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The application of linear factor analysis to a
set of unfoldable (unidimensional) items produces
a two-dimensional solution, called the extra-factor
phenomenon, which potentially results in incorrect
conclusions about the nature of a set of items (van
Schuur & Kiers, 1994). Many explanations have been
offered for this phenomenon. This study attempted
further clarification within the general theory of
factor analysis. Specifically, it was demonstrated
that the extra-factor phenomenon arises because:
(1) the metric unidimensional unfolding model is

equivalent to the unidimensional quadratic factor
model; and (2) at the level of covariance structure,
the unidimensional quadratic factor model is not
distinguishable from the two-dimensional linear
factor model (McDonald, 1967). Also discussed
are a number of theoretical linkages and bases of
distinguishability that exist between unidimensional
unfolding and linear factor analysis. Index terms:
equivalence of models, extra-factor phenomenon,
linear factor analysis, quadratic factor analysis,
unfolding analysis.

Van Schuur & Kiers (1994) noted that the failure to detect a unidimensional unfolding structure
will often result in incorrect conclusions. In particular, they noted that the linear factor analysis of
a set of unfoldable (unidimensional) items produces a two-dimensional (2D) solution, which they
referred to as the “extra-factor phenomenon.” They considered a number of explanations for this
phenomenon: “The problem arises because unfoldable data violate fundamental assumptions of the
factor analysis model. Factor analysis assumes that values of the observed variables are linearly (or
even monotonically) related to values on the underlying latent variables” (p. 97); “the extra-factor
phenomenon is most dramatic when the unfolding representation is unidimensional, because the
two-factor solution treats what in fact are the two halves of the unfolding dimension as independent”
(p. 101); and “factor analysis is an inappropriate translation of the analyst’s assumptions about the
structure of a data set that conforms to the unidimensional unfolding model” (p. 99).

Applying linear factor analysis to a set of unfoldable items appears to result in inappropriate
conclusions. In this paper, further clarification of the nature of the extra-factor phenomenon is
obtained by phrasing it in terms of the general theory of factor analysis. The explanation rests on
a demonstration of the equivalence of the metric unidimensional unfolding model to the quadratic
factor model. This explanation possesses several attractive features. First, Ross & Cliff’s (1964)
original “extra factor” proof was stated in terms of principal component analysis. As noted by van
Schuur & Kiers (1994), “The presence of unique factors in addition to common factors makes it even
more problematic to reconstruct the unfolding representation from the factor solution” (p. 101).
The explanation provided here is phrased entirely in terms of factor analysis, thus overcoming
Ross and Cliff’s limitation. Second, there is no doubt as to where the source of the extra-factor
phenomenon lies: It is not with factor analysis, but with the inappropriate application of linear factor
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analysis. Finally, as a byproduct, this explanation illuminates interesting relationships and points
of distinguishability that exist between the unidimensional unfolding and linear factor models.

Metric Unidimensional Unfolding and Quadratic Factor Analysis

In delineating the features of the quadratic factor models and unfolding models, distinctions
must be made between fixed-score and random versions of these latent-variable models (e.g.,
Bartholomew, 1981; McDonald, 1979; van der Leeden, 1990). In a random latent-variable model,
the latent—and manifest—variates are random variates. Therefore, they are represented by density
functions. Conversely, in a fixed-score latent variable model, the latent variables are not random
variates; instead, they are parameters to be estimated. These parameters are often referred to as
factor scores or person parameters. Also, because their number increases with the sampling of
persons, they are also incidental parameters (Neyman & Scott, 1948). In a fixed-score model, the
factor scores can be estimated or treated as nuisance parameters that complicate the estimation of
the item parameters. In a random model, the factors are random variates and are not estimated.
Instead, interest is in the joint moments of the latent and manifest variates. Fixed-score and random
versions of both the metric unidimensional unfolding model and the quadratic factor model can be
derived.

Metric Unidimensional Unfolding Model

Model 1. A fixed-score metric unidimensional unfolding model (e.g., van Schuur & Kiers,
1994) for i = 1, 2, . . . , N persons measured on j = 1, 2, . . . , p items can be written as

zij = aj + tj (θi − cj )
2 + eij , (1)

where
zij are N × p random (manifest) variates,
E(eij ) = 0 ∀ i and j ,
V (eij ) = σ 2

ej ∀ i and j ,
f (eij , elk) = fe(eij )fe(elk), unless i = l and j = k,
fe(·) and f (·) are density functions,
cj is the location of item j ,
θi is the location (ideal point) of person i on the latent continuum,
aj is the expectation of zij when θi = cj ,
tj is a curvature parameter that determines the rate of change of the slope of E(zij ), and
eij (a random variable) is a residual.

Because

E(zij ) = aj + tj (θi − cj )
2 , (2)

the mean response of person i to item j (over a population of hypothetical confrontations between
the person and the item) is a function of the squared distance between θi and cj . If tj is negative,
Equation 1 describes the inverted-U response function that is a characteristic of unfolding analysis.
Davison (1977) discussed two close relatives of Model 1: a component version for infallible items
and a classical test theory extension to the fallible case.

Model 2. A random version of Model 1 results from specifying a distribution for the ideal
points. Assuming that the ideal points have a standard normal distribution,

zj = aj + tj (θ − cj )
2 + ej , (3)
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where
θ ∼ N(0, 1),
E(ej ) = 0 ∀ j ,
V (ej ) = σ 2ej ∀ j ,
f (θθθ, ej ) = fθ (θθθ)fe(ej ) ∀ j , and
f (ej , ek) = fe(ej )fe(ek), unless j = k.

Unidimensional Quadratic Factor Model

Model 3. A fixed-score unidimensional quadratic factor model for N persons measured on p
items (McDonald, 1967, 1979, 1983) can be written as

zij = µj + αj θi + βj θ
2
i + eij , (4)

where
µj is the intercept of j ,
θi is the factor score for person i,
αj is the regression coefficient for the linear component of j ,
βj is the regression coefficient for the quadratic component of j , and
eij are the uniquenesses, with the same distributions and covariances specified in Model 1.

To remove an indeterminacy in the scaling of the θi ,
∑
θi is set to 0 and

∑
θ2
i to 1.

Let
Z be an N × p matrix containing zij ;
µµµ, a p × 1 vector of item intercepts containing µj ;
1, a N × 1 vector of unities;
���, a N × 2 matrix, with column 1 containing θi and column 2 containing θ2

i ;
���, a p × 2 matrix, with column 1 containing αj and column 2 containing βj ; and
E, a N × p matrix containing eij .

The model can then be written as

Z = 1µµµ′ +������′ + E . (5)

Because E(Z) = 1µµµ′ +������′,

E(1/N)∗[Z − E(Z)]′[Z − E(Z)] = E[(1/N)∗E′E] =��� , (6)

where ��� is a diagonal matrix containing σ 2
ej . Equation 6 is the covariance structure of Model 3.

Equation 6 shows that, at the covariance structure level, Model 3 cannot be distinguished from a
fixed-score 2D linear factor model (McDonald, 1983).

Model 4. A random version of Model 3 is generated by specifying a distribution for the factor
scores. A common instantiation (e.g., McDonald, 1983) is

z = µµµ+ Bq + e , (7)

where
z is a p × 1 random vector of manifest variates,
q = [θθθ, 2−.5(θθθ2 − 1)]′,
θθθ ∼ N(0, 1),
B is a p× 2 matrix containing the regression coefficients for the linear components of the items

in column 1 and those for the quadratic components in column 2, and
e is a random vector of uniquenesses.
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Note that the elements of q are normalized second and third Hermite-Tschebyscheff orthogonal
polynomials in θθθ (Kendall & Stuart, 1977, pp. 167–168). Hence, q2 is a quadratic function of q1;
that is, θθθ , and C(q) = I.

Using the same distributional assumptions as in Model 2, the covariance structure of z can be
expressed as

C(z) = BB′ +��� . (8)

Equation 8 shows that, at the level of covariance structure, Model 4 is the same as the random 2D

linear factor model (McDonald, 1983).

Equivalence of Models

Model 1 can be reparameterized as follows:

zij = aj + tj θ
2
i − 2tj θicj + tj c

2
j + eij = wj + αj θi + βj θ

2
i + eij , (9)

where
wj = aj + tj c

2
j ,

αj = −2tj cj , and
βj = tj .

θi can be scaled so that
∑
θi = 0 and

∑
θ2
i = 1. Let w be a 1 × p vector containing wj . Model 1

can then be rewritten as

Z = 1w′ +������′ + E . (10)

Thus, Model 1 is equivalent to Model 3.
Model 2 can also be reparameterized:

zj = aj + tjθθθ
2 − 2tjθθθcj + tj c

2
j + ej = wj + αj θ + βj θ

2 + ej . (11)

Let µj stand for E(zj ) = wj + βj . Then,

zj = µj + αj θ + β(θ2 − 1)+ ej . (12)

If bj1 = αj , bj2 = 2.5β, and q2(θθθ) = 2−.5(θθθ2 − 1), then

zj = µj + bj1θ + bj2q2(θ)+ ej . (13)

Equation 13 can be written as

z = µµµ+ Bq + e , (14)

where B = [b1 b2]. Therefore, Model 2 is equivalent to Model 4.

The Extra-Factor Phenomenon

Models 2 and 4 (1 and 3) are equivalent and, at the level of covariance structure, Model 4 (3)
is not distinguishable from a 2D linear counterpart. This is the extra-factor phenomenon. In other
words, the extra factor is what McDonald (1967) called a “spurious factor” due to the nonlinearity of
item/factor regressions. The phenomenon is analogous to the classical “difficulty factor problem”
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that arises in the linear factor analysis of a set of dichotomous items (see McDonald & Ahlawat,
1974).

The item/factor regression that characterizes the unfolding model is second-degree polynomial.
However, it is not possible (at least at the level of covariance structure) to distinguish between
situations in which the items have (1) second-degree polynomial regressions on a single factor,
and (2) linear regressions on two factors. Therefore, an apparently useful 2D linear factor solution
could be a unidimensional unfolding structure in disguise (for empirical examples, see McDonald,
1967).

Bases of Distinguishability

The criterion by which factor analysts typically determine whether a set of items conforms to the
2D linear factor model (i.e., a particular covariance structure) does not rule out the possibility that the
items instead conform to the unidimensional unfolding model. Thus, it is important to determine
whether there are criteria that do distinguish between situations in which: (1) items conform to
Model 1 or 2, and (2) items conform to the 2D linear factor model. The most comprehensive
approach might be application of McDonald’s (e.g., 1983) confirmatory nonlinear factor analysis,
which allows hypotheses to be tested for the conformity of a set of items to a wide range of linear
and nonlinear factor models. The decision as to whether either of the two above situations holds is
a decision about the degree of polynomial that characterizes the item/factor regressions, given that
a unidimensional factor model describes the items.

Simple, manifest grounds that distinguish between the two situations can be considered. The
majority of results that appear to bear on the issue (e.g., Ross & Cliff, 1964; Davison, 1977) were
derived for versions of Models 1 and 2 in which the items are viewed as error-free indicators of
θθθ . Consequently, these results typically have been phrased in terms of the component structure of
such unfoldable items, rather than of their factor structure. The question, then, is: On what bases
can it be determined that a set of items conforms to Models 1 or 2 through linear factor analysis?
Four possible bases of distinguishability are factor score distribution, covariance and correlation
matrix, factor loadings, and partial correlation.

Factor Score Distribution

Although not distinguishable at the covariance structure level, the unidimensional unfolding
model and the 2D linear factor model are distinguishable at the factor score distribution level,
because the unfolding model is a unidimensional quadratic factor model (McDonald, 1967, 1983).
If a set of items is described by Model 1 or 2, then this is detectable in the joint distribution of
the factors from a 2D linear factor analysis of the items. Furthermore, quantitative features of this
distribution can be employed to estimate the parameters of the unfolding model. Here, the argument
is described for Model 2, although an analogous argument holds for Model 1.

Consider P manifest random variates (items), z, that conform to Model 2, and let the corre-
sponding 2D linear factor representation be

C(z) = AA′ +��� , (15)

with random common factors [θθθ∗
1θθθ

∗
2]. Because the items conform to Model 2, they also conform

to Model 4. Therefore, [θθθ∗
1θθθ

∗
2] lie on a parabola. This can be used as a criterion for distinguish-

ing between Situations 1 and 2 and as a basis for the estimation of the parameters of Model 2.
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Specifically,

θ∗
2 = f θ∗2

1 + gθ∗
1 + h (16)

for some set of constants f , g, and h. Because

θ∗
1 ∼ N(0, 1) , (17)

E(θ∗
2 ) = E(f θ∗2

1 + gθ∗
1 + h) = 0 , (18)

V (θ∗
2 ) = V (f θ∗2

1 + gθ∗
1 + h) = 1 , (19)

and

E(θ∗
1 θ

∗
2 ) = E(f θ∗3

1 + gθ∗2
1 + hθ∗

1 ) = 0 , (20)

the constants f , g, and h can be determined. From Equations 17–20,

0 = E(θ∗
1 θ

∗
2 ) = fE(θ∗3

1 )+ gE(θ∗2
1 )+ hE(θ∗

1 ) = g , (21)

0 = E(θ∗
2 ) = fE(θ∗2

1 )+ gE(θ∗
1 )+ E(h) = f + h , (22)

and

1 = V (θ∗
2 ) = E(f θ∗2

1 + gθ∗
1 + h)2 − (f + h)2 = 3f 2σ 4 + g2 − f 2 = f 2(3σ 4 − 1) . (23)

Therefore,
g = 0,
h = −f ,
f 2 = 1/2, and
θθθ∗

2 = 2−.5(θθθ∗2
1 − 1).

From Equations 8 and 15, the regression coefficients of the quadratic factor representation are
an orthogonal transformation of the regression coefficients of the 2D linear counterpart (McDonald,
1967). That is,

B = AT , (24)

where T′T = TT′ = I. From Equations 7 and 24, T′[θθθ∗
1 θθθ∗

2]′ = q. T = EL, where E is an
orthonormal reflection matrix, and L is an orthogonal rotation matrix. E can effect a reflection of
cj . The absolute magnitudes of cj are invariant under any E; therefore, any E can be selected. Let
zB contain a pair of Bartlett variates (factor predictors; Mardia, Kent, & Bibby, 1982), i.e.,

zB = (A′���−1A)−1A′���−1(z − u) . (25)

Then, from Equations 14, 24, and 25,

zB = (A′���−1A)−1A′���−1(z − u) = (A′���−1A)−1A′���−1(Bq + e)

= (A′���−1A)−1A′���−1(ATq + e)

= (A′���−1A)−1A′���−1ATq + (A′���−1A)−1A′���−1e = Tq + e∗ . (26)
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That is, the Bartlett variates are a perturbed orthogonal transformation of q.
If σ 2

ej are small, the parabola will be detectable and the rotation T determinable from a visual
inspection of the joint distribution of the two Bartlett variates. McDonald (1967) found an analytic
solution for T in terms of the higher-order moments of Tq and e∗. After T is determined,

ααα = b1 = At1 , (27)

and

βββ = (1/2.5)∗b2 = (1/2.5)∗At2 (28)

(from Equations 12 and 13). Then, from Equation 9, the unfolding parameters are recovered as

tj = βj (29)

and

cj = −αj/2tj = −αj/2βj . (30)

As previously noted, cj are, in (unfolding) Model 2, the locations of the items on the latent
continuum. In the equivalent quadratic factor phrasing of Model 2, they are similarly the points at
which the regression functions,

E(zj |θ) = µµµj + bj1θ + bj2h2(θ) , (31)

are at their maxima, because

dE(zj |θ)
dθ

= bj1 + √
2bj2θ , (32)

and

θmax = −bj12−.5/bj2 = −αj/2tj = cj . (33)

tj , on the other hand, are curvature parameters—they determine the rates of change of the slopes of
the regression functions. Because each item/factor regression is a parabola, this rate of change is
constant, 2tj .

This reasoning is easily generalized to multidimensional versions of Models 1 and 2. Specifi-
cally, items conforming to a t-dimensional generalization of Model 2 will have a 2t-dimensional
linear factor representation. In theory, an unfolding structure could be detected and its parameters
estimated through linear factor analysis. In this case, however, a 2t-dimensional distribution of
Bartlett variates must be considered, and the t distinct factors must be matched to their quadratic
components. Ross & Cliff (1964) established that, if the items are infallible (i.e., conform to a
t-dimensional version of Model 2 in which there are no uniquenesses), their component represen-
tation would be of dimensionality (t + 1).

Covariance and Correlation Matrix

Davison (1977) established that the correlation matrix of an unfoldable item set manifests a
characteristic simplex pattern when the columns and rows of the matrix are ordered with respect to
cj . This fact can be used to differentiate between Situations 1 and 2. However, this result must be
considered carefully because, once again, it applies to the case in which the items are infallible—an
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assumption that might be untenable. The question is whether Davison’s result holds for items that
conform to Model 1 or 2—models that are true factor models. The current results are based, without
loss of generality, on an analysis of Model 2.

Let%%% be the covariance matrix of a set of items conforming to Model 2. Let the 2D linear factor
representation of the items be as in Equation 15, and let D−.5 be the diagonal matrix containing the
reciprocals of the standard deviations, σj , of the items. Then, the correlation matrix of the items is

R = D−.5%%%D−.5 = D−.5AA′D−.5 + D−.5���D−.5 , (34)

which, by Equation 24, can be re-expressed as

D−.5BT′TB′D−.5 + D−.5���D−.5 = FF′ +���∗ . (35)

F is an orthogonal transformation of matrix G = D−.5B, which contains elements

gj1 = αj

σj
= −2tj cj

σj
and gj2 =

√
2 × βj

σj
=

√
2 × tj

σj
. (36)

It then follows that ρjk (the correlation between items j and k) is equal to

gj1 gk1 + gj2 gk2 = 2tj tk(2cj ck + 1)

σjσk
, (37)

where

σi =
[
2t2i (2c

2
i + 1)+ σ 2

ei

]1/2
. (38)

A simplex will not necessarily be manifested by the correlation matrix R that conforms to Model
2, because ρjk vary as a function of three distinct parameters, σek , ck , and tk , within row j of R.
If, however, both ti and the standard deviations, σi , are approximately equal across items, then the
simplex pattern will be manifest in R when the rows and columns are ordered with respect to ci (as
by%%% when ti are approximately equal).

Factor Loadings

Davison (1977) found that the “loadings” from the “factor analysis” of a set of unfoldable
items lie on a semicircle in the 2D “factor space.” However, his analysis was based on error-free
items. Furthermore, he did not consider the factor analytic representation of the items but, instead,
their component representation. His result should then be: the component weights (rows of the
eigenvectors) of items conforming to error-free counterparts of Model 1 or 2 lie on a semicircle
in IR2. The question, then, is: Can it be correctly determined whether an item set conforms to
Models 1 and 2 by examining a plot of the factor loadings from the 2D linear factor analysis of R?
Specifically, it must be found whether these loadings lie on a semicircle in IR2. The length of the
vector from the origin to the point with coordinates {gj1, gj2} (i.e., the factor loadings of item j )
is equal to

√
2tj

√
2c2
j + 1

σj
. (39)

 at SIMON FRASER LIBRARY on January 25, 2016apm.sagepub.comDownloaded from 

http://apm.sagepub.com/


M. D. MARAUN and N. T. ROSSI
UNIDIMENSIONAL UNFOLDING AS QUADRATIC FACTOR ANALYSIS 85

The length is therefore free to vary over items. Consequently, the loadings will not, in general, lie
on a semicircle. On the other hand, the angle between the vector from the origin to the point with
coordinates {gj1, gj2} and the horizontal axis is

φgj,e1 = tan−1〈−√
2cj 〉 . (40)

As cj ranges from −∞ to +∞, φgj,e1 will range from −(/2 to +(/2. Consider two orderings
of the items, one in terms of φgj,e1 (from smallest to largest) and one in terms of cj (also from
smallest to largest). Because φgj,e1 is a monotone increasing function of cj , these orderings will
agree. Hence, the numerical order of the angles between the plotted loadings and the horizontal
axis will correspond to the numerical order of cj , a result that is in agreement with Davison (1977).
Of course, at the manifest level, this fact in no way helps distinguish between the two situations.

Partial Correlation

Davison (1977) established that ρjl.k , the partial correlation between items j and l, given item
k, is negative when ck is intermediate to cj and cl , and positive otherwise. This result does not
necessarily hold if the items are fallible, as they are in Models 1 and 2. The numerator of ρjl.k is

σj1 − σjkσlk

σ 2
k

= b′
jbl −

b′
jbkb′

lbk

(b′
kbk + σ 2

ek)
, (41)

where bi is the ith row of B. Now, if σ 2
ei = 0 ∀ i—that is, if the items are infallible, Davison’s result

follows; under this condition, Equation 41 becomes

b′
jbl −

b′
jbkb′

lbk

b′
kbk

= b′
j (I − Pk)bl = b′

j (I − Pk)(I − Pk)bl = b∗′
j b∗

l , (42)

where Pk = bk(b′
kbk)−1b′

k . If σ 2
ei = 0 ∀ i, then σ 2

ek = 0, and the numerator of ρjl.k will equal the
inner product of the orthogonal projections of bj and bl onto the vector b⊥

k in IR2 that is orthogonal
to bk , namely, b∗′

j b∗
l . The angular deviations of bj and bl from the horizontal axis, and hence,

bk , are a monotone function of ci (i.e., Equation 37 also holds for bi). If cj = ck = cl , then
b∗′
j = b∗′

l = [0 0], and b∗′
j b∗

l = 0. If, however, ck is intermediate to cj and cl , the components
of b∗

j will be opposite in sign to those of b∗
l , and b∗′

j b∗
l and ρjl.k will be negative in sign. If ck is

not intermediate to cj and cl , the components of b∗
j will be of the same sign as those of b∗

l and

b∗′
j b∗

l , and ρjl.k will be positive in sign. On the other hand, for Models 1 and 2, in which σ 2
ei are not

necessarily equal to zero, this result does not hold. This is clear because, as σ 2
ek become large, the

numerator of ρjl.k approaches the value

b′
jbl = 2tj tl(2cj cl + 1) , (43)

a quantity whose sign does not depend on the numerical ordering of cj , ck , and cl .

Example

Consider an example with five variates z, constructed according to Equation 3 so as to conform
to Model 2. The following parameter values were used:

a = {5 4 2 1 0},

 at SIMON FRASER LIBRARY on January 25, 2016apm.sagepub.comDownloaded from 

http://apm.sagepub.com/


Volume 25 Number 1 March 2001
86 APPLIED PSYCHOLOGICAL MEASUREMENT

t = {−1 − 1 − 1 − 1 − 1}, and
c = {−.674 − .125 0 .270 .674}.

In addition, [θθθ e]′ ∼ N6(0,%%%), with%%%, a diagonal matrix containing [1 .005 .015 .010 .076 .013].
A total of 464 cases were randomly generated. The sample covariance matrix, S, of zi was

S =




3.386 2.061 1.731 1.068 .037
2.061 1.932 1.882 1.785 1.657
1.731 1.882 1.932 1.969 2.075
1.068 1.785 1.969 2.372 2.834
.037 1.657 2.075 2.834 4.080


 , (44)

which manifests a classical simplex pattern, a result of identical ti and the rows and columns of S
ordered in agreement with ci . The eigenvalues of S were 9.69 3.93 .06 .02 .01. A 2D linear factor
analysis of S (principal axis method) yielded the following estimate of A, the matrix of factor
loadings:

A =




1.185 1.402
1.344 .335
1.384 .063
1.443 −.459
1.553 −1.285


 . (45)

If attention were paid only to the covariance structure of the items, the decision would be that the
items conformed to the 2D linear factor model. However, evidence can easily be found that would
result in the correct decision that the items have an unfolding structure. Figure 1 is a scatterplot
of the two Bartlett variates. Clearly, the Bartlett variates lie on a parabola that has been rotated

Figure 1
Scatterplot of Bartlett Variates
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approximately 275◦ counterclockwise from the x axis, a fact that can be recognized visually because
of the uniformly small residual variances of the items. L, E, and B = AT were then estimated to be

L =
(
.087 .996

−.996 .087

)
, (46)

E =
(−1 0

0 1

)
, (47)

and

B =




−1.293 −1.302
−.217 −1.368
.058 −1.384
.583 −1.397

1.415 −1.435


 . (48)

The first column of B is an estimate of ααα, and the second is an estimate of 2.5t. The estimates
for tj were [−.921 − .967 − .979 − .988 − 1.015], and for cj = −αj/(2tj ) were [−.702
−.112 .030 .295 .697]. Although, in this case, t and c were well recovered, the results would not
necessarily have been as clear if the residual variances had been large and the sample size small.
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