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COMMENTARY ON « FAMOUS ARTEFACTS »
(P. H. SCHONEMANN)

Exactly what is an artefact?

Michael D. Maraun

Simon Fraser University

Professor Schonemann's paper, «Famous artefacts: Spearman's hy-
pothesis», is a brave and fascinating analysis of a contentious issue. The
current article is his most recent in a series of mathematical analyses
centering on the work of Arthur Jensen, and ranging from the implica-
tions for his claims of factor analytic indeterminacy (Schénemann,
1987, 1990), to the meaning of the so-called Spearman correlations
(Schonemann, 1985, 1992). I use the term brave because very few seem
willing to critically evaluate Jensen's work, especially when it comes to
technical issues. I agree with the majority of the conclusions from
Schénemann's past work, including his observation that far too many of
Jensen's claims have attached to them a convenient semantic imprecision
(e.g., the calling of the first principal component, g). But despite the
quality of Schonemann's work, I do not believe that ‘Famous artefacts’
constitutes a fair analysis of Spearman correlations.
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What is an artefact?

« For instance, the Roman astronomers had to be convinced
that the things that they saw through the telescope were not
optical illusions produced by_ the 1nstrument....F}thherm_0re,
the whole question of the relation of sensory experience, alf:led
by instruments, to ‘reality’ is by no means simple, and Galileo
meditated deeply on the problem » (Segre_, 1969, p.20). _

What is an artefactual result? The answer i by no means straightfor-
ward. Schonemann (Note 1) accepts the follow%ng definition: « St;ucture
or phenomenon of artificial or accidental origin encountered during an
observation or experiment bearing on a natural phenomenon » A(No.uveau
Petit Larousse, 1972, p. 69). In Wepster's New College Dictionary
(1990) one 1is informed that an arte.facF is « A product (as a structure on
a prepared microscope slide) of artificial character due to f:xtraneous(;1 .(as
human) agency. » Artefactual‘results seem to be descrllbable according
to the following kind of scenario. One studies an objectf’phenomenon
(0), with an instrument (I) that produces a result (R). If R is a represen-
tation of properties of O then it provides information abgqt 0. Qne can
rightly, in certain contexts, claim to have made.an empirical discovery
on the basis of R. One may hypothesize something about O, and use R
as evidence for or against the hypothesis. If, on the other hand, R is not
a representation of properties of O, but is a byproduct of the use of -the
instrument itself, then it is an artefact (A). Unfortgnately, the relat{on
between the object/phenomenon of interest and the instrument by which
it is represented is by no means simple. - -

How does one decide whether R is artefact or representation:
Clearly, there exist many different domain spec:lﬁc procedures that may
be employed to arrive at a judgment. Depending on the .Context, one
might change the settings of the instrument, or temporanly employ a
different instrument. Sometimes the inappropriate choice or operation of
an instrument will lead to the generation of an artefactual result. If R
remains after such a change, then it might provisionally be taken as a
representation of O. One might examine different objects un@er the
same instrument set-up (e.g., as with a microscope leps), and if R is
found regardless of which object is studied, then one might suspect 1t to
be an artefact. - -

The question is whether Spearman correlations may rightly be called
artefactual results. It seems to me that it is rather difficult to translate
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the terms of the above scenario into the data analytic terms that are the
basis for the study of Spearman correlations. Nevertheless, in such 3
data analytic context, the place of instrument might be seen as occupied
by an analytic framework of ‘data theory’. The analytic framework
contains the building blocks in terms of which the problem is defined, It
includes details regarding the populations under study, the specifics of
data collection (e.g., the sampling scheme involved), the correspon-
dence relations between phenomena of interest and data analytic cop-
cepts, and the data analytic models employed to represent the data. It
fixes what is meant by an outcome of a study, and provides a vocabu-
lary for the phrasing of hypotheses and conclusions.

Consider the case of difficulty factors in the context of linear factor
analysis (McDonald & Ahlawat, 1974). Here, one is interested in
‘observing’ the relationships among a set of dichotomous items (O).
However, the object under study is located in N-dimensional euclidean
space (N = number of subjects), and so cannot be observed unaided.
One requires an instrument to generate a low-dimensional projection
(representation). One could choose linear factor analysis for this pur-
pose. The instrument would then be the usual embedding framework of
statistical concepts one comes across in a consideration of multivariate
data, and those particular to factor analysis. Now, the factor analytic
result is an r dimensional projection, in which r is much smaller than N.
But now assume that, as part of this result, one finds a factor that is
highly correlated with the mean vector of the items (R). One might then
declare R to be an artefact because it has not to do with O. How does
one know this? Because, generally speaking, the degree to which R
manifests itself is related to the value of the mean vector (Olsson,
1979), and the mean vector is univariate information (and so should
have no bearing on O, relationships among the items). Furthermore, the
use of a more theoretically appropriate instrument (non-linear factor
analysis) rids ome of the artefactual result (McDonald & Ahlawat,
1974). Consider a second example, the estimation of the parameters ina
statistical model. One would like to take the estimates as representing
features of the phenomenon under study. But how does one know that
the estimates can be taken in this way, and are not simply a function of
the starting values chosen? The obvious answer is that one should
change the starting values a number of times and observe whether the
same estimates are obtained. If radically different estimates are obtained
with different starting values, one should take the estimates to be arte:
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factual. This example may, in fact, be closer to a data analytic sense of
artefactuality than the previous one.

I don't think that Schonemann wishes to claim that the Spearman cor-
relations are artefactual. In my opinion, he has something different in
mind which is closer to frivial dependency, than artefactuality. This
sense is in keeping with the following:

« The importance that Jensen (1985) attaches to this hypothesis
is attested to by his statement: "[the] hypothesis that the magni-
tudes of black-white mean differences on various mental tests
are directly related to the test g loadings, if fully substantiated,
would be an important and unifying discovery" (p. 197) ... I
shall substantiate this proposition — but not its importance — by
showing it to be but a mathematical consequence of the g
hypothesis and not at all in need of empirical evidence »
(Guttman, 1992, p. 196).

The idea is that, given the analytic framework, the Spearman correla-
tion may be a necessary consequence of other empirical results, and not
itself an independent empirical discovery. It may not be the case that it
can be independently hypothesized because it may just be a necessary
consequence of a sub-set of other empirical results plus aspects of the
construction of the problem. When these other results are obtained, the
Spearman correlation hypothesis may not be falsifiable. This seems to
me to be a very different thing than artefactuality, artefactuality suggest-
ing that, in some way, a result does not truly represent features of the
object under study. In a data analytic problem, one might define this
sense of trivial dependence as follows:

Definition: Given an appropriate analytic framework, a result
A is trivially dependent on result B if A is a necessary conse-
quence of B.

It is not hard to generate examples of this kind of dependency. For the
case of two dichotomous items, one might think of the relationship be-
tween the univariate marginals and the range over which ¢ may vary.
Whether, in a given context, the existence of such a dependency is
damaging depends upon the roles that A and B were to play. For exam-
ple, if A is dependent on B, then, given B, it would be trivial to hy-
p‘gthesize A. Given B, the hypothesis of A would not be falsifiable.
Similarly, given B, it would be silly to put forth A as a major, inde-
pendent empirical finding. For the case of two dichotomous items, it
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would be much like observing P;=.7 and P,=.3 and then hypothesizing
that ¢ < .43. To paint Spearman correlations in this way was Guttman'g
aim in his 1992 paper (just take A to be ‘Spearman correlation” and B (g
be ‘Single common factor model holds’). Regardless, there are certaip
cases in which dependency may lead to even greater trouble. For
example, if one held result D as a possible explanatory prop for resul
C, and it turned out that D was dependent on C, then one would be in g
bind. This is the possibility that is most menacing with regard to
Spearman correlations.

The analytic framework of the Spearman correlation issue

Regardless of whether one accepts this distinction between artefactu-
ality and dependency, one must specify the analytic framework that
underlies the study of Spearman correlations. The Spearman correlation
issue features a P-vector of random variates, X, each variate represent-
ing an intelligence test, this vector distributed on RF. There exist two
distinct populations, whites and blacks, occurring with proportions m;
and m,. Also featured are three covariance matrices, three mean vectors,
and the eigen-structures of the covariance matrices. The unconditional
density of X is therefore a mixture:

1) X) = 74X | 1) + m,*(X|2).

with f(X|1) and f(X|2) the conditional densities of populations 1 and 2,
respectively. All first and second moments are assumed to exist, and
then

2) u = my*n; + ny*m, and
3) L = *L; + my*E, + mymy*dd',

in which y; and p, are the mean vectors for populations 1 and 2, X, and
X, are the covariance matrices for populations 1 and 2, and d = (y;-
1). The analytic framework for this problem includes no specification
as to the specific form of the unconditional or conditional distributions
of X. Their specific forms is an empirical question. Even if, in practice,
fX|1) and f(X|2) turn out to be multinormal, f(X) will not in general
be so. Let this analytic framework be called B1.
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Given B1, the hypotheses are made that

(Spearman level 1), and

2
b)) ‘30528@1,4) > >0, cosg,1 4) > >0
(Spearman level 2).

Schénemann's claim

Schonemann claims that both the level 1 and level 2 correlations are
artefacts. Once again, I suggest that his claim should be paraphrased as
one about dependencies. Regardless, Schonemann proves that (4) and
(5) are a necessary consequence of:

6) X~N(u,%)
7) Populations 1 and 2 are defined as the regions on either side of
the cutting plane through the centroid, and orthogonal to v, i.e.,
if X-p)'v, >0 then XcP1, otherwise XcP2

(secondary consequence) X =2,

8) Z, and Z, contain only positive elements.

Has he revealed the existence of a damaging dependency? I do not be-
lieve so, for Schonemann has not chosen a reasonable analytic frame-
work. Specifically, (6), (7), and (8) are severe restrictions on B1, in
which the conditional densities of (1), f(X|1) and f(X|2), are truncated
normals, the unconditional density is multivariate normal, and the con-
ditional covariance matrices of (3) are equal and "positive manifold".
Schonemann's conditions are, in fact, testable hypotheses within Bl.
Therefore, they themselves do not constitute an appropriate framework.
I can think of no reason why (6), (7), and (8) should be the starting
point for an analysis of the Spearman correlation issue.
Schonemann, on the other hand, doubts

« ... how anyone could question multinormality as a default

assumption. Multinormality undergirds virtually all multivari-

ate statistics practiced in the social sciences, including maxi-

mum likelihood factor analysis, LISREL, tetrachoric correla-

tions, corrections for attenuation, most likelihood ratio tests,
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most classical test theory, etc., etc. Why should this ubiquitous

and universally accepted premise all of a sudden become

suspect when it is invoked to refute counter-intuitive claims of

social import? » (Schonemann, 1997, p. 689).
He erects a similar defense of (7) and (8). But this is placing the cart
well before the horse. It is true that multinormality is routinely assumed
in the formulation and use of statistical models, but this fact is wholly
irrelevant to the current issue. The choice of an appropriate analytic
framework for the consideration of an empirical issue is in no way
constrained by the (often expeditious) considerations that enter into the
development and use of statistical models. Statistics, when used proper-
ly, is the servant of science, and not the other way around. The choice
of an appropriate analytic framework has but one master: The adequate
exploration of the empirical issue of interest. If then multinormality is
required to power a particular statistical procedure, then the procedure
is inappropriate for the study of Spearman correlations.

Do there exist damaging dependencies?

Given an appropriate analytic framework, i.e., B1, do there exist
dependencies that would be damaging to the status of Spearman correla-
tions? To answer this question, one must remember what purpose the
Spearman correlations were to serve. As is clear from Jensen's 1985 ar-
ticle, and Guttman's 1992 commentary, the issue is whether a Spearman
correlation, or its squared cosine counterpart, may be used as an
explanatory prop for d, the Black-White mean difference vector. This
potential role would be undermined if, e.g., the Spearman correlation
was dependent on d. In my opinion then, there exist difficulties with
Spearman level 1, but not with level 2.

1. Spearman level 1. Assume Bl. Then as

d =, cos%gy g), 1-€., v) and d become collinear.

The proof is obvious from the geometry of the 2-component mixture
distribution. Remember that

$ = (m*T; + my*Ty) + mmy*dd’ = A + B

Following Schénemann (1985), B is a rank one matrix with eigenvalue
m;m,d'd, and eigenvector d. As d gets large, matrix B increasingly dom-
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inates £, since A is a constant. Hence, as d gets large, it will become
the first eigenvector of X, and so becomes collinear with v,. This is
damaging because the level 1 result is a finding dependent upon the
result it was supposed to explain, i.e., large Black-White mean differ-
ences.! To put this another way, the mere fact that the populations were
very different in their mean vectors, 1.e., a large d existed, would lead
one to conclude that the ‘source’ of this difference was g. Hence, as
long as d was large enough, the ‘hypothesis’ that g ‘explains’ these
mean differences would not be falsifiable. Schonemann makes this point
in both his 1985 and current papers.

Figures la, 1b, and lc illustrate this situation for a bivariate mixture
of two populations (densities unspecified). In all three figures, n;=.3,
n2=.7, u,=[2,2], and

52 5 2
= 2s5)i2 {25

However, in Figure 1a, p; = [2.04 2.16], making d = [.04 .16], vy =
[-.706 .706], and cos?g) gy =-261. In Figure 1b, u; = [2.4 3.6],
making d = [.4 1.6], v, =[-.569 .823], and cosze(vl’@ =.436. Finally,
in Figure lc, p; =[4 10], making d = [2 8], v,=[.192 .981], and
COSZB(_v_l,g) =.996.

2. Spearman level 2. Given Bl, does there exist such a dependency
for the case of the Spearman 2 correlation. I think that it is evident from
the geometry of the 2-component mixture distribution that there does
not. Specifically, the orientations of d, wy, and z, in RP are not
restricted in any way. Hence, collinearity is most certainly a finding
independent of that which it would be taken to explain, i.e., a large d.

Now, Schonemann's (6), (7), and (8) need not arise empirically
within B1. However, what would it mean if, as Schonemann claims
(Note 6a), they did consistently arise empirically: « Among the former,
I count multinormality, which is critical for Level II and, I believe,
eminently plausible » (Schonemann, 1997, p. 689). Equivalently, what
if, for the populations under study, (1), (2), and (3) turned out empiri-

1. One might counter that a large d is not necessary for Spearman 1, but this
does not help since the existence of a large d is not in question.
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Figure I. Spearman Level 1 (Cosines) as d = (u-1) increases: Bivariate
mixture.
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cally to be (6), (7), and (8). Would this then signal the existence of a
damaging dependency? Not in my opinion. Certainly, an empirical
result may arise for many different reasons, and Schonemann has picked
out from a very broad class a sufficient condition for the Spearman 2
correlation. However, what is important is that one may still observe a
Jarge d, and then non-trivially hypothesize a Spearman level 2 correla-

tion.
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