaluating the effect of Chinese control 
measures on COVID-19 via temporal reproduction number 
estimation. PLoS One. 2021;16(2):e0246715.  https://doi.
org/10.1371/journal.pone.0246715  PMID: 33571273 

11. Anderson SC, Mulberry N, Edwards AM, Stockdale JE, 
Iyaniwura SA, Falcao RC, et al. How much leeway is 
there to relax COVID-19 control measures? medRxiv. 
2020:2020.06.12.20129833.  https://doi.org/10.1101/2020.06.
12.20129833 

12. The Government of British Columbia. Premier outlines plan 
to restart B.C. safely. Vancouver: The Government of British 
Columbia; 6 May 2020. Available from: https://news.gov.bc.ca/
releases/2020PREM0026-000826

13. Stockdale JE. LongTimeFrames GitHub repository. GitHub. 
[Accessed: 1 Mar 2021]. Available from: https://github.com/
jessicastockdale/LongTimeFrames

14. Siordia JA Jr. Epidemiology and clinical features of COVID-19: 
A review of current literature. J Clin Virol. 2020;127:104357.  
https://doi.org/10.1016/j.jcv.2020.104357  PMID: 32305884 

15. British Columbia Centre for Disease Control. British Columbia 
COVID-19 daily situation report, April 24th, 2020. Vancouver: 
British Columbia Centre for Disease Control; 24 Apr 2020. 
Available from: http://www.bccdc.ca/Health-Info-Site/
Documents/BC_Surveillance_Summary_April_24_Final.pdf

16. Cori A, Ferguson NM, Fraser C, Cauchemez S. A new framework 
and software to estimate time-varying reproduction numbers 
during epidemics. Am J Epidemiol. 2013;178(9):1505-12.  
https://doi.org/10.1093/aje/kwt133  PMID: 24043437 

17. Covid Act Now. U.S. COVID Risk & Vaccine Tracker. [Accessed: 
14 Sep 2021]. Available from: https://covidactnow.org

https://crossmark.crossref.org/dialog/?doi=10.2807/1560-7917.ES.2021.26.40.2001204&domain=pdf&date_stamp=2021-10-07


10 www.eurosurveillance.org

18. He W, Yi GY, Zhu Y. Estimation of the basic reproduction 
number, average incubation time, asymptomatic infection 
rate, and case fatality rate for COVID-19: Meta-analysis and 
sensitivity analysis. J Med Virol. 2020;92(11):2543-50.  https://
doi.org/10.1002/jmv.26041  PMID: 32470164 

19. Carlisle M. White house coronavirus official says effects of 
social distancing won’t be seen for 7 to 14 days. New York. 
Time. 2020;24. Available from: https://time.com/5808777/
coronavirus-white-house-debra-birx-today-show/

20. CTV News Montreal. COVID-19: Effect of social distancing 
measures will take time to appear, experts say. Ontario: CTV 
News. 18 Mar 2020. Available from: https://montreal.ctvnews.
ca/covid-19-effect-of-social-distancing- measures-will-take-
time-to-appear-experts-say-1.4858418

21. Reuters. Two weeks in, Britain’s COVID-19 lockdown having an 
effect, study shows. London: Reuters; 8 Apr 2020. Available 
from: https://www.reuters.com/article/us- health-coronavirus-
britain-tracker/two-weeks-in-britains-covid-19- lockdown-
having-an-effect-study-shows-idUSKBN21Q1XH

22. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology 
and transmission of COVID-19 in 391 cases and 1286 of their 
close contacts in Shenzhen, China: a retrospective cohort 
study. Lancet Infect Dis. 2020;20(8):911-9.  https://doi.
org/10.1016/S1473-3099(20)30287-5  PMID: 32353347 

23. Peccia J, Zulli A, Brackney DE, Grubaugh ND, Kaplan 
EH, Casanovas-Massana A, et al. SARS-CoV-2 RNA 
concentrations in primary municipal sewage sludge as a 
leading indicator of COVID-19 outbreak dynamics. medRxiv. 
2020:2020.05.19.20105999.  https://doi.org/10.1101/2020.05.
19.20105999 

24. Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien 
JW, et al. First confirmed detection of SARS-CoV-2 in 
untreated wastewater in Australia: A proof of concept for the 
wastewater surveillance of COVID-19 in the community. Sci 
Total Environ. 2020;728:138764.  https://doi.org/10.1016/j.
scitotenv.2020.138764  PMID: 32387778 

25. Google. COVID-19 community mobility reports. California: 
Google. [Accessed: 12 Jun 2020]. Available from: https://www.
google.com/covid19/mobility

26. Gao S, Rao J, Kang Y, Liang Y, Kruse J. Mapping county-level 
mobility pattern changes in the United States in response to 
COVID-19. SIGSPATIAL Special. arxiv. 2020;12(1). https://arxiv.
org/abs/2004.04544

License, supplementary material and copyright
This is an open-access article distributed under the terms of 
the Creative Commons Attribution (CC BY 4.0) Licence. You 
may share and adapt the material, but must give appropriate
credit to the source, provide a link to the licence and indicate 
if changes were made. 

Any supplementary material referenced in the article can be 
found in the online version.

This article is copyright of the authors or their affiliated in-
stitutions, 2021.

https://crossmark.crossref.org/dialog/?doi=10.2807/1560-7917.ES.2021.26.40.2001204&domain=pdf&date_stamp=2021-10-07

