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for the Case of Dichotomous Indicators
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MAXCOV-HITMAX was invented by Paul Meehl for the detection of latent taxonic
structures (i.e., structures in which the latent variable, !, is not continuously, but rather
Bernoulli, distributed).  It involves the examination of the shape of a certain conditional
covariance function, and is based on Meehl’s claims that: (R1) Given a latent taxonic
structure, this conditional covariance function is single peaked; and that (R2), continuous
latent structures produce a flat, rather than single-peaked, curve.  While Meehl has
recommended that continuous indicators be used as input into MAXCOV-HITMAX, the
use of dichotomous indicators has become popular.  The current work investigates whether
(R1) and (R2) are true for the case of dichotomous indicators.  The conclusions will be that,
for dichotomous indicators: (a) (R1) is not true; (b) (R1) is made true given that there are a
large number of  indicators; and (c) (R2) is not true, certain unexceptional Rasch structures,
for example, producing single-peaked curves.  Implications are briefly discussed of these
results for the case of MAXCOV-HITMAX with continuous indicators.

In a series of articles (Meehl, 1965, 1973, 1992; Meehl & Golden, 1982;
Meehl & Yonce, 1996; Waller & Meehl, 1998), noted theoretician Paul
Meehl developed what he calls taxometrics, a set of procedures which, he
claims, can be used to detect latent taxa (i.e., discrete types which underlie,
perhaps causally, responding to a set of indicator variables) when, in fact,
they do exist.  The most widely employed of these procedures is MAXCOV-
HITMAX, which involves the examination of the shape of a certain
conditional covariance function.  In particular, MAXCOV-HITMAX is
based on Meehl’s claims that: (R1) Given a latent taxonic structure, this
conditional covariance function is single peaked; and that (R2), continuous
latent structures produce a flat, rather than single-peaked, curve.  If this
were the case, MAXCOV-HITMAX would be a very useful criterion of
latent taxonicity, for it then could not only be used to judge when data are in
keeping with the  hypothesis of latent taxonicity, but also to rule out as a
possibility continuous latent structures.
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author.  Correspondence: Michael D. Maraun, Dept. of Psychology, Simon Fraser
University, Burnaby, B.C., Canada V5A 1S6 Fax: (604) 291-3427
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However, there has recently arisen controversy with regard MAXCOV-
HITMAX.  Miller (1996) provides a counterexample that appears to
contradict (R2), suggesting that MAXCOV-HITMAX may signal taxonicity
when the latent structure is, in fact, continuous.  Questions have also been
raised regarding the appropriateness of the practice of employing
dichotomous indicators as input into MAXCOV-HITMAX.  This
controversy has arisen, to a certain extent, because, while he has offered up
an impressive number of examples and Monte Carlo studies in support of
MAXCOV-HITMAX, for neither of the cases of continuous, nor
dichotomous, indicators has Meehl provided formal proofs of (R1) and (R2).

According to Meehl (Meehl & Yonce, 1996), the use of dichotomous
indicators as input into MAXCOV was first suggested in Meehl (1965).  As
indicated by Meehl and Yonce (1996, p.  1112), their use has been quite
popular in applied research.  Meehl, however, has been careful to admit his
uncertainty regarding the practice:  “Despite the impressive results that have
been obtained by investigators using dichotomous outputs, we retain a strong
preference for quantitative output indicators until more adequate Monte
Carlo tests have been done”  (Meehl & Yonce, 1996, p. 1114); “The
limitations of using dichotomous output indicators remain to be investigated”
(1995, p. 272).  Varied accounts have been given as to the perceived nature
of the danger in using dichotomous indicators.  Meehl and Yonce (1996, p.
1113) explain that the concern is “...about the danger of spurious results...”,
and speculate that “If we are dealing with items which all have the same
difficulty level, very steep discrimination ogives are also needed to give
spurious results.”  They do not provide further detail regarding the latent
structures to which they refer, but conclude that such structures will, in
practice, rarely arise.  It appears then that the issue is that (R2) may, under
certain rare scenarios, not be true.

Given its popularity in mainstream application, the status of the
dichotomous indicator paradigm is in need of resolution, this being the aim of
the work herein described.  In particular, it is investigated whether, for the
case of dichotomous indicators, (R1) and (R2) are true.  The case of
continuous indicators is briefly discussed in light of the findings.  It will turn
out that, for the case of dichotomous indicators:

1. A latent taxonic structure does not necessarily produce a single-
peaked conditional covariance function.  That is, (R1) is not true.

2. (R1) is true given that there are a large number of  indicators.  Hence,
there exists a non-prohibitive, but less general, condition, under which (R1)
is true.

3. It is not the case that continuous latent structures do not produce
single-peaked conditional covariance functions.  Certain unexceptional
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Rasch structures, for example, can produce such curves.  That is, for the
case of dichotomous indicators, (R2) is not true.

The Logic of MAXCOV-HITMAX

Meehl derived MAXCOV-HITMAX on the basis of a characterization
of latent taxonicity.  Based on his many discussions of MAXCOV-HITMAX
(e.g., Meehl, 1973, 1992), it may be deduced that this characterization
involves three elements, here called M1, M2, and M3.

M1: Taxon and Complement Class

There exist two (latent) classes of individuals, one class called the taxon
(T) and the other, the complement class (T!).  This situation may be
represented by defining ", the latent variable, to be a random variate with
Bernoulli distribution, such that

(1) 0 < P(" = T) = #T < 1, and P(" = T!) = (1 - #T),

a property that will, henceforth, be referred to as M1.

M2: Indicators

 Define an indicator to be a dichotomous random variate (1 = endorsement;
0 = lack of endorsement), Xi, with the property that, after recoding,1

(2) P(Xi = 1|" = T) > P(Xi = 1|" = T!),

a property known as positive regression dependence (Lehmann, 1966;
Tukey, 1958) and, within the domain of latent variable modelling (e.g.,
Holland & Rosenbaum, 1986), “latent monotonicity.”  Property Equation 2
is a defining feature of all commonly encountered latent variable models, and
is, of course, equivalent to

(3) E(Xi|" = T) > E(Xi|" = T!).

1  Holland and Rosenbaum (1986, p. 1540) describe how the recoding should be done: One
simply codes the Xi so that

C X Xi i

i

( , )
=

∑
1

is positive for all i.  Such a recoding is not  necessarily achievable, and, if it is not, X does
not conform to any latent variable model in which " only assumes two values.
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Condition M2 then states that there exists a set of p indicators of the taxon,
stored in the random vector X.

M3: Conditional Independence

One interpretation given by Meehl to latent taxa is that they are causes
of the responding of individuals to the indicators.  He paraphrases this notion
in the usual way:  The association that exists amongst the indicators is
completely “explained” by the existence of the latent taxon and complement
class.  This condition (henceforth, M3) is stated as

(4) P(X1 = x1, X2 = x2, ..., Xp = xp|! = t) = 
1

( | )
p

i i
i

P x t!
=

= =∏ X

that is, the joint discrete mass function of X given ! = t is equal to the product
of the individual conditional discrete mass functions.  It follows from Equation
4 that the two p × p conditional covariance matrices, C(X|! = T) = "T and
C(X|! = T#) = "T#

, are diagonal matrices.  This diagonality condition, Meehl
acknowledges, “is an idealization that will rarely be satisfied in MAXCOV-
HITMAX applications” (Waller & Meehl, 1998, p. 17), but whose failure to
obtain, he claims, “...only rarely vitiates MAXCOV-HITMAX parameter
estimates”  (Waller & Meehl, 1998, p. 17).  In what follows, the case of a
latent taxonic structure with dichotomous indicators will be symbolized as
[M1!M2!M3].

Meehl has billed MAXCOV-HITMAX as a criterion of latent taxonicity.
It is, according to Meehl, a quantitative basis for deciding when latent
taxonicity underlies responding to a set of items.  In a series of articles (e.g.,
Meehl, 1965, 1973, 1992; Meehl & Golden, 1982; Waller & Meehl, 1998), he
has described the ingenious reasoning that led to MAXCOV-HITMAX,
reasoning that may be paraphrased as follows:

1. Partition X as [X1(i), X2(j), X*], in which X1(i) and X2(j) are any two
choices, i $ j, from (X1, ..., Xp), and X* contains the (p – 2) remaining
indicators;

2. Define the random variate H = 1#X*, that is, as the sum of the (p – 2)
indicators in X*;

3. Since H is the sum of (p – 2) indicators, it too should be an indicator
of T;

4. Define: "Th = P(! = T|H = h); "Th = C{[X1(i), X2(j)]|H = h ! ! = T} and
#Th = C[X1(i), X2(j)]|H = h ! ! = T#}, each a 2 × 2 conditional covariance matrix
of X1(i) and X2(j); $Th a 2 × 1 vector with elements E[X1(i)|H = h ! ! = T] and
E[X2(j)|H = h ! ! = T]; and $Th a 2 × 1 vector with elements E[X1(i)|H = h !
! = T#] and E[X2(j)|H = h ! ! = T#].  MAXCOV-HITMAX rests on a
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consideration of the shape of the conditional covariance function, C[X1(i),
X2(j)|H = h].  As is well known, the 2 × 2 covariance matrix of X1(i) and X2(j)
conditional on H = h, can be expressed as:

(5) C{[X1(i), X2(j)]|H = h}
= !Th * "Th + (1 –  !Th) * "Th + !Th * (1 – !Th) * (#Th – #T!h)(#Th – #T!h)!

5. Meehl reasons that X1(i) and X2(j)  should be statistically independent
when conditioned on both H = h and " = t, and, hence, that "Th and "Th should
be diagonal;

6. He likewise reasons that (#Th - #T!h) should be constant over the range
of H;

7. If his reasoning is correct, C[X1(i), X2(j)|H = h], the off-diagonal element
of C{[X1(i), X2(j)]|H = h}, will then vary with h only through !Th(1 – !Th);

8. Since 0 < !Th < 1, !Th(1 – !Th) has a maximum at !Th = .5, and, if !Th

is increasing, will be a single peaked function of h. C[X1(i), X2(j)|H = h]
will then also be a single peaked function of h.  This is the fundamental
claim on which MAXCOV-HITMAX is based:  If [M1$M2$M3], then
C[X1(i), X2(j)|H = h] is a single peaked function of h.

9. Meehl also claims that C[X1(i), X2(j)|H = h] will, conversely, be flat over
the range of H if " is distributed continuously.  In his words: “If the latent
structure is not taxonic, the curve will be flat” (Meehl, 1992, p. 134); “In
MAXCOV-HITMAX the factorial situation does not give a dish...but a flat
graph” (Meehl, 1995, p. 272).  Hence, according to Meehl, a single peaked
conditional covariance function distinguishes the continuous from the taxonic
latent structure.

If this were true, an investigator could make an inference about the shape
of the curve C[X1(i), X2(j)|H = h], and, if this inference suggested single
peakedness, justifiably, but provisionally, conclude that the data arose from
latent taxonicity.  She could then estimate #T, and classify individuals into T
and T!.  What is of interest in the current treatment is whether MAXCOV-
HITMAX is, in fact, a criterion of latent taxonicity.  Meehl, it should be
emphasized, downplays the importance of results based on any one of his
procedures, instead laying “heavy emphasis upon approximate empirical
agreement between numerical inferences made from different procedures
and indicators...”  (Meehl, 1992, p. 132).  As he argues, “...the most
persuasive evidence of theories concerning theoretical entities, or events
and processes  observable in principle but not observed because of spatial or
temporal remoteness from the scientist, lay in finding consistent numerical
results via quantitatively disparate epistemic paths” (Meehl, 1992, p. 33;
emphasis in original).  Hence, the researcher must look for consistency in the
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results that accrue from the employment of distinct criteria derived on the
basis of similar assumptions.

Clearly then, it would be a gross misportrayal of Meehl to have him
suggesting that definitive conclusions can be reached regarding the
existence of latent taxa on the basis of a single application of MAXCOV-
HITMAX.  But it is also true that convergence in the results of multiple
individual procedures will be of little significance unless these individual
procedures are, indeed, criteria of latent taxonicity.  And since, for neither
of the cases of continuous, nor dichotomous, indicators, have formal proofs,
to date, been given of (R1) and (R2), the status of MAXCOV-HITMAX is,
to a certain extent, open to question.  The task, then, is to ascertain, for the
case of dichotomous indicators, whether MAXCOV is a criterion of latent
taxonicity.  Before turning to this task, it is worth reviewing what is meant
by the claim that a manifest property is a criterion for a particular latent
structure.

Criteria of Latent Structures

The standard, and primary, justification for the claim that a manifest
property, C, is a criterion for a particular latent structure, LS, is that it is true
that LS ⇒  C (i.e., it is true that “if LS, then C";C is a necessary condition
for LS), or, equivalently, that it is true that ~C ⇒  ~LS. Such a property will,
herein, be called a sense 1 criterion of LS.  If C is a sense 1 criterion of LS,
then, if the researcher finds that, for a particular set of data, ~C is the case,
he is justified in taking this fact as evidence against the hypothesis that the
data was generated by LS.  For example, it is true that LS = (2-dimensional
linear factor structure) ⇒ C = (!X = !2!'2 + "), in which !X = C(X), !2
is a p × 2 matrix of “factor loadings”, and " a p × p, diagonal, positive
definite matrix. Hence, !X = !2!'2 + " is a sense 1 criterion for the 2-
dimensional linear factor structure. Generally speaking, if it were not the
case that !X = !t!t" + " is a sense 1 criterion for t-dimensional linear factor
structures, it would be a pointless exercise to employ judgments of the
conformity of data to such covariance structures to decide whether data
might have arisen from such a structure.

Different latent structures may, of course, imply at least some of the
same manifest properties.  If a property is an implication of just one, or a
narrow class, of latent structures, that is, it is true that ~LS ⇒ ~C (or,
equivalently, that it is true that C ⇒ LS; C is sufficient for LS), it will, herein,
be called a sense 2 criterion for LS.  Note that C = (!X = !2!'2 + ") is not
a sense 2 criterion for LS = (2-dimensional linear factor structure) since it
is not true that ~LS = (2-dimensional linear factor) ⇒ ~C = (!X = !2!'2 + ").
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The unidimensional, quadratic factor structures, for example, also imply that
!X = !2!'2 + " (McDonald, 1967).  Hence, the manifest property !X = !2!'2
+ " does not constitute a basis for distinguishing between the 2-dimensional
linear, and 1-dimensional quadratic, factor structures.  The shape of the
distribution of factor scores does constitute such a basis (McDonald, 1967;
Maraun & Rossi, 2001), and, in particular, given that !X = !2!'2 + ", a
quadratic distribution of factor score estimates eliminates as a candidate the
2-dimensional linear case.  This is so because it is true that C = (quadratic
distribution of factor score estimates) ⇒ ~LS = (2-dimensional linear factor).
It should be acknowledged, however, that even if a property C is not a
criterion (in either of senses 1 or 2) for a given LS, it may be so given a
particular set of side-conditions (i.e., under special circumstances).  The
usefulness of a C that is a criterion for an LS, only given a particular set
of side-conditions, will have to be judged on a case-by-case basis, the
judgment dependent upon, among other factors, the likelihood that the side-
conditions are realizable in practice.

Whether a manifest property is a criterion, in either of senses 1 or 2, for
a particular latent structure is established via mathematical proof.  There are
no degrees of criterion-hood: A property either is or is not a criterion.  This
degree of certainty is, of course, not achievable when the researcher employs
a particular criterion, C, in the making of decisions as to whether data square
with the hypothesis of a particular latent structure.  In the first place, he must
judge whether, for a set of data, C does in fact obtain.  Since the putative latent
structure will never hold exactly, and, hence, C will never obtain exactly, the
task becomes one of judging whether the data are approximately in keeping
with C.  Secondly, such decision making is usually inferential in nature.  Hence,
the researcher must decide, on the basis of a sample, whether C holds
(approximately) in the population.  Both approximation and sampling error
render decisions made about the existence of latent structures via the
employment of criteria, inherently tentative. Now, these issues are certainly
important issues.  However, their consideration is contingent upon a clear
understanding of whether a property C is, in fact, a criterion of a latent
structure LS, this being the issue of interest in the current work.

Criteria of Latent Taxonic Structures

The condition [M1#M3] implies that

(6) ( ) ( ) ( )
2 1

1 1

1| 1 1| .xi i
P

x
t i i

t i

P x P t P t! !
−

= =

⎧ ⎫⎪ ⎪⎡ ⎤= = = = − = =⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∏X X X!
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Since the discrete mass function of Equation 6 is that of a latent class model
(see, e.g., Bartholomew & Knott, 1999; Heinen, 1996), [M1!M2!M3] is a
latent class structure.  Consider, in the first place, several sense 1 criteria of
[M1!M2!M3]. The condition [M1!M3] implies that the covariance
structure of the indicators has the form

(7)C(X) = "T * #T + (1 – "T) * #T!
 + "T * (1 – "T) * ($T – $T!

)($T – $T!
)!

in which $T = E(X|" = T) and $T!
 = E(X|" = T!).  It thus follows that

(8) C(X) = %%! + &,

in which ( )1T T= −! " "  * ($T!
 – $T) and & = "T * #T + (1 – "T) * #T!

 is
a diagonal matrix (McDonald, 1967; Bartholomew & Knott, 1999; Molenaar
& von Eye, 1994).  Since, from Equation 7, it follows that

(9) #ij = "T(1 – "T)($Ti – $T!i)($Tj – $T!j),

[M1! M2!M3] implies that

(10) #ij > 0,

or, equivalently, that the elements of % in the decomposition (Equation 8) are
of the same sign.

The structure [M1!M2!M3] is, additionally, a member of the class of
unidimensional, monotone, latent variable (UMLV) structures (Holland &
Rosenbaum, 1986, p. 1529).2  The indicators of a UMLV structure exhibit a
range of strong, testable manifest dependencies, many of which have been
described by Holland and Rosenbaum (1986).  These authors proved that, for
dichotomous indicators, UMLV structures imply that the indicators are
associated (A), conditionally strongly positively orthant dependent
(CSPOD), conditionally associated (CA), and conditionally multivariate
positive of order 2 (CMTP2).  For continuous indicators, these are
progressively stronger forms of multivariate dependency, while, for
dichotomous indicators, they are equivalent forms (in the sense of
entailment). Hence, A, CSPOD, CA, and CMTP2 are sense 1 criteria of
[M1!M2!M3].  Property Equation 10 is, in fact, a special case of the
associatedness that is a property of the indicators of any UMLV structure.
Holland and Rosenbaum (1986) and Rosenbaum (1984) have employed

2  In the terminology of Stout (1990) and Junker (1993), the class of strictly unidimensional
models.

D
ow

nl
oa

de
d 

by
 [S

im
on

 F
ra

se
r U

ni
ve

rs
ity

] a
t 1

6:
25

 2
5 

Ja
nu

ar
y 

20
16

 



M. Maraun, K. Slaney, and L. Goddyn

MULTIVARIATE BEHAVIORAL RESEARCH 89

these sense 1 criteria to derive tests of whether a set of dichotomous items
conforms to any UMLV structure.

None of the sense 1 criteria listed above are, additionally, sense 2 criteria
for [M1!M2!M3].  The covariance structure (Equation 8), for example, is
also implied by the unidimensional, linear factor structure, while A, CA,
CSPOD, and CMTP2 are implied by UMLV structures in general.3  These
criteria cannot then be used to distinguish between the case in which ! has
a continuous distribution and that in which it has a Bernoulli distribution (i.e.,
is taxonic).4  McDonald (1967, pp. 58-64) provided a comprehensive
discussion of the issue of criteria for latent class structures, and derived on
the basis of nonlinear factor theory what, under certain special conditions, is
a sense 2 criterion.  His reasoning may be paraphrased as follows.  From
Equation 8, it follows that X may be given a linear factor representation,

(11) X = " + #! + e,

in which E(!) = 0, E(!2) = 1, E(X|! = t) = " + #t, E(e) = 0, and C(e) = $, a
diagonal p × p matrix.  The latent variate, !, has, of course, a two-point
distribution, and, since E(!) = 0 and E(!2) = 1, takes the values

T = 
( )1−

−
!

!

and

T" = ( )1
−

−
!

!

with probabilities % and (1 – %), respectively (McDonald, 1967).  The matrix
C(X) – $ is of rank one, and may be represented as

(12) C(X) – $ = mm"# = ##",

3  Molennar and von Eye (1994) establish, additionally, the indistinguishability of  the k-
class latent profile model for continuous indicators, and the k-factor linear factor model, at
both the levels of covariance and second-order moment structure.
4 In fact, in discussing covariance structure based methods, McDonald (1967, p. 58) notes
that “Existing methods of latent class analysis do not test whether the latent variates have
a discrete distribution...”
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in which m!m = 1, m and " are, respectively, the single eigenvector and
eigenvalue of C(X) – !,  and in which " = !m .  From Equations 11 and 12,

(13) ( )1 1 1 1 1
,v w d" "

! !! ! !
′ ′ ′ ′ ′= − = + = + = +m X m m e e! " " " "

in which v is a “component variate” (McDonald, 1967, pp. 31-32).  Note that
w has the same shape of distribution as #, and, if #d

2  is small, will have roughly
the same distribution as v.  Hence, if #d

2  is small, the taxonic and continuous
latent scenarios will be distinguishable on the basis of the shape of the
distribution of v.  Now, since " = "!",

(14)
[ ]

2
2 2

1
.d#

!

′′= =
′

"#"
"#"

""

Let (#T!i – #Ti) = $i
2 , and recall that " = (1 )T T−$ $  * (#T – #T!

).  Since
#Xi

2  = #i(1 – #i), the ith element of ! is equal to

(15) #i(1 – #i) – $(1 – $) $i
2 .

On the basis of Equations 14 and 15, McDonald established that

(16)

( ) ( )

( )

2 2

12
2

2

1

1 1

1

p

i i i i
i

d
p

i
i

$ % % $

#

% % $

=

=

⎡ ⎤− − −⎣ ⎦
=

⎛ ⎞
− ⎜ ⎟⎜ ⎟⎝ ⎠

∑

∑

! !

and that, for the special case in which, for all i, #i = $ and $i
2  = $2,

(17) #
$

$
d p
2

2

2

1= −
.

For this special case, as $2 → ∞ , #d
2 → 1/p, and as p → ∞ , #d

2 → 0.  That
is, for a set of very good indicators (those for which $2 is large), or,
alternatively, a large number of indicators, the shapes of the distributions of
v and # will be very similar, and latent taxonicity will be detectable in the
shape of the distribution of the component variate v.
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MAXCOV-HITMAX, was developed by Meehl, along with a number of
other procedures, explicitly for the purpose of allowing the researcher to
distinguish between taxonic and continuous latent structures.  MAXCOV-
HITMAX is based on (R1) and (R2), which may now be stated formally as:

R1) It is true that: [M1!M2!M3] ⇒  For any partition [X1(i), X2(j),
X*] of X, {C[X1(i), X2(j)|H = h] is a single peaked function of h};
R2) It is true that: (! is distributed continuously) ⇒  For any partition
[X1(i), X2(j), X*] of X, {C[X1(i), X2(j)|H = h] is not a single peaked
function of h}.

The claim (R1) is equivalent to asserting that {single-peakedness of  C[X1(i),
X2(j)|H = h]} is a sense 1 criterion of latent taxonicity, while (R2), since it is
equivalent to the claim that {C[X1(i), X2(j)|H = h] is a single peaked function
of h} ⇒ ~(! is distributed continuously), is nearly equivalent to the claim
that the single-peakedness of C[X1(i), X2(j)|H = h] is a sense 2 criterion of
latent taxonicity.  It is not quite so because ~(! is distributed continuously)
is not synonymous with [M1!M2!M3].  Nevertheless, if (R1) and (R2)
were true, MAXCOV-HITMAX would be a very useful procedure, since it
would constitute not only a logical basis for deciding upon whether a set of
data was in keeping with the hypothesis of latent taxonicity, but also for
deciding upon when continuous latent structures should be ruled out as
candidates. This is clearly what Meehl has in mind, for he states that “For
a taxometric procedure to “work” it must detect real taxa and not concoct
nonexistent ones...”  (1992, p. 138); “...by its overall shape, a MAXCOV-
HITMAX plot indicates whether the data measure a latent taxon (type,
class) or a latent dimension (continuum, factor)” (Waller & Meehl, 1998).
Meehl was, of course, speaking with respect to the case of continuous
indicators.  Attention will now be turned to the question of whether (R1) and
(R2) are true for the case of dichotomous indicators.5

Is R1 True?

From Equation 5, it is clear that, for (R1) to be true, it must be true that,
for any partition [X1, X2, X

*] of X, [M1!M2!M3] implies that:

(18) ("Th – "T"h) is constant over the range of H;

(19) #Th and #T"h are diagonal;

5 In the proofs that follow, the more precise notations X1(i)  and X2(j) are abandoned in favour
of the more compact X1 and X2.

D
ow

nl
oa

de
d 

by
 [S

im
on

 F
ra

se
r U

ni
ve

rs
ity

] a
t 1

6:
25

 2
5 

Ja
nu

ar
y 

20
16

 



M. Maraun, K. Slaney, and L. Goddyn

92 MULTIVARIATE BEHAVIORAL RESEARCH

(20) !Th = P(! = T|H = h) is an increasing function of h;

(21) !Th crosses .5.

In addition, a trivial requirement for the single-peakedness of C(X1, X2|H = h)
is that the range of H contains at least three values.  This requirement is met
by ensuring that X* contains at least two indicators, a condition assumed
throughout.  For any partition [X1, X2, X

*] of X, observe that H = 1"X* has a
discrete distribution on [0, (p – 2)].

Theorem 1

For any partition [X1, X2, X
*] of X, [M1"M2"M3] implies Property 18,

that is, that (#Th – #T"h) is constant over h.

Proof

The vth element of the 2 × 1 vector (#Th – #T"h) is equal to E(Xv|H = h "
! = T) – E(Xv|H = h " ! = T").  In the case of dichotomous indicators, this
is equivalent to

(22) ( )
( )

( )( )
( )

1 | 1 | 1v T v TP H h T P H h T

P H h T P H h T

! !

! !

′= ∩ = = = ∩ = = −
−

′= ∩ = = ∩ =
X X! !

which, from M3, is equivalent to

(23) ( ) ( )
( )

( ) ( )( )
( )

1| | 1| | 1v T v TP T P H h T P T P H h T

P H h T P H h T

! ! ! !

! !

′ ′= = = = = = = = −
−

′= ∩ = = ∩ =
X X! !

which, in turn, is equivalent to P(Xv = 1|! = T) – P(Xv = 1|! = T").  Hence,
(#Th – #T"h) is constant over h.

■

Theorem 2

For any partition [X1, X2, X
*] of X, [M1"M2"M3] implies Property 19,

that is, that $Th and $T"h, h = 0..(p – 2), are diagonal.
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Proof

The off-diagonal element of !Th is C(X1, X2|H = h " ! = t) which, for the
case of dichotomous indicators, is equal to

(24) P(X1 = 1 " X2 = 1|H = h " ! = t) – P(X1 = 1|H = h " ! = t)P(X2 = 1|H = h " ! = t).

It was already established that the right member of Equation 24 is equal to
P(X1 = 1|! = t)P(X2 = 1|! = t).  Now, the left member, P(X1 = 1 " X2 = 1|H
= h " ! = t) is equal to

(25)
( )

( )
( ) ( )

( )
1 2 1 21 1 1 1 |P H h t P H h t P t

P H h t P H h t

! ! !

! !

= ∩ = ∩ = ∩ = = ∩ = ∩ = = =
=

= ∩ = = ∩ =
X X X X

which, from M3, is equal to

(26) ( ) ( ) ( ) ( )
( )

1 21| 1| |P t P t P H h t P t

P H h t

! ! ! !

!

= = = = = = =
= ∩ =

X X

which, finally, is equal to P(X1 = 1|! = t)P(X2 = 1|! = t).  Hence, C(X1, X2|H
= h " ! = t) = 0, for h = 0..(p – 2), and the theorem is proven.

■

To establish Property 20 it must be shown that P(! = T|H = k) > P(! =
T|H = m) for 0 " m < k " (p – 2).  Note that

(27) ( ) ( )
( )

|
| ,TP H h T

P T H h
P H h

!
!

= =
= = =

=
!

and, hence, what must be shown is that

(28)
( )

( )
( )

( )
| |

.T TP H k T P H m T

P H k P H m

! != = = =
>

= =
! !

However, P(H = h) = #T * P(H = h|! = T) + (1 - #T) * P(H = h|! = T#), hence,
Inequality 28 is equivalent to

(29) P H k T P H m T P H m T P H k T= = = = ′ > = = = = ′| | | | .! ! ! !! " ! " ! " ! "
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This  is the requirement that H and ! be monotone likelihood ratio dependent
(mlrd).

Monotone likelihood ratio dependence is discussed by Lehmann (1966),
Karlin and Rinott (1980), and, within the context of item response models,
Holland and Rosenbaum (1986) (under the heading of TP2 distribution),
Grayson (1988), Huynh (1994), and Hemker, Sijtsma, Molenaar, and Junker
(1997).  In the course of their investigations of the 2-point classification
problem in item response theory, Grayson (1988) and Huynh (1994) proved,
for the case of dichotomous indicators and continuous !, that the sum of the
indicators (total score) and ! are mlrd, Grayson’s proof , unlike Huynh’s,
requiring that the derivatives of all item characteristic curves be non-
negative over the range, and positive for at least one value, of !. These
proofs, however, do not establish that H and ! are mlrd for the case of
dichotomous indicators and ! with a 2-point distribution.  Hence, they do not
establish Inequality 29.  This special case is proven in Theorem 3.

Theorem 3

For any partition [X1, X2, X
*] of X, [M1!M2!M3] implies Property 20,

that is, that P(! = T|H = h) is an increasing function of h.

Proof

The proof is given in the Appendix.
What then remains is the question as to whether P(! = T|H = h)

necessarily crosses .5.  If it does not, C(X1, X2|H = h) will not be a single-
peaked function of h.  In fact, it will be shown that P(! = T|H = h) does not
necessarily cross .5, and, hence, C(X1, X2|H = h) is not necessarily a single-
peaked function of h.  In the following theorem, conditions are given under
which C(X1, X2|H = h) is, and is not, a single-peaked function of h.  Define

k1 = 
( )
( )

( ) ( )
1

* 22

*
1

1|

1|

pp
i

i i

P T

P T

!

!

−−

=

⎡ ⎤= =
⎢ ⎥
⎢ ⎥′= =⎣ ⎦
∏

X

X

the geometric mean of the ratios

( )
( )

*

*

1|

1|

i

i

P T

P T

!

!

= =

′= =

X

X
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and

k2 = 
( )
( )

( ) ( )
1

2*2

*
1

1 1|

1 1|

pp
i

i i

P T

P T

!

!

−−

=

⎧ ⎫⎡ ⎤− = =⎪ ⎪⎣ ⎦⎨ ⎬⎡ ⎤′− = =⎪ ⎪⎣ ⎦⎩ ⎭
∏

X

X

the geometric mean of the ratios

( )
( )

*

*

1 1|
.

1 1|

i

i

P T

P T

!

!

⎡ ⎤− = =⎣ ⎦
⎡ ⎤′− = =⎣ ⎦

X

X

Theorem 4

For any partition [X1, X2, X
*] of X, if [M1!M2!M3] then:

1. C(X1, X2|H = h) is an increasing function of h if

k T

T

p

1

1
21

≤
−!

"
#

$
%
&

−"

"

' ( ' (
.

2. C(X1, X2|H = h) is a decreasing function of h if

k T

T

p

2

1
21

≥
−!

"
#

$
%
&

−"

"

' ( ' (
.

3. C(X1, X2|H = h) is a single-peaked function of h if

k kT

T

p

2

1
2

1

1
<

−!
"
#

$
%
& <

−"

"

' ( ' (
.

4.  C(X1, X2|H = h) is a single-peaked function of h if !T = .5.

Proof

P(" = T|H = h) is an increasing function of h.  If its range is (0, .5),
C(X1, X2|H = h) is increasing in h.  If its range is (.5, 1), C(X1, X2|H = h) is
decreasing in h.
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1. Because P(! = T|H = h) is increasing in h, its range is (0, .5) if and only
if

(30) P T H p
P H p T

P H p
T

!
! "

= = − =
= − =

= −
≤|

|
. ,2

2

2
5! "

! "
! "

Since P[H = (p – 2)] = "T * P[H = (p – 2)|! = T] + (1 – "T) * P[H = (p – 2)|!
= T#], Equation 30 is equivalent to

(31)
P H p T

P H p T
T

T

= − =
= − = ′

≤
−2

2

1! "
! "

! "|

|

!

!

"

"

But the left member of the inequality is equal to

( )
( )

( )
( )

*2
2

1*
1

1|

1|

p
i p

i i

P T
k

P T

!

!

−
−

=

= =
=

′= =
∏

X

X ■

2. Because P(! = T|H = h) is increasing in h, its range is (.5,1) if and only
if

(32) P T H
P H T

P H
T!

! "
= = =

= =
=

≥|
|

.0
0

0
5! " ! "

! "

Following along the same path as in the proof of (1), Equation 32 is
equivalent to

(33)
P H T

P H T
T

T

= =
= = ′

≥
−0

0

1|

|

!

!

"

"

! "
! "

! "

The left member of the inequality is equal to

( )
( )

( )
( )

*2
2

2*
1

1 1|

1 1|

p
i p

i i

P T
k

P T

!

!

−
−

=

⎡ ⎤− = =⎣ ⎦ =
⎡ ⎤′− = =⎣ ⎦

∏
X

X ■

3. Point 3 is a simple consequence of points 1 and 2.  If the range of
P(! = T|H = h), an increasing function, is not (.5, 1), and also is not (.5, 1),
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then P(! = T|H = h) crosses .5, and C(X1, X2|H = h) is a single-peaked
function of h.

■

4. From M2, k1 > 1 and k2 < 1.  If "T = .5,

1
1

1
2−!

"
#

$
%
& =

−!

!
T

T

p' ( ' (
.

Hence, the inequality of point 3 is satisfied.
■

Theorem 4 establishes that (R1) is not true.  Single-peakedness arises
when the inequalities

k kT

T

p

2

1
2

1

1
<

−!
"
#

$
%
& <

−!

!

' ( ' (

are satisfied, as when, for example, "T = .5.  Whether or not these inequalities
are satisfied is a function of "T, (p – 2), and the quality of the indicators, that
is, the magnitudes of the ratios

( )
( )

*

*

1|
.

1|

i
i

i

P T

P T

"
#

"

= =
=

′= =

X

X

In particular, points 1 and 2 establish that, if T has a low (high) base rate, that
is, "T is small (large), C(X1, X2|H = h) will be an increasing (decreasing)
function of h unless the indicators in X* are “very good.”  Hence, theorem
4 proves, for the case of dichotomous indicators, an observation of Meehl’s:
“Note that for extreme base rates- say, when the base rate is smaller than
.10- the conditional slope (derivative) of a (possibly smoothed) MAXCOV
function can fail to change sign” (Waller & Meehl, 1998, p. 22).  It is also
worth noting that the indicators the quality of which are important to the
success of MAXCOV-HITMAX are those in the set X*, the “conditioning
set”, and not the indicators X1 and X2.  Let, for all i, #i = #, in which case
k1 = #.  Figure 1 then depicts the behaviour of

1
1

−!
"
#

$
%
&

!

!
T

T

z' (
,
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z = (p – 2) > 2, in relation to k1 and k2, given three different values of ! (1.1,
1.5, and 2.0) and four different values of "T (.05, .2, .8, and .95).

Side-Conditions Under Which R1 is True

It has been shown that, for the case of dichotomous indicators, (R1) is
not true.  That is, it is not true that [M1!M2!M3] →  [C(X1, X2|H = h) is a
single peaked function of h].  However, under conditions of moderate base
rate and/or excellent indicators in the conditioning set, (R1) is true.  Meehl
(1992; Meehl & Yonce, 1996) has, in fact, argued that the base rates of
certain of the putative taxa that he has investigated may not be particularly
extreme.  Meehl’s opinion notwithstanding, since the researcher cannot
know in advance what the base rates are of the taxa he is to encounter, nor,
for that matter, whether his indicators are of good quality, it would be of use
to find other reasonable side-conditions (special circumstances) under which
(R1) is true. The following theorem provides one such a side-condition.

Theorem 5

If [M1!M2!M3] then, for any partition [X1, X2, X
*] of X, as (p – 2)

becomes large, C(X1, X2|H = h) converges to a single-peaked function of h.

Proof

k1 and k2, being, as they are, geometric means of the ratios of conditional
probabilities, are not functions of (p – 2).  From M2, k1 > 1 and k2 < 1.  The
function

1
1

2−!
"
#

$
%
&

−!

!
T

T

p' ( ' (

converges to unity as (p – 2) → ∞ .  Hence, as (p – 2) becomes large, the
pair of inequalities

( ) ( )
1

2

2 1

1 p
T

T

k k
!

!

−⎡ ⎤−
< <⎢ ⎥

⎣ ⎦

will eventually be satisfied.
■
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Figure 1

Behavior of 
1

1

−!
"
#

$
%
&

!

!
T

T
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 for Selected Values of ! and "T
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Theorem 5 suggests that, regardless of the quality of the indicators in X*,
as (p – 2), the number of indicators in X*, becomes large, C(X1, X2|H = h)
becomes single-peaked.  The rate of convergence is a function of both !T and
the quality of the indicators in X*.  Generally speaking, the better are the
indicators and the less extreme is !T, the faster the rate of convergence.
Table 1 then gives, for selected values of " and !

#
, the value of (p – 2) at

which C(X1, X2|H = h) becomes single-peaked, that is, at which

k kT

T

p

2

1
2

1

1
<

−!
"
#

$
%
& <

−!

!

' ( ' (

is satisfied.  Also included in Table 1 are “effect sizes”,

( ) ( )
( ) ( ) ( )

1 |

| 1 |
i

T i T i

P T

V T V T

" #

! # ! #

′− =
′= + − =

X

X X
,

even though, as shown in Theorem 4, the quantities that matter are the "i.
Table 1 shows that, when dichotomous indicators are employed, even when
the researcher is confronted with a latent taxonic structure with extreme
base rate (e.g., !T = .005 or .999), four very good (say, e.g., " = 4), or a larger
number of mediocre, indicators in the X* set will make (R1) true. When the
indicators are of poor quality (say, e.g., " = 1.1), a high base rate scenario
(e.g., !T = .999) will require many more indicators than a low base rate
scenario (e.g., !T = .005) before (R1) becomes true.  It may then be
concluded that, while (R1) is not true, it is made true, and MAXCOV-
HITMAX a sense 1 criterion of latent taxonicity, under reasonable side-
conditions.

Is R2 True?

In a 1996 article, Miller questioned the usefulness of MAXCOV-
HITMAX, claiming that, contrary to Meehl’s beliefs, C(X1, X2|H = h) is not
necessarily flat in the case of continuous latent structures.  He did not
address the question as to whether there exist continuous latent structures
for which C(X1, X2|H = h) is actually single-peaked. Obviously, if there did
exist such structures, then (R2) would be false.  Miller’s counter-example,
which involved continuous indicators, is worth reviewing.  Let the distribution
of (U, V, W) be N3(0, I).  The structure that Miller considers, featuring three
indicators, X, Y, Z, may be represented as:
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Table 1
The Minimum (p – 2) which Produces Single-Peakedness of C(Xi, Xj|H = h)
for Selected Values of !T and " (effect size in brackets)

!T \ " 1.1 1.5 2.0 2.5 3.0 4.0 4.5

.001 73 18 10 8 7 5 5
(.05) (.25) (.50) (.75) (1.0) (1.5) (1.75)

.05 32 8 5 4 3 3 2
(.05) (.25) (.50) (.74) (.99) (1.5) (1.77)

.100 24 6 4 3 2 2 2
(.05) (.25) (.49) (.73) (.98) (1.5) (1.79)

.150 19 5 3 2 2 2 2
(.05) (.24) (.48) (.72) (.96) (1.5) (1.81)

.200 15 4 2 2 2 1 1
(.05) (.24) (.48) (.71) (.95) (1.5) (1.83)

.800 55 11 5 3 2 1 1
(.05) (.22) (.42) (.62) (.85) (1.5) (2.17)

.850 69 13 7 4 3 2 1
(.05) (.22) (.42) (.62) (.84) (1.5) (2.21)

.900 87 17 8 5 4 2 2
(.05) (.22) (.42) (.61) (.83) (1.5) (2.25)

.950 118 26 11 7 5 3 2
(.05) (.22) (.41) (.61) (.82) (1.5) (2.29)

.999 273 52 25 15 10 5 4
(.05) (.22) (.41) (.60) (.82) (1.5) (2.33)
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(34) X = U,
Y = .6 * U + .8 * V,
Z = 2.5 * U + 2 * V + 3 * W + .6 * U2 + .8 * V * U.

Miller notes that C(Y, Z|X = x)=.64 * x + 1.6, which is certainly not flat,
but rather linear, increasing.  However, this counterexample is not
relevant to a consideration of MAXCOV-HITMAX, for Equation 34 is not
a UMLV structure.  As is well known (see, e.g., Holland & Rosenbaum,
1986), if X contains the indicators of a UMLV structure, the distribution
of X is conditionally associated. Hence, for any partition [X1, X2, X

*] of
X, and any function g!, C[X1, X2|g(X*) = h] ! 0 for all values h. The
function C(Y, Z|X = x) = .64 * x + 1.6, on the other hand, assumes negative
values.  Hence, the structure Miller presents could be screened for by
employing Holland and Rosenbaum’s UMLV tests prior to the application of
MAXCOV-HITMAX.  The relevant question is whether there exist UMLV
structures in which " is distributed continuously, and for which C(X1, X2|H = h)
is not flat, but instead single-peaked.

Consider, for a set of dichotomous indicators, the 1-parameter non-
parameteric (Rasch) item response model,

(35) ( ) ( ) ( ) ( )** 1
* 1| 1 1| ii xx

i i
i

P x P P dF! ! !
−∞

−∞ ⎡ ⎤= = = − =⎣ ⎦∏∫X X X

in which the P(Xi = 1|"), that is, the item characteristic curves, are of the form

( )
( )

exp

1 exp
i

i

b

b

!

!

−
+ − ,

and F("), the distribution function of ", is arbitrary.  Cressie and Holland
(1983) showed that, if X is described by this UMLV model, then

(36) ( ) ( ) ( )*
*

1

0 i

p
x x

i
i

P x P f E +

=
= = ∏X Z

in which P(0) = P(X = 0), fj = exp(–bj) > 0, Z = exp("), x+ = 1#x*, and E(Zx+)
is the x+th moment of Z.  Since Z is a positive random variate, these moments
are non-negative, and satisfy a set of inequalities (see Cressie & Holland,
1983).  For four manifest variates, Equation 36 involves 7 parameters:
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E(Z1) = !1, E(Z2) = !2, E(Z3) = !3, E(Z4) = !4, f2, f3, and f4.  To overcome
an indeterminacy in the model, f1 may be set to 1.   The 16 manifest
probabilities may be represented as:

(37) P(1111) = P(0)f2f3f4!4 P(1110) = P(0)f2f3!3
P(1101) = P(0)f2f4!3 P(1011) = P(0)f3f4!3
P(0111) = P(0)f2f3f4!3 P(1100) = P(0)f2!2
P(1010) = P(0)f3!2 P(1001) = P(0)f4!2
P(0110) = P(0)f2f3!2 P(0101) = P(0)f2f4!2
P(0011) = P(0)f3f4!2 P(1000) = P(0)!1
P(0100) = P(0)f2!1 P(0010) = P(0)f3!1
P(0001) = P(0)f4!1 P(0000) = P(0)

Partition X so that X1 corresponds to the first variate, X2, the second variate,
and X* contains the remaining variates.  It then follows from the Identities
of 37 that

(38) ( ) ( ) ( )( )
( )

2 2 2 2 2 1 1 2
1 2

1 2 1 2

0
, | 0 ,

1

f P f f
C H

f

! ! ! ! !

! ! !

− + +
= =

⎡ ⎤+ + +⎣ ⎦
X X

(39)
( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ){ }
2 3 3 4 2 3 2 3 4 3 2 3 2 4 2 3 4

1 2
3 4 1 2 2 2 3

0
, | 1 ,

1

f f f P f f f f f f f f f
C H

f f f f

! ! ! ! !

! ! !

⎡ ⎤+ − + + + + +⎣ ⎦= =
⎡ ⎤+ + + +⎣ ⎦

X X

and

(40) ( ) ( ) ( )( )
( )

2 4 2 3 4 2 4 3 3 4
1 2

2 4 3 2 2

0
, | 2 ,

1

f P f f f f
C H

f f

! ! ! ! !

! ! !

− + +
= =

⎡ ⎤+ + +⎣ ⎦
X X

Now, Equations 38, 39 and 40 are not necessarily equal, and, by varying
the parameters within their admissible ranges, C(X1, X2|H = h) may be shown
to take on many different shapes, including the single-peakedness Meehl
claims is a characteristic only of taxonicity.  Consider the case in which
P(0) = .001, b1 = 0, b2 = 2.3, b3 = –.10, b4 = –1.37, and Z has a mean of 2, variance
of 10, skewness of .85, and kurtosis of –.14 (i.e., is mildly positively skewed
and platykurtic).  In this case, C(X1, X2|H = 0) = .3, C(X1, X2|H = 1) = .49,
and C(X1, X2|H = 2) = .01.  On the other hand, when P(0) = .003, b1 = 0,
b2 = 1, b3 = 0, b4 = .33, and Z has a mean of 1.5, variance of 6, skewness
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of 2.3, and kurtosis of 5.6, C(X1, X2|H = 0) = .49, C(X1, X2|H = 1) = .75, and
C(X1, X2|H = 2) =.17.  Note that in neither of these cases are the item
characteristic curves steep.  Other brands of non-flat conditional covariance
function may also be produced.  When P(0) = .003, b1 = 0, b2 = 1, b3 = 0, b4 = .33,
and Z has a mean of 3, variance of 9, skewness of –1.8, and kurtosis of –1.9,
C(X1, X2|H = 0) = .55, C(X1, X2|H = 1) = .52, and C(X1, X2|H = 2) = .03.  Finally,
when P(0) = .011, b1 = 0, b2 = –1.1, b3 = 3.5, b4 = 1.05, and Z has a mean of
1.3, variance of 2, skewness of .38, and kurtosis of 3.75, C(X1, X2|H = 0) = .52,
C(X1, X2|H = 1) = .25, and C(X1, X2|H = 2) = .76. Hence, by counterexample,
R2 has been shown to be false.  Furthermore, there is no reason to believe
that such continuous Rasch structures will, in practice, be seldom
encountered.  They are not particularly esoteric structures.  Nor is it
unreasonable to posit that more complex continuous UMLV structures, they
containing a greater number of parameters, will also produce non-flat
conditional covariance functions.

Discussion

It has been shown that, for the case of dichotomous indicators:
1. A latent taxonic structure does not necessarily produce a single-

peaked conditional covariance function.  That is, (R1) is not true.  This is
because [M1!M2!M3] does not imply that P(! = T|H = h) crosses .5.

2. (R1) is made true given that a number of distinct side-conditions hold.
In particular, it is made true given that: (a) X* contains a large number of
indicators; (b) the latent taxonic structure to be detected is characterized by
a value of "T close to .5; (c) The indicators in X* are of good quality.  When
the indicators are of poor quality, a high base rate scenario (e.g., "T = .999) will
require many more indicators than a low base rate scenario (e.g., "T = .005)
before (R1) becomes true.

3. It is not true that continuous latent structures do not produce single-
peaked conditional covariance functions.  Certain Rasch structures, for
example, can produce such curves.  Hence, (R2) is not true.

It may then be concluded that, for the case of dichotomous indicators,
MAXCOV cannot be employed to distinguish between continuous and
taxonic UMLV structures, for it is, at best (given the side-conditions
described previously), a sense 1 criterion.  The researcher may, of course,
employ MAXCOV as follows:  If, for a large value of (p – 2), C(X1, X2|H = h)
is not single-peaked, then the data is not in keeping with the hypothesis of
taxonicity.  However, if C(X1, X2|H = h) is single-peaked, some other
criterion would be needed to eliminate as candidates, the continuous UMLV
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structures.
There exist a number of responses that might be made in regards either

the tone or content of this conclusion.  First, it might be re-emphasized that
the conclusion does not constitute an indictment of MAXCOV per se, but
only the use of dichotomous indicators.  Researchers might then conclude
from the present work that continuous indicators should instead be employed
with MAXCOV.  We wish only to note that, for the case of continuous
indicators, neither (R1), nor (R2), have been proven, a point we revisit later
in this section.  Hence, there is no reason to believe that MAXCOV stands
on firmer footing under this alternative employment.  A second response
might be to note that, even though MAXCOV is, at best, a sense 1 criterion,
the same can be said of many other latent variable models.  For example, the
covariance structure (!2!2' + ", " diagonal and positive definite), an often
employed sense 1 criterion for the 2-dimensional linear factor analytic
structure, cannot be used to rule out as a possibility the cases of the
unidimensional, quadratic factor structure, nor a range of latent profile
structures.  Finally, one might attempt to downplay the significance of the
fact that (R2) was proven false by counterexample by arguing that a
demonstration that “a few specific continuous structures can produce single-
peaked covariance functions is a long way from proving that this will occur
under conditions that the researcher can expect to encounter in practice.”  In
our opinion, this rebuttal has a hollow ring to it.  To speak of “the latent
structures one will encounter in practice” betrays a puzzling overconfidence.
Because inferences are being made about latent structures, the researcher
does not know what he will encounter, this, presumably, the reason that
decision-making machinery such as MAXCOV is needed.  If MAXCOV
only makes correct decisions about whether [M1#M2#M3] is the case
given that such taxonic structures have properties (l1, ..., lt), and, hence, its
correct employment in a particular context requires prior knowledge as to
whether [M1#M2#M3]#(l1, ..., lt) is the case, then MAXCOV’s
usefulness is severely limited.6  Indeed, if the researcher is truly so confident
in regards his knowledge of the latent structures that he will meet in applied
research, then he has no need for MAXCOV.

There is no evidence to indicate that Meehl and his co-workers have
appreciated the fact that, in order for P(! = T|H = h) to be an increasing
function of h, the joint distribution of H and ! must be monotone likelihood
ratio dependent.  Theorem 3 establishes that [M1#M2#M3] does, in fact,

6 In the same sense that the usefulness of the Newman-Keuls procedure is vastly reduced
by the fact that it can only be counted on to make correct decisions given certain patterns
of population mean differences.  If the researcher was in a position to know whether these
patterns held, then why would Newman-Keuls be needed?
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induce this strong brand of dependency.  Interestingly, the Lemma which
supports Theorem 3 also provides the basis for an alternative to Huynh’s
(1994) proof for the case of dichotomous indicators and continuous !.  For
any two values of !, say, !o < !1, simply apply the Lemma to the case in
which, for all i, ai = Pi(!o) and a"i = Pi(!1), in which Pi(z) is the item
characteristic curve of indicator i evaluated at ! = z.

Meehl and Yonce (1996, p. 1113) conjectured that (R2) would be violated
if MAXCOV was faced with latent structures in which the items have the
same difficulty levels and steep item characteristic curves.  It is not clear how
useful is this advice, for, as the counter-example employed in the current work
shows, the situation with regards (R2) is a complex one.  C(X1, X2|H = h) is
determined by the joint distribution of X1, X2, and H, which, given that X
conforms to a UMLV structure, is, in turn, determined not only by the form
of the regressions (item characteristic curves) of the indicators on !, but also
by the distribution of !.  For example, the simple Rasch structure of Equation
42, and, hence,   C(X1, X2|H = h), is determined by fully 2p – 1 parameters
(p moments and [p – 1] regression parameters).  Since only UMLV
structures are admissible,  the moment parameters are, additionally, subject
to a set of restrictions (Cressie & Holland, 1983).  More complex continuous
UMLV structures will involve a greater number of parameters and
restrictions (see Cressie & Holland, 1983). The point then is that a useful
analysis of (R2) must involve a detailed characterization of the continuous
UMLV structures under consideration.

For neither (R1), nor (R2), has Meehl provided, for the case of
continuous indicators, formal proofs, and the reader may wonder whether
the results of the current work can be used to ground such proofs.  For a set
of continuous indicators, M1 remains as in Equation 1.  Define an “indicator”
of T to be a continuous random variate, Xi, with the property that, after
recoding,

(41) 1 – Fxi|! = T(x) > 1 – Fxi|! = T"
(x), for all values x,

in which Fxi|! = t(x) = P(Xi # x|! = t).  Condition M2C then states that there
exists a set of p continuous indicators of the taxon, these indicators stored
in the random vector X.  Finally, for the case of continuous indicators, M3C
states, in analogy to M3, that

(42) | |
1

,
i

p

t t
i

f f! != =
=

=∏X X
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that is, the joint density of the indicators conditional on ! = t is a product of
the individual conditional densities.  Let  [M1!M2C!M3C] symbolize the
case of latent taxonicity with continuous indicators.

For (R1) to be true, it must, once again, be true that, for any partition
[X1, X2, X*] of X, [M1!M2C!M3C] implies Properties 18-21.  By
substituting density functions for discrete mass functions in the proofs of 18
and 19 (Theorems 1 and 2), 18 and 19 are easily shown to follow from
[M1!M2C!M3C].  Modifying the proof of Equation 20 in the same fashion
results in the condition (analogous to Equation 29) that, for P(! = T|H = h) to
be an increasing function of h, that is, P(! = T|H = h + ε) > P(! = T|H = h),
ε > 0, it must be the case that

(43)  fH|! = T (h + ε) fH|! = T"
(h) > fH|! = T (h)fH|! = T"

(h + ε)

in which fH|! = t(s) is the value, when H = s, of the conditional density of
H = 1"X* given ! = t.  This, once again, is the condition that H and ! are
monotone likelihood ratio dependent.  The question then is whether
[M1!M2C!M3C] induces this brand of dependence.  The answer is that it
does not necessarily do so.  Lemma 2 of Holland and Rosenbaum (1986)
establishes that [M1!M2C!M3C] induces a weaker form of dependence
on ! of functions of X*, namely that, for any increasing function, g(X*), of
X*, E[g(X*)|! = t] is an increasing function of t.  The mlrd property is not
implied by [M1!M2C!M3C].  Recall that the mlrd property was implied by
[M1!M2!M3] for the case of dichotomous indicators, in agreement with
Holland and Rosenbaum’s (1986) finding that dichotomous indicators of
UMLV structures manifest stronger dependencies than do continuous
indicators.  Hence, for the case of continuous indicators, (R1) is not true.

As for the dichotomous case, it is possible that there exist reasonable side
conditions under which (R1) is true, an obvious candidate being that of large
(p – 2).  Now, as (p – 2) becomes large, fH|! = t will converge to a normal
distribution with, say, mean #(t), and variance $2(t) (Basawa & Rao, 1980;
Holland, 1990), that is,

(44)
( )

( )
( )

2

| 1 2 22

1
exp

22
H t

H t
f

tt
!

"

#$#
=

⎧ ⎫⎡ ⎤−⎪ ⎪⎣ ⎦→ −⎨ ⎬
⎡ ⎤ ⎪ ⎪⎩ ⎭⎣ ⎦

From lemma 2 of Holland and Rosenbaum (1986), #(T) = E(H|! = T) > E(H|!
= T") = #(T"), and, hence, #(T) = #(T") + %, % > 0.  Substituting the right
member of 44 into 43, and taking the natural logarithm of both sides of the
inequality results in the condition that
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(45)
h T

T

h T

T

h T

T

h T

T

+ − ′
′

+
− ′ −

−
+ − ′ −

−
− ′

′
ε ε

2 2 2 2

!

"

! #

"

! #

"

!

"

! "
! "

! "
! "

! "
! "

! "
! "

2 2 2 2

must be positive.  Expansion of Equation 45 shows that positivity is not
guaranteed.  Interestingly then, despite the doubts raised about the use of
dichotomous indicators, their use more directly ensures the truth of (R1) than
does the use of continuous indicators.  For the special case in which !2(T)
= !2(T") = !2

,  Equation 45 reduces to

2#
"

ε
2

,

which is positive.  This results, essentially, from the fact that, for this particular
case, that is, large (p – 2), #(T) > #(T"), and !2(T) = !2(T"), fH|$ = t is log-concave,
that is, it is a strongly unimodal density (Lehmann, 1966).  Hence, for a large value
of (p – 2), and given that !2(T) = !2(T"), P($ = T|H = h) is, for the case of
continuous indicators, an increasing function of h.  While conditional
normality of H given $ = t under large (p – 2) is a reasonable side-condition,
it is not easy to judge whether the same may be said of the requirement that
!2(T) = !2(T") = !2.   It is true, however, that for the linear factor model, the
same property, that is, that !2

H|$ = t =  !
2(t) = 1"!1, for all values t, follows from

a defining feature of that model, namely that, for all values t, C(X|$ = t) = !, !
diagonal. We have not, as of yet, for the case of continuous indicators, been
able to generate a reasonable counter-example to (R2).

References

Bartholomew, D. & Knott, M. (1999).  Latent variable models and factor analysis.
London: Arnold.

Basawa, I. & Rao, B. (1980).  Statistical inference for stochastic processes.  New
York:Academic Press.

Cressie, N. & Holland, P. (1983).  Characterizing the manifest probabilities of latent trait
models. Psychometrika, 48(1), 129-141.

Grayson, D. (1988).  Two-group classification in latent trait theory: Scores with monotone
likelihood ratio.  Psychometrika, 53(3), 383-392.

Heinen, T. (1996).  Latent class and discrete latent trait models: Similarities and
differences.  London: Sage Publications.

Hemker, B., Sijtsma, K., Molenaar, I., & Junker, B. (1997).  Stochastic ordering using the
latent trait and the sum score in polytomous IRT models.  Psychometrika, 62(3), 331-
347.

Holland, P. (1990).  The Dutch identity: A new tool for the study of item response models.
Psychometrika, 55(1), 5-18.

D
ow

nl
oa

de
d 

by
 [S

im
on

 F
ra

se
r U

ni
ve

rs
ity

] a
t 1

6:
25

 2
5 

Ja
nu

ar
y 

20
16

 



M. Maraun, K. Slaney, and L. Goddyn

MULTIVARIATE BEHAVIORAL RESEARCH 109

Holland, P. & Rosenbaum, P. (1986).  Conditional association and unidimensionality in
monotone latent variable models.  The Annals of Statistics, 14(4), 1523-1543.

Huynh, H. (1994).  A new proof for monotone likelihood ratio for the sum of independent
bernoulli random variables.  Psychometrika, 59(1), 77-79.

Junker, B. (1993).  Conditional association, essential independence and monotone
unidimensional item response models.  The Annals of Statistics, 21, 1359-1378.

Karlin, S. & Rinott, Y. (1980).  Classes of orderings of measures and related correlation
inequalities. 1.  Multivariate totally positive distributions.  Journal of Multivariate
Analysis, 10, 467-498.

Lehmann, E. (1966).  Some concepts of dependence.  Annals of Mathematical Statistics, 37,
1137-1153.

Maraun, M. & Rossi, N. (2001).  The extra-factor phenomenon revisited:  Unidimensional
unfolding as quadratic factor analysis.  Applied Psychological Measurement, 25(1), 77-
87.

McDonald, R. P. (1967).  Nonlinear factor analysis.  Richmond, VA: The William Byrd
Press.

Meehl, P. E.  (1965).  Detecting latent clinical taxa by quantitative indicators lacking an
accepted criterion.  (Report PR-65-2).  Minneapolis: University of Minnesota
Department of Psychiatry.

Meehl, P. E. (1973).  MAXCOV-HITMAX: A taxonomic search method for loose genetic
syndromes.  In P. E. Meehl (Ed.), Psychodiagnosis: Selected articles (pp. 200-224).
Minneapolis: University of Minnesota Press.

Meehl, P. E.  (1992).  Factors and taxa, traits and types, differences  of degree and
differences in kind.  Journal of Personality, 60, 117-174.

Meehl, P. E.  (1995).  Bootstraps taxometrics: Solving the classification problem in
psychopathology.  American Psychologist, 50(4), 266-275.

Meehl, P. E. & Golden, R. R.  (1982).  Taxometric methods.  In P. C. Kendall & J. N.
Butcher (Eds.), Handbook of research methods in clinical psychology (pp. 127-181).
New York: John Wiley & Sons.

Meehl, P. & Yonce, L. (1996).  Taxometric analysis: II.  Detecting taxonicity using
covariance of two quantitative indicators in successive intervals of a third indicator
(MAXCOV PROCEDURE). [Monograph Supplement].  Psychological Reports,
1091-1227.

Miller, M. (1996).  Limitations of Meehl’s MAXCOV-HITMAX procedure.  American
Psychologist, 51, 554-556.

Molenaar, I. & von Eye, A. (1994).  On the arbitrary nature of latent variables.  In A. von
Eye & C. Clogg (Eds.), Latent variables analysis. London: Sage.

Rosenbaum, P. (1984).  Testing the conditional independence and monotonicity
assumptions of item response theory.  Psychometrika, 49, 425-536.

Stanley, R. (1986).  Enumerative combinatorics.  New York: Wadsworth and Brooks.
Stout, W. (1990).  A new item response theory modeling approach with applications to

unidimensionality assessment and ability estimation.  Psychometrika, 55, 293-325.
Tukey, J. (1958).  A problem of Berkson, and minimum variance orderly estimators.

Annals of Mathematical Statistics, 29, 588-592.
Waller, N. G. & Meehl, P. E. (1998).  Multivariate taxometric procedures: Distinguishing

types from continua. Thousand Oaks: Sage.

Accepted May, 2002.

D
ow

nl
oa

de
d 

by
 [S

im
on

 F
ra

se
r U

ni
ve

rs
ity

] a
t 1

6:
25

 2
5 

Ja
nu

ar
y 

20
16

 



M. Maraun, K. Slaney, and L. Goddyn

110 MULTIVARIATE BEHAVIORAL RESEARCH

Appendix
Proof of Theorem 3

To prove Theorem 3, the following combinatoric lemma is required.

Lemma

Let 0 ! ai ! 1, i = 1, ..., p, and define the polynomial

(46) f t f a a t a t ap
i

p

i i! " # $ ! "= = + −
=

∏1
1

1,..., ; .

Then

f t A t
j

p

j
j! "=

=
∑

0

in which the coefficients, Aj, are equal to

(47)
A a aj

S p
j

i
i S i p S

i= −
%
&'
(
)*

−
∑ ∏ ∏
!

! !! " ! "
! "1 .

Here, S runs over the p choose j partitions of (p) = (1, 2, ..., p) into j and (p – j)
elements.  For example, if (p) = (1, 2, 3), then A0 = (1 – a1)(1 – a2)(1 – a3), A1 =
a1(1 – a2)(1 – a3) + (1 – a1)a2(1 – a3) + (1 – a1)(1 – a2)a3, A2 = a1a2(1 – a3)
+ a1(1 – a2)a3 + (1 – a1)a2a3, and A3 = a1a2a3.  Similarly, let 0 ! a"i ! 1, i =
1, ..., p, and define Aj" via

f(a"1, ..., a"p; t) = 
0

p
j

j
j

A t
=

′∑

to be

(48) ( )
( )

( )
1 .j i i

i S i p SpS
j

A a a
! !

!
−⎡ ⎤

⎢ ⎥⎣ ⎦

′ ′ ′= −∑ ∏ ∏

If 0 < ai ! a"i < 1, i = 1, ..., p, then
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1

1

0 ... ,po

o p

AA A
A A A

′′ ′
≤ ≤ ≤ ≤

or, equivalently, Ak! Am – Am!Ak " 0 for 0 # m # k # p – 1.  These inequalities
are strict if, for at least one i, ai $ a!i.

Proof

First consider the special case in which a!i = ai, i = 1, ..., (p – 1), and in
which, for some % > 0, a!p = ap + %.  Define Bo, ..., Bp-1 via

f(a1, ..., ap-1,0; t)=
i

p

i i
j

p

j
ja t a B t

=

−

=

−

∏ ∑+ − =
1

1

0

1

1! " ,

so that

(49) ( )
( )

( )11

1 .j i i
i S i p SpS

j

B a a
! !

!
− −⎡ ⎤−

⎢ ⎥⎣ ⎦

= −∑ ∏ ∏

Here, S runs over the (p – 1) choose j partitions of (p – 1) = [1, 2, ..., (p – 1)]
into j and (p – 1 – j) elements.  By separating out those terms in the
summation of Equation 47 for which p&S, it may be shown that, for j = 1,
..., (p – 1), Aj = apBj-1 + (1 – ap)Bj and Aj! = (ap + %)Bj-1 + (1 – ap – %)Bj.  These
equations are valid for j = 0 and j = p provided B-1 and Bp are defined to be 0.
By substituting and simplifying, it may be shown that, for j = 0, ..., (p – 1),

(50) Aj+1! Aj  – Aj!Aj+1 = %(Bj
2 – Bj-1Bj+1)

Since % > 0, the expression on the left is positive provided that Bj
2 > Bj-1Bj+1, that

is, the coefficients of f(a1, ..., ap-1, 0; t) are log concave.  But log-concavity
follows from the fact that the roots of f(a1, ..., ap-1, 0; t), namely

a
a

i pi

i

− = −
#
$%

&
'(

1
1 1: ,..., ,

are all real and nonpositive (Stanley, 1986).  This proves the special case.
The general case follows from the fact that
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1 1 1

1 1 1

&j j j j j j

j j j j j j

A A A A A A

A A A A A A
+ + +

+ + +

′′ ′′ ′ ′ ′′ ′′
≤ < ⇒ <

′ ′ .
■

Proof of Theorem 1

Let [X1, X2, X
*] be any partition of X.  The (p – 1) probabilities P(H =

h|! = t), t = 0, ..., (p – 2), are each sums of the (p – 2) choose h probabilities
P(X* = x: 1"x = h|! = t), that is,

(51) P(H = h|! = t) =
( )

( )
( )

( )22

1| 1 1| .i i
i S i p SpS

h

P t P t
! !

!

" "
− −⎡ ⎤−

⎢ ⎥⎣ ⎦

⎡ ⎤= = − = =⎣ ⎦∑ ∏ ∏X X

Noting that, by M2, P(Xi = 1|! = T) > P(Xi = 1|! = T") for all i, one may take
P(H = k|! = T) to be Ak", P(H = k|! = T") to be Ak, P(H = m|! = T) to be Am",
and P(H = m|! = T") to be Am.  Since the requirements of the lemma are then
met, it then follows that P(H = k|! = T)P(H = m|! = T") > P(H = m|! = T)P(H
= k|! = T"), that is, that H and ! are mlrd.

■
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