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MAXCOV-HITMAX was invented by Paul Meehl as a tool for the detection of latent
taxonic structures (i.e., structures in which the latent variable, !, is not continuously,
but rather Bernoulli, distributed). It involves the examination of the shape of a certain
conditional covariance function and is based on Meehl’s claims that (R1) Taxonic
structures produce single-peaked conditional covariance functions and that (R2) con-
tinuous latent structures produce flat, rather than single-peaked, curves. For neither
(R1), nor (R2), have formal proofs been provided, Meehl and colleagues instead hav-
ing provided an argument (“Meehl’s Hypothesis”) as to why they should be true, and
a number of Monte Carlo studies. In an earlier article, Maraun, Slaney, and Goddyn
(2003) proved that, for the case of dichotomous indicators, Meehl’s Hypothesis is
false and, by counterexample, that (R2) is false. In the current article (a) it is proved
that, for the case of continuous indicators, Meehl’s Hypothesis is false and (b) results
are developed analytically on the behaviour of the conditional covariance functions
produced by taxonic structures.

In a series of articles (Meehl, 1965, 1973, 1992; Meehl & Golden, 1982; Meehl
& Yonce, 1996; Waller & Meehl, 1998), theoretician Paul Meehl developed
what he calls taxometrics, a set of procedures that, he claims, may be used to de-
tect latent taxa (i.e., discrete types which underlie, perhaps causally, responding
to a set of indicator variables) when, in fact, such latent taxa exist. One of the
most widely employed of these procedures is MAXCOV-HITMAX (hereafter,
MAXCOV), which involves the examination of the shape of the covariance
function of two indicator variates conditional on a third. The MAXCOV proce-
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dure was derived from Meehl’s reasoning that (R1) Taxonic latent structures
(hereafter, T-structures) should produce single-peaked conditional covariance
functions and that (R2) continuous latent structures (hereafter, C-structures)
should produce flat, rather than single-peaked, conditional covariance functions.
If this were the case, MAXCOV could be employed to detect latent taxa, for it
then could not only be used to judge when data were not in keeping with the hy-
pothesis that they arose from a T-structure, but also to rule out the possibility
that they arose from a C-structure.

However, there has recently arisen controversy regarding MAXCOV. Miller
(1996) provided a counterexample that appeared to contradict (R2), suggesting that
MAXCOV could signal taxonicity when the latent structure was, in fact, a C-struc-
ture. Maraun, Slaney, and Goddyn (2003) argued that Miller’s counterexample was
not relevant to a consideration of MAXCOV, because it featured a nonlinear compo-
nent model rather than a structure from the (relevant) class of unidimensional mono-
tone latent variable (UMLV) models. Questions have also been raised regarding the
appropriateness of the popular practice of employing dichotomous indicators as in-
put into MAXCOV. Maraun et al. reviewed criteria (necessary conditions) of
T-structures for the case of dichotomous indicators, and proved that the reasoning
that Meehl has offered in support of (R1) for the case of continuous indicators, does
not hold for the case of dichotomous indicators. They also showed, by
counterexample, that, for dichotomous indicators, (R2) is false. It should be noted
that Meehl (1995) himself has claimed that “the limitations of using dichotomous
output indicators remain tobe investigated”and that, “Despite the impressive results
that have been obtained by investigators using dichotomous outputs, we retain a
strong preference for quantitative output indicators until more adequate Monte
Carlo tests have been done” (Meehl & Yonce, 1996, p. 1114). The findings of
Maraun et al. would appear to substantiate Meehl’s concerns.

For the case of continuous (quantitative) indicators, Meehl and colleagues have
presented a reasoned argument (herein called “Meehl’s Hypothesis”), and exten-
sive Monte Carlo work, in support of the claim that MAXCOV can be used to make
correct decisions about hypotheses of existence of T-structures. However, as with
the dichotomous case, formal proofs of (R1) and (R2) have not, to date, been pro-
vided. It is the purpose of the present work to further understanding of MAXCOV
for the case of continuous indicators through an analytic investigation of Meehl’s
Hypothesis, and the development of results on the behavior of the conditional
covariance functions of T-structures.

THE LOGIC OF MAXCOV

Meehl derived MAXCOV on the basis of a characterization of T-structures. From
his many discussions of MAXCOV (e.g., Meehl, 1973, 1992), it may be deduced
that this characterization involves three elements, herein called M1, M2, and M3.
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M1: Taxon and Complement Class

There exist two (latent) classes of individuals, one class called the taxon (T) and
the other, the complement class (T!). This situation may be represented by defining
!, a latent variate, to be a random variate with Bernoulli distribution, such that

0 < P(! = T) = "T < 1, and P(! = T!) = (1 – "T), (1)

a property that will, hereafter, be referred to as M1.

M2: Indicators

Define an “indicator” of T to be a continuous random variate, Xi, with the property
that, after appropriate recoding,

P(Xi > xi|! = T) > P(Xi > xi|! = T!), for all values x. (2)

The MAXCOV procedure requires p ≥ 3 such indicators, and these will be stored in
the randomvectorX. Property (2) isknownaspositive regressiondependenceor sto-
chastic ordering (Lehmann, 1966; Tukey, 1958) and, within the domain of latent
variable modeling (e.g., Holland & Rosenbaum, 1986), “latent monotonicity.”1

M3: Conditional Independence

One interpretation given by Meehl to the idea of a latent taxon is that it is a cause of
the responding of individuals to the indicators. He paraphrases this notion in the
usual way: The association that exists among the indicators is completely “ex-
plained” by the existence of the latent taxon and complement classes. For the case
of continuous indicators, M3 states that

that is, the joint density of the indicators conditional on ! = t, t = {T!, T}, is a prod-
uct of the individual conditional densities. It follows from Equation 3 that the two p
by p conditional covariance matrices, C(X|! = T) = #T and C(X|! = T!) = #T!, are
diagonal matrices. This diagonality condition, Meehl acknowledges, “is an ideal-
ization that will rarely be satisfied in MAXCOV-HITMAX applications” (Waller
& Meehl, 1998, p. 17), but whose failure to obtain, he claims, “only rarely vitiates
MAXCOV-HITMAX parameter estimates” (p. 17). In keeping with Meehl’s ter-
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1While latent monotonicity is the standard in latent variable modeling, it appears that Meehl defines
“indicator” according to the weaker condition that E(Xi|! = T) > E(Xi|! = T!), the two senses equivalent
only for the case of dichotomous variates. We begin with the stronger condition (2), but later discuss a
possible justification for Meehl’s choice.

1

, (3)i
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minology, latent structures of the form [M1∩M2 ∩M3] will be said to comprise
the class of taxonic structures (T-structures).

Now, in the psychometric literature, T-structures are called latent profile struc-
tures (for the case of dichotomous indicators, latent class structures). There exists a
comprehensive theory on the estimation of the parameters of such structures (see,
e.g., Bartholomew & Knott, 1999). Moreover, latent profile structures are mem-
bers of the class of UMLV structures, and a great deal is known about the manifest
properties that UMLV structures imply (see, e.g., Holland & Rosenbaum, 1986).
Meehl has claimed that the conditional covariance functions of T-structures are
single-peaked, and, hence, that this property can be used in the detection of
T-structures. It is this possibility that makes the MAXCOV procedure of interest.

Rather than provide a direct proof of (R1), Meehl has provided, in a series of ar-
ticles (e.g., Meehl, 1965, 1973, 1992; Meehl & Golden, 1982; Waller & Meehl,
1998), an argument as to why the conditional covariance functions of T-structures
should be single-peaked and a number of supporting Monte Carlo studies. The sta-
tistical backdrop to his argument is as follows:

1. Partition X as [X1(i), X2(j), X*], in which X1(i) and X2(j) are any two choices, i
≠ j, from {X1, ..., Xp}, and X* contains the (p – 2) remaining indicators.2

2. Define the random variate X+ = 1!X*, that is, define it to be the sum of the
(p – 2) indicators contained in X*. Since X+ is the sum of (p – 2) indicators,
it too is an indicator of T as defined in Equation 2.3

3. Indicator X+ is, in Meehl’s terminology, the “input indicator,” and indica-
tors X1(i) and X2(j), the “output indicators” (Meehl & Yonce, 1996, p. 1097).

4. Define: "Th = P(! = T|X+ = h); #Th = C([X1(i), X2(j)]|X+ = h ∩ ! = T) and
#T!h = C([X1(i), X2(j)]|X+ = h ∩ ! = T!), each a 2 by 2 conditional covariance
matrix of X1(i) and X2(j); $Th a 2 by 1 vector with elements E(X1(i)|X+ = h ∩
! = T) and E(X2(j)|X+ = h ∩ ! = T); and $

!T h a 2 by 1 vector with elements
E(X1(i)|X+ = h ∩ ! = T!) and E(X2(j)|X+ = h ∩ ! = T!). The 2 by 2 covariance
matrix of X1(i) and X2(j) conditional on X+ = h can be expressed as:4
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2Note that X* may contain one or more variates. Following Gangestad and Snyder (1985), it has be-
come popular when using dichotomous indicators to have X* contain more than one indicator. In
Meehl’s treatment of the continuous case, X* contains one variate. While this issue has no bearing on
the generality of the key results, herein, presented, it will become clear in the course of the current in-
vestigation that it is useful to allow X* to contain multiple indicators.

3This fact is proven in many sources from the Psychometriks literature, including Lemma 13 of van
der Linden (1998).

4A proof is contained in the Appendix.
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Meehl’s argument can then be paraphrased as follows5 (see, e.g., Meehl & Yonce,
1996, pp. 1096–1097).

Given a T-structure, that is, a latent structure of the form [M1∩M2∩M3]:

1. The vector of mean differences, (! !Th T h!
"

), should be constant over the
range of X+.

2. The indicators X1 and X2 should be statistically independent when condi-
tioned on both X+ = h and ! = t, and, hence, "Th and "

"T h should be diagonal.
3. If 1. and 2. are correct, then the off-diagonal element of Equation 4, that is,

will vary with h
only through #Th(1 – #Th).

4. #Th should be nondecreasing in h and should cross .5. Because 0 < #Th <
1, #Th(1 – #Th) should then be a single-peaked function of h, with a maximum at
#Th = .5.

Conclusion: T-structures yield single-peaked C(X1, X2|X+ = h).
The hypothesis that T-structures yield the properties described in 1.–4., that is,
5. (a) (! !Th T h!

"
) is constant over the range of X+, (b) "Th and "

"T h are di-
agonal, (c) #Th = P(! = T |X+ = h) is a nondecreasing function of h, and (d) #Th
crosses .5, will, herein, be called “Meehl’s Hypothesis.” The hypothesis [T-struc-
ture]→[C(X1, X2|X+ = h) single peaked] will be called (R1). Clearly, Meehl’s
Hypothesis is not necessarily equivalent to (R1), because, while 5. (a)–(d) are
sufficient for [C(X1, X2|X+ = h) single peaked], it is not clear that they are neces-
sary. Meehl’s Hypothesis has the single-peakedness of C(X1, X2|X+ = h) being
brought about in a very particular way, that is, according to 5. (a)–(d), but even if
Meehl’s Hypothesis is incorrect, (R1) might, nevertheless, be correct. That is,
T-structures might yet necessarily yield single-peaked C(X1, X2|X+ = h) but for
different reasons than those described by 1.–4. It must be emphasized, however,
that Meehl has offered no other rationale as to why T-structures should produce
a single-peaked C(X1, X2|X+ = h).

Meehl also claims that a C-structure will produce a C(X1, X2|X+ = h) that is flat
over the range of X+. In his words: “If the latent structure is not taxonic, the curve
will be flat” (Meehl, 1992, p. 134); “In MAXCOV-HITMAX the factorial situation
does not give a dish ... but a flat graph” (Meehl, 1995, p. 272). Hence, according to
Meehl, a single-peaked conditional covariance function distinguishes C- from
T-structures. In particular, if Meehl is correct, evidence, in a given context, that
C(X1, X2|X+ = h) is not single-peaked is evidence that the data did not arise from a
T-structure. On the other hand, evidence that C(X1, X2|X+ = h) is single-peaked is
evidence that the data did not arise from a C-structure.
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5In the mathematics that follow, the more precise notations X1(i) and X2(j) are abandoned in favour
of the more compact X1 and Xj.
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Inpractice,asetofp indicatorswillyield ! "

1
2

1p p# uniqueinput indicator/output

indicator partitions, and, hence, the same number of empirical conditional
covariance curves. A MAXCOV analysis involves a consideration of these curves,
and, if the decision is made that they are in keeping with the hypothesis that the data
arose from a T-structure, the estimation of a variety of important parameters includ-
ing the base rate !T, and Bayesian estimates of the probability of taxon membership.
Meehl takes the agreement in the parameter estimates yielded by each partition to be
further support (“consistency tests”) for the taxonic conjecture.

For neither Meehl’s Hypothesis, nor (R1), nor (R2), has Meehl provided for-
mal proofs; he relies instead on evidence culled from extensive Monte Carlo
work. However, the Monte Carlo study of Meehl and Golden (1982) did not give
direct consideration to conditional covariance plots, but, rather, MAXCOV’s
ability to recover known values of the parameters of known T-structures. The
study of Meehl and Yonce (1996) provided Monte Carlo generated conditional
covariance plots under various conditions, the study as a whole appearing to
support the claim that T-structures produce single-peaked C(X1, X2|X+ = h). The
aim of the current effort is to gain further insight into the operation of the
MAXCOV procedure for continuous indicators by developing results on the be-
haviour of the conditional covariance functions produced by T-structures, and, in
particular, the truth of Meehl’s Hypothesis.

MEEHL’S HYPOTHESIS

Meehl’s Hypothesis is correct if, for any partition [X1, X2, X*] of X, the implica-
tion [M1∩M2∩M3]→[(5a)!(5b)!(5c)!(5d)] is true. Each component implica-
tion will be addressed in turn.

Theorem 1

If [M1∩M3], then, for any partition [X1, X2, X*] of X, (" "Th T h#
$

) is constant
over h, that is, [M1∩M3]→(5a) is true.

Proof. The vth element of the 2 by 1 vector (" "Th T h#
$

) is equal to E(Xv|X+ =
h ∩ " = T) – E(Xv|X+ = h ∩ " = T#), which, in turn, is equal to
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From M3, the left member of Equation 6 is equal to

and the right member to

Since Equation 6 is then equivalent to E(Xv|! = T)
–E(Xv|! = T!). Hence, (" "Th T h!

"
) is constant over h.

!

Theorem 2

If [M1∩M3], then, for any partition [X1, X2, X*] of X, the covariance matrices #Th
and #

"T h , are diagonal for all h, that is, [M1∩M3]→(5b).

Proof. The off-diagonal element of #th is C(X1, X2|X+ = h ,! = t) which is
equal to

It was already established that the right member of Equation 9 is equal to E(X1|!
= t)E(X2|! = t). Now, the left member is equal to

which, from M3, is equal to
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which, since is equal to E(X1|! = t)E(X2|! = t).
Hence, for all h, C(X1, X2|X+ = h ∩ ! = t) = 0, and the theorem is proven.

!

It follows immediately from Equation 4, and Theorems 1 and 2, that T-struc-
tures yield single-peaked C(X1, X2|X+ = h) if and only if they yield single-peaked
!Th(1 – !Th), the latter issue resting on the behaviour of !Th = P(! = T |X+ = h).
Meehl’s Hypothesis claims that T-structures yield P(! = T |X+ = h) that are mono-
tone nondecreasing and cross .5, whereby, if true, !Th(1 – !Th), and, hence, C(X1,
X2|X+ = h), would indeed be single-peaked. On the other hand, it is now clear that
(R1) is true so long as T-structures necessarily yield single-peaked !Th(1 – !Th).
Potentially, !Th(1 – !Th) could be single-peaked for at least the following reasons:
(a) P(! = T |X+ = h) is monotone increasing (decreasing) and crosses .5, and (b)
P(! = T |X+ = h) is quadratic but does not cross .5. As it stands, it is not clear what
restrictions T-structures place on the behaviour of P(! = T |X+ = h). The aim of the
remainder of the article is to investigate this issue and, thereby, deduce useful re-
sults with respect the behaviour of the conditional covariance functions produced
by T-structures.

What remains with respect to the analysis of Meehl’s Hypothesis are issues (5c)
and (5d), that is, whether P(! = T |X+ = h) is an increasing function of h, and, if so,
whether it crosses .5. To address (5c), the following definition and lemma are
needed.

Definition (Monotone Likelihood Ratio Dependence,
MLRD; Lehmann, 1966)

Two random variates X and Y (or their distribution) are (positive) monotone likeli-
hood ratio dependent only if fx,y(x, y)fx,y(x",y") ≥ fx,y(x, y")fx,y(x", y) for all x" > x, y" > y
or, equivalently, in which fx,y(x, y) is
the jointdensityofXandY, and is theconditionaldensityofXgivenY=y.

Lemma

P(! = T |X+ = h) is a nondecreasing function of h if and only if ! and X+ are (posi-
tive) MLRD.

Proof. (Necessity) If P(! = T |X+ = h) is a nondecreasing function of h, then,
for any # > 0 and h, P(! = T |X+ = h + #) ≥ P(! = T |X+ = h). Because
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what must be shown is that

However,

so Equation 13 is equivalent to

in which is the value, when X+ = s, of the conditional density of X+
given ! = t. This is the requirement that X+ and ! be MLRD.

(Sufficiency) The argument proceeds in reverse.
!

MLRD is a strong form of dependence which, as is clear from its definition, is
induced by the joint distribution of two variates. It certainly is not a given that
MLRD will characterize the joint distribution of an arbitrary pair of random vari-
ates (see, e.g., Karlin & Rinott, 1980). Lehmann (1966) provided a number of ex-
amples of distributions that are MLRD. Within the context of item response theory,
the MLRD property has been discussed by Holland and Rosenbaum (1986) (under
the heading of TP2 distribution); Grayson (1988); Huynh (1994); and Hemker,
Sijtsma, Molenaar, and Junker (1997). The following theorem establishes that
[M1∩M2∩M3] does not imply that ! and X+ are MLRD.

Theorem 3

[M1∩M2∩M3] does not imply that X+ and ! are MLRD and, hence, does not im-
ply that P(! = T |X+ = h) is a nondecreasing function of h, that is, [M1∩M2∩M3]
does not imply (5c).

Proof. Lemma 2 of Holland and Rosenbaum (1986) establishes that
[M1∩M2∩M3] induces not MLRD, but a weaker form of dependency in the joint
distribution of [!, X*], namely that, for any increasing function of X*, say, g(X*),
E[g(X*)|! = t) is a nondecreasing function of t.

!
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Theorem 3 establishes that Meehl’s Hypothesis is false, because it establishes
that [M1∩M2∩M3] does not imply that X+ and ! are MLRD, and, hence, that
T-structures do not necessarily produce P(! = T |X+ = h) that are nondecreasing
functions of h. In his descriptions of MAXCOV, Meehl has frequently spoken of
the assumption that the densities are either each
unimodal or cross only once (e.g., Meehl & Yonce, 1996, p. 1097). However, the
unimodality of each of does not imply that they will
cross only once, nor is the converse implication true. More essentially, neither the
unimodality of each of the densities nor their crossing
only once, implies that X+ and ! are MLRD, and, hence, that P(! = T |X+ = h) will
be a nondecreasing function of h. It will later be shown that even if

are each normal densities, it does not follow that P(! =
T |X+ = h) is a nondecreasing function of h. As will be seen, the case of conditional
normality is particularly simple, because whether or not X+ and ! are MLRD is de-
termined by moments of order two and lower. For more complicated conditional
densities of the kind Meehl has suggested might arise in applications of
MAXCOV, the issue as to whether or not X+ and ! are MLRD will be all the more
complicated, resting as it will on higher order moments.

Hemker et al. (1997) proved that MLRD of X+ and continuous ! is not, in
general, implied by unidimensional, monotone item response structures for
polytomous items. Interestingly, MLRD is implied by [M1∩M2∩M3] in the
case of dichotomous indicators (Maraun et al., 2003), in agreement with Holland
and Rosenbaum’s (1986) finding that dichotomous indicators of UMLV struc-
tures manifest stronger dependencies than do their continuous counterparts. The-
orem 3 does not, of course, imply that (R1) is false, because !Th(1 – !Th) may
yet be necessarily single-peaked. The status of (R1) remains unclear.

MEEHL’S MONTE CARLO SUPPORT

The Monte Carlo study of Meehl and Yonce (1996), which involved taxonic data
sets constructed in accord with Meehl’s account of taxonicity, seems to provide
support for Meehl’s Hypothesis. Yet, Theorem 3 shows Meehl’s Hypothesis to be
false. Possible explanations for this apparent discrepancy include the following:
(a) (R1) is true, but does not come about as suggested by Meehl’s Hypothesis. That
is, !Th(1 – !Th) is necessarily single-peaked, but not because P(! = T |X+ = h) nec-
essarily is nondecreasing and crosses .5, and (b) there exists a set of conditions,
say, {t1, t2, ...}, that are features of the Monte Carlo simulations of Meehl and
Yonce, and for which the implication [{M1∩M2∩M3}∩t1∩t2∩...] →
[(5a)"(5b)"(5c)"(5d)] is true. While not discounting the possibility of (a), it is
shown in this section that at least explanation (b) is correct. That is, it is shown that
features of the data generation protocol inherent to the study of Meehl and Yonce
make Meehl’s Hypothesis appear to be true.
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To begin, consider the means by which Meehl and Yonce (1996) generated their
data, N (subject) by 4 (indicator) matrices sampled from populations in which the
indicators conform to either a C-structure (in this case, a unidimensional linear fac-
tor structure) or T-structure, under various combinations of parameter values. The
recipe for the creation of these data sets is found on pages 1066 to 1068 of Meehl
and Yonce and may be described as follows:

For each data set:

1. Generate an N × 5 matrix, Z, each row a realization of a multivariate nor-
mal random vector, z ∼ N(0, I).6

2. Partition Z as [y|E], in which y is an N by 1 vector, and E, an N by 4 matrix.
3. Construct the N by 4 matrix, M, as follows:

Taxonic data sets:
Nontaxonic data sets:

in which 14 is a four element vector containing unities, and !" is chosen so
that the variates constructed under the taxonic and nontaxonic scenarios
will have identical covariance matrices.

4. For the taxonic data sets, assign the first NT individuals to the taxon, and the
final individuals to the complement class. Define # to be
the “separation” of the two classes, that is, their mean difference, and rede-
fine M to be:

5. Finally, for both taxonic and nontaxonic data sets, create the final N × 4 ma-
trix X, whose columns each contain an “indicator,” as

X = M + E.

Matrix X then contains items whose latent structure is either a T- or C-structure,
but which are perturbed by the error matrix E. To study the impacts of the parame-
ters NT and # on MAXCOV’s ability to detect T-structures, Meehl and Yonce
(1996) vary these parameters over data sets.

Twenty-five data sets under “…each of various taxonic and nontaxonic config-
urations” (Meehl & Yonce, 1996, p. 1098), were generated, and, for each data set,
variate X+, the input indicator, was set, in turn, to each of the four items in X. Suc-
cessive intervals were demarcated along X+, and then, within each interval, the
three pairwise covariances involving the remaining three variates were calculated.
Importantly, the data generation protocol employed by Meehl and Yonce ensured
that, for the taxonic samples, the conditional variances of X+ given T, and given T",
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were equal, and that the conditional distributions of X+ given T, and given T!, were
each normally distributed.7 Theorems 4 and 5 establish that [M1∩M2∩M3] in
conjunction with conditional normality and equality of conditional variances does
imply [(5a)!(5b)!(5c)!(5d)].

Theorem 4

Given [M1∩M2∩M3] and that t = {T!, T}, are each normal densities,
a necessary and sufficient condition that P(" = T |X+ = h) is nondecreasing over h,
that is, that (5c) is true, is that

Proof. Let t = {T!, T}, each be a normal density, that is,

in which From lemma

2 of Holland and Rosenbaum (1986), [M1∩M2∩M3] implies that, for all j,
E(Xj|" = T) > E(Xj|" = T!). It follows, then, that and, hence, that

Recall that Inequality 15 must be satisfied in order
that " and X+ be MLRD, and, hence, P(" = T|X+ = h) be nondecreasing in h.
Substituting Expression 16 into Inequality 15, and taking the natural logarithm
of both sides of the inequality results in the condition that

must be nonnegative for all h and " > 0. Expansion of Expression 17 yields
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Replacing both ! !
X T X T! !

2 2and
"

with !2 reduces Expression 18 to

which is positive.
Because the second term of Expression 18 is a constant with respect to h, and h

ranges over the entire real line, if Expression 18 is nonnegative for all h, then the
first term of Expression 18, a linear function of h, must be equal to zero. This will
be the case only if ! !

X T X T! !

2 2
#

"

.
!

When, in addition to [M1∩M2∩M3], f tX
!

#" is a normal distribution for each

of T# and T, and ! !
X T X T! !

2 2
#

"

, it follows that the distribution of [X+, !] is

MLRD, and P(! = T|X+ = h) is a nondecreasing function of h. Interestingly, given
the normality of f tX

!
#" , t = {T#, T}, the brand of monotonicity described by (M2)

can be replaced by the weaker brand it implies, and which is implicitly adopted by
Meehl and Yonce (1996), namely that, for all j, E(Xj|! = T) > E(Xj|! = T#). For
then,

Theorem 5

Given [M1∩M2∩M3] and that f tX
!

#" , t = {T#, T}, are each normal densities, a
necessary and sufficient condition that P(! = T|X+ = h) crosses .5, that is, that (5d)
is true, is that

Proof. (Sufficiency) The requirement that P(! = T|X+ = h) crosses .5 is equiv-
alent to the requirement that

crosses .5. Once again employing Equation 14, it may be shown that this require-
ment is equivalent to the requirement that

crosses
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Taking the natural logarithm of both quantities, after using Expression 16, results
in the condition that

must cross

in which

Replacing both ! !
X X

and
! !

T T
2 2

"

with !2 in Expression 19 results in

a linear function of h, with negative slope

Clearly then, since h ranges over the entire real line, Expression 19 will always
cross Expression 20.

(Necessity) Assume that Expression 19 crosses Expression 20. Since the range
of Expression 20 is the entire real line, this must mean that Expression 19 cannot
have a minimum or maximum. This will be the case only if the quadratic term of
Expression 19 disappears, that is, when ! !

X T X T! !

2 2
#

"

.
!

Let the subclass of T-structures that are described as
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be called TNEV-structures. Members of the class of TNEV-structures vary with re-
spect to the parameters in which! c

2 is the value of the com-
monconditionalvariance.Thefindings to thispointcanbesummarizedasfollows:

1. [M1∩M2∩M3] does not imply (5a)–(5d), that is, T-structures do not nec-
essarily yield (5a)–(5d). Hence, if they necessarily yield single-peaked
conditional covariance functions, they do not do so in the manner described
by Meehl’s Hypothesis;

2.

that is, TNEV-structures neces-

sarily yield single-peaked conditional covariance functions.

With respect to these findings, several observations can be made:

1. Because single peakedness of C(X1, X2|X+ = h) is a necessary condition for
TNEV-structures, evidence that C(X1, X2|X+ = h) is not single peaked in a given
empirical context can be taken as evidence that the data did not arise from a
TNEV-structure.

2. There is no a priori reason to believe that only TNEV-structures, which com-
prise a tiny fraction of all T-structures, will arise in applied settings. In the first
place, conditional normality and homogeneity of variance are, according to Meehl,
latent properties, and, hence, the researcher will not know whether they are likely
to obtain in practice (this lack of knowledge presumably the reason he is interested
in employing decision-making machinery such as MAXCOV). In the second
place, Meehl has made clear that MAXCOV was developed for domains of appli-
cation in which it can be expected that “skewness and heterogeneity of variance are
common” (Meehl & Yonce, 1996, p. 1097). As he states, these are “assumptions
which are not likely to obtain (and have frequently been shown not to obtain) when
the domain of investigation is a clinical taxon such as schizotypy” (Meehl, 1968, p.
47). One might take these claims as suggesting that TNEV-structures are unlikely
to arise in the contexts in which MAXCOV is standardly employed.

3. With reference to the Monte Carlo study of Meehl and Golden (1982), Meehl
and Yonce (1996) stated that “unequal variances … have little effect on trustworthi-
ness of estimations” (p. 1097). But the issue as to whether MAXCOV yields correct
decisions about the hypothesis that “the data have arisen from a T-structure” is dis-
tinct from that of the accuracy of the estimates of the parameters it yields, given
knowledge that these parameters are, in fact, the parameters of a T-structure. Meehl
and Yonce also argued that

although our Monte Carlo data were generated by a Gaussian algorithm assigning
equal variances SD SDt c

2 2, to taxon and complement classes, none of the core deriva-
tions underlying MAXCOV are thus restrictive. The conjectured structure … is
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highly general, that of two overlapping unimodal frequency distributions. The math-
ematics speaks for itself, and it was developed by Meehl with psychopathology in
mind, where skewness and heterogeneity of variance are common. (Meehl & Yonce,
1996, p. 1097)

However, while the referred to structure, that is, the covariance structure of Equation
4, is indisputably “highly general,” it is, unfortunately, sufficient to make neither
Meehl’s Hypothesis nor (R1) true. As was made clear in the lemma given prior to
Equation 12, whether components (5c) and (5d) obtain is determined, not by proper-
ties of Equation 4, but, rather, by properties of the joint distribution of [X*, !].

Once again, Meehl has never proven that the implication [T-structure] → [C(X1,
X2|X+ = h) is single peaked] is true, but, rather, has offered a rationale, herein
called Meehl’s Hypothesis, as to why it should be true, and a set of Monte Carlo
studies that he has taken as demonstrating that it is true. It turns out, however, that
Meehl’s Hypothesis is false. It is not T-structures that yield (5a)–(5d), and, as a re-
sult, single-peaked C(X1, X2|X+ = h), but, rather, TNEV-structures. The presence
of conditional normality and equality of conditional variances in Meehl’s Monte
Carlo studies would undoubtedly have given the (false) appearance that Meehl’s
Hypothesis was true.

Let the subclass of T-structures that are described as

be called TN-structures. Members of the class of TN-structures vary with respect
the parameters It has already been established

that TNEV-structures, the subclass of TN-structures for which

yield single-peaked C(X1, X2|X+ = h). However, it remains unclear what can be
said about the C(X1, X2|X+ = h) necessarily yielded by members of the general
class of T-structures. The remainder of the article is devoted to developing some
insights into this question. The following Theorem will be needed.

Theorem 6

As (p – 2)→ ∞, T-structures converge to TN-structures.

Proof. From the central limit theorem, as (p – 2), the number of indicators
contained in X*, becomes large, f tX

!
"! , t = {T", T}, will each converge to normal

densities (Basawa & Rao, 1980; Holland, 1990).
!
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It can be expected that reasonable approximations to conditional normality will
obtain even for moderate (p – 2), say, in the range of 5. Thus, it can be expected that,
for even moderate (p – 2), T-structures are, in essence, TN-structures. This fact can
be used to gain insight into the properties of the conditional covariance functions of
T-structures. The class of TN-structures is the union of the subclasses of
TNEV-structures, and the unequal conditional variance structures, herein called
TNUV-structures (i.e., TN = TNEV ∪ TNUV). Hence, for moderate (p – 2), the
class of T-structures is comprised of TNEV- and TNUV-structures. It has already
been shown that TNEV-structures yield single-peaked C(X1, X2|X+ = h). The aim is
now to deduce the conditional covariance functions yielded by TNUV-structures.

CONDITIONAL COVARIANCE FUNCTIONS
OF TNUV-STRUCTURES

It will be assumed in this section that (p – 2) is large enough to make every T-struc-
ture a TN-structure. The aim is then to deduce the properties of P(! = T|X+ = h),
and, as a result, C(X1, X2|X+ = h), yielded by TNUV-structures. It will be conve-
nient to begin by rearranging Equation 19 as

ah2 + bh + d, (22)

in which

P(! = T|X+ = h) can then be expressed as

and C(X1, X2|X+ = h) as
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Thus, Equation 24 is the asymptotic conditional covariance function of the T-struc-
ture, i.e., the conditional covariance function of the T-structure, as (p – 2) becomes
large. Setting to zero the derivative of Equation 23 with respect to h results in

2ah + b = 0. (25)

Thus, P(! = T|X+ = h) has a critical point if and only if a ≠ 0, that is, the T-structure
is a TNUV-structure, and this critical point, a maximum (minimum) if

is located at

It follows, then, that TNUV-structures yield P(! = T|X+ = h) that are quadratic func-
tions of h. Moreover, if this quadratic becomes

narrower as !T decreases (increases) in (0, 1). Notice also that, if
P(! = T|X+ = h) will converge to zero as h → ∞ and as h →

–∞, and, hence, will be concave, while, if " < 0, it will converge to unity as h → ∞ and
as h → –∞, and, hence, be convex.

Thus, TNUV-structures yield C(X1, X2|X+ = h) that have the following proper-
ties: (a) three critical points, say, {h1, h2, h3}, if P(! = T|X+ = h) crosses .5; (b) one
critical point, {h2}, if P(! = T|X+ = h) does not cross .5; and, (c) converge to zero as
h → ∞ and as h → –∞. The critical points {h1, h2, h3}, obtained by noting that, by
(5a), is a constant over the range of X+, and by setting
the derivative of Equation 24 to zero, are equal to:
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It can be shown by substitution that, when P(! = T|X+ = h) does cross .5, h1 and h3
are, indeed, the points at which it does so, and that at v, P(! = T|X+ = h) is equal to

It follows then that, if P(! = T|X+ = h) crosses .5, C(X1, X2|X+ = h) has absolute
maxima of .25 at h1 and h3, and a local minimum at v. If, on the other hand, P(! =
T|X+ = h) does not cross .5, C(X1, X2|X+ = h) has an absolute maximum at v. It can
then be concluded that TNUV-structures yield C(X1, X2|X+ = h) that are:

2-peaked if P(! = T|X+ = h) crosses .5;
1-peaked if P(! = T|X+ = h) does not cross .5.

To understand the behaviour of C(X1, X2|X+ = h) yielded by TNUV-structures,
the conditions under which these structures produce P(! = T|X+ = h) that do, and
do not, cross .5 must, then, be investigated. If then a ≠ 0, and
Equation 22 will be a parabola with vertex located at [v, !], in which

If a is positive, that is, " "
X T X T

! !
"

#
2 2 (# > 0), ! will then be a minimum of

Equation 19, while if a is negative, that is, " "
X T X T! !

2 2
#

"

(# > 0), it will be a
maximum of Equation 19. It follows, then, that, because the range of Equation
20 is the entire real line, if a is positive, there will exist a subset of values of $T,
say, $T < ub, for which Equation 20 will be less than this minimum, and, hence,
P(! = T|X+ = h) < .5 for all h. If a is negative, there will exist a subset of values
of $T, say $T > lb, for which Equation 20 will be greater than this maximum,
and, hence, P(! = T|X+ = h) > .5 for all h. If # > 0 (# < 0), ub (lb) is the solution,
in $T, to the equation

this solution being
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It follows from Equations 29 and 31 that lb lies in the interval (.5, 1] and ub in the
interval [0, .5). It can then be deduced that:

1. TNUV-structures for which ! > 0 yield C(X1, X2|X+ = h) that are 2-peaked
unless "T < ub < .5, in which case they yield C(X1, X2|X+ = h) that are sin-
gle-peaked;

2. TNUV-structures for which ! < 0 yield C(X1, X2|X+ = h) that are 2-peaked
unless "T > lb > .5, in which case they yield C(X1, X2|X+ = h) that are sin-
gle-peaked;

3. TNUV-structures for which "T = .5 yield P(! = T|X+ = h) that cross .5, and,
hence, C(X1, X2|X+ = h) that are 2-peaked.

The partial derivatives of # with respect to $2 and ! are, respectively,

and

From Equation 32, it may be concluded that if ! > 0, # and, hence, ub, are decreas-
ing functions of $2, while if ! < 0, # and, hence, lb, are increasing functions of $2.
Moreover, for fixed ! < 0, as $2 → ∞, # → ∞, and, hence, lb → 1, while, for fixed !
> 0, as $2 → ∞, # → –∞, and, hence, ub → 0. Hence, for fixed !, the better are the
indicators, that is, the larger is the value of $2, the more extreme will "T have to be
before P(! = T|X+ = h) fails to cross .5. Thus, TNUV-structures with high-quality
indicators and/or a nonextreme value of "T can be expected to yield C(X1, X2|X+ =
h) that are 2-peaked.

The behaviour of #, and, hence, lb/ub, as a function of ! is more complicated.
Let !* be equal to

Because, from Equation 33, for fixed $2, if |!| < !* (|!| > !*), # is increasing (de-
creasing) in !, the following may be deduced:

as ! → !

"

%
X T
2 , #min → ∞, and, hence, lb → 1;

for !

"

%
X T
2 < ! < –!*, lb is decreasing in !;
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for ! = –! *, lb is at its minimum (with respect !) of in which

"min =

for –!* < ! < 0, lb is increasing in !;

for ! = 0, lb/ub not defined;

for 0 < ! < !*, ub is increasing in !;

for ! = !*, ub is at its maximum (with respect of !), in which

"max =

for !* < !, ub is decreasing in !;

as ! → ∞, "max → –∞, and ub → 0. (34)

Figure 1 depicts the behaviour of lb/ub as a function of ! for the case in which #
= .81 and $

X
!

"
T

2 10. Because, in this case, !* = 2.56, the curve on the left of the
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graph, that is, lb, decreases on (–10, –2.56), and, at –2.56, has a minimum of .57.
Thus, when ! !

X X
! !

"

# $#

T T
2 2 256. , any "T > .57 will produce a 1-peaked

C(X1, X2|X+ = h), and any "T < .57 will produce a 2-peaked C(X1, X2|X+ = h).
The curve on the right, that is, ub, increases on (0, 2.56), and has a maximum of
.44 at 2.56. It then decreases on (2.56, ∞), converging to zero in the limit. Thus,
when # = 2.56, any "T < .44 will produce a 1-peaked C(X1, X2|X+ = h), and any
"T > .44 will produce a 2-peaked C(X1, X2|X+ = h).

Figure 2 summarizes the conditional covariance functions yielded by the vari-
ous subclasses of T-structures as (p – 2) becomes large. As is clear from Figure 2:

1. TNUV-structures for which # < 0 and πT > lb > .5 yield a single-peaked
C(X1, X2|X+ = h). Such structures include those for which: (a) πT is very
large; and (b) πT > .5, $2 is small (poor indicators) and δ ≈ –δ*.

2. TNUV-structures for which δ < 0 and πT < lb yield a two-peaked C(X1, X2|X+
= h). Such structures include those for which: (a) πT < .5; and (b) πT assumes
virtually any value, $2 is large, and δ is either small or large negative.

3. TNUV-structures for which δ > 0 and πT > ub yield a two-peaked C(X1,
X2|X+ = h). Such structures include those for which: (a) πT > .5; and (b) πT as-
sumesvirtuallyanyvalue,$2 is large,andδ iseithersmallor largepositive.

4. TNUV structures for which δ > 0 and πT < ub < .5 yield a single-peaked
C(X1, X2|X+ = h). Such structures include those for which: (a) πT is very
small; and (b) πT < .5, $2 is small (poor indicators) and δ ≈δ*.

EXAMPLES

Table 1 provides ub(lb), v, h1, h3, and the peakedness of C(X1, X2|X+ = h) yielded by
twelve TNUV-structures (particular choices of ).

The final four scenarios are taken from Meehl and Golden (1982). For structures
1, 3, and 5, so that P(! = T|X+ = h) is a concave function, while

for structures 2, 4, and 6, so that P(! = T|X+ = h) is convex.

The P(! = T|X+ = h) of structures 1–6 are displayed in Figure 3. For structures 1,
3, and 5, πT < ub, while for structures 2, 4, and 6, πT > lb. Hence, all of these
structures yield a P(! = T|X+ = h) that does not cross .5, and, hence, a sin-
gle-peaked C(X1, X2|X+ = h).

For structure 7, πT = .44, so

that and P(! = T|X+ = h) is concave. For this structure, $2 = 9, # =
2, and
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FIGURE 2 Peakedness of C(X1, X2|X+ = h) yielded by T-structures as (p – 2) → ∞.
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and the combination of good indicators and a ! that is not close to !* produces a ub
that is equal to .057. Thus, it would take a value of πT that is less than .057 before
P(! = T|X+ = h) failed to cross .5, and, because πT = .44, P(! = T|X+ = h) crosses .5,
and C(X1, X2|X+ = h) is 2-peaked. The indicators of structure 8 are even better than
those of structure 7, and the lb it yields is essentially unity. As a result, even given
the relative extremity of πT (.95), the P(! = T|X+ = h) it yields still crosses .5, and
the C(X1, X2|X+ = h) it yields is 2-peaked.

For each of the four Meehl and Golden (MG) structures, P(! = T |X+
= h) is convex, and the resulting lb is extreme (but decreases as ! decreases over
these scenarios). Figure 4 displays P(! = T |X+ = h) for each of these structures. For
each of these structures, πT = .5, P(! = T |X+ = h) must then cross .5, and C(X1,
X2|X+ = h) is 2-peaked. Figure 5 displays C(X1, X2|X+ = h) and ! "f hX

#

for MG1
and MG4. For MG1, h1 = 10 and h3 = –30, and ! "f hX

#

assumes non-zero values
for values of h that lie between 0 and 20. Hence, it is unlikely that the peak of C(X1,
X2|X+ = h) located at –30 would be revealed in empirical conditional covariance
plots. For MG4, on the other hand, h1 = 9.67, h3 = 5.32, ! "f hX

#

assumes non-zero
values at both of these peaks, and the 2-peakedness of C(X1, X2|X+ = h) would be
more likely to appear in empirical plots.

DISCUSSION

Paul Meehl was an empirical realist. To many empirical realists, latent structures
are not merely casually “assumed” in order to facilitate data analysis, but are
“causal features of natural reality generally concealed from perception but
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TABLE 1
lb(ub), the Locations of the Maxima(minima), h1, v, and h3, of P(! = T|X+ =

h) and C(X1, X2|X+ = h), and the Number of Peaks of C(X1, X2|X+ = h)
Under Taxonic Structures With Various Combinations of

"T ub(lb) h1 v h3 C(X1, X2|X+ = h)

1 .05 2 1 1 3 .31 2.5 1-peaked
2 .95 2 1 2 1 .70 0 1-peaked
3 .05 3 1 1 3 .175 4 1-peaked
4 .71 2 1 2 1 .70 0 1-peaked
5 .14 3 1 1 10 .2 2.11 1-peaked
6 .87 2 1 20 1 .82 .95 1-peaked
7 .44 4 1 1 3 .057 2.73 5.5 8.27 2-peaked
8 .95 6 1 2 1 !1 2.29 –4 –10.29 2-peaked
MG1 .5 12 8 4.41 3.61 .99 10 –10 –30 2-peaked
MG2 .5 12 8 5.29 2.89 .974 10 3.18 –3.62 2-peaked
MG3 .5 12 8 6.25 2.25 .925 9.95 5.75 1.55 2-peaked
MG4 .5 12 8 9 1 .89 9.67 7.5 5.32 2-peaked

Note. MG1-MG4 are from the Monte Carlo study of Meehl and Golden (1982).
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knowable through their data consequences” (Rozeboom, 1984, p. 212). To re-
searchers who share Meehl’s perspective, latent variable models are not merely
tools by which data can be described and reduced, but, rather, tools employed to
detect and study existing, but unobservable (latent), structures. Meehl has sug-
gested in many articles that taxa (true, “natural kinds” or types) occur in nature,
and that the existence of such taxa (and their complement classes) is the cause of
the phenomena observed within particular domains of psychological investiga-
tion. According to Meehl, a chief task of the psychological scientist is to detect
and study such taxa when, in fact, they do underlie domains of observable
phenomena.
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FIGURE 3 Behavior of P(! = T|X+ = h) under various combinations of πT,

FIGURE 4 Behavior of P(! = T|X+ = h) for Meehl and Golden (1982) scenarios 1 to 4.
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The use of latent variable technology in the detection of a particular latent struc-
ture, S, requires knowledge of the observed (manifest) properties that are implied
by S, that is, properties that are necessary conditions of S, and, also, observed prop-
erties that imply S, that is, sufficient conditions of S. If observable property t is a
necessary condition of S, then, when ~t is the case, it may validly be concluded that
S does not underlie the data. If t is merely a necessary condition of S, then, of
course, it is not valid to conclude that, when t is the case, S does underlie the data.
If, on the other hand, t is a sufficient condition for S, then, when t is the case, it may
validly be concluded that S underlies the data. If t is merely a sufficient condition
of S, then, when ~t is the case, it is not valid to conclude that S does not underlie the
data. Obviously, it is desirable that given property t be both a necessary and suffi-
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FIGURE 5 and C(X1, X2|X+ = h) for Meehl and Golden (1982) scenarios 1 and 4.
Note. Solid line = C(X1, X2|X+ = h); broken line = ! "X .f h
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cient condition of S, for then a valid decision about S can be made in each of the
cases t and ~t. It is well known that if ! "" #! " # , in which " is a p by r matrix, r
< p, and # is diagonal and positive definite, then the data did not arise from an
r-dimensional linear factor structure. On the other hand, evidence that
! "" #$ " # is not evidence that the data arose from an r-dimensional linear fac-
tor structure, because ! "" #$ " # is not a sufficient condition of this structure.
In fact, the unidimensional r-degree polynomial factor structure yields precisely
the same covariance structure (McDonald, 1967).

As Meehl has argued on many occasions, a consideration of the necessary and
sufficient properties of T-structures makes it clear that conventional latent variable
technologies in which the latent variable is continuously distributed (e.g., linear
factor analysis) cannot be used in coherent attempts to detect T-structures. This ob-
servation was the motivation for his development of his taxometric procedures, of
which MAXCOV is but one example. The claim at the root of MAXCOV is that
single-peakedness of C(X1, X2|X+ = h) is a necessary condition of the T-structure.
If this were true, evidence, in a given empirical context, that C(X1, X2|X+ = h) was
not single-peaked could rightly be taken as evidence that the data did not arise from
a T-structure. It remains unknown whether the single-peakedness of C(X1, X2|X+ =
h) is a necessary condition of T-structures. However, it been shown in this article
that, if C(X1, X2|X+ = h) is a necessary condition of T-structures, this necessity
does not result from the circumstances described by Meehl’s Hypothesis, because
Meehl’s Hypothesis is false.

On the other hand, it has been established that, as (p – 2), the number of indica-
tors in the conditioning set, becomes large, T-structures necessarily yield either
single-, or two-peaked, C(X1, X2|X+ = h), depending on the values of the parame-

ters Thus, the researcher who employs a number

of indicator variates in the conditioning set can rightly take evidence that C(X1,
X2|X+ = h) is not peaked (either single- or two-peaked) as evidence that the data did
not arise from a T-structure. On the other hand, because, under Meehl’s Hypothe-
sis, the (single) maximum of C(X1, X2|X+ = h) is taken as revealing the hitmax cut
point, namely that point hmax at which P($ = T |X+ = hmax) = P($ = T!|X+ = hmax),
the existence of T-structures that yield a 2-peaked C(X1, X2|X+ = h) obviously
poses problems for empirical applications of MAXCOV. As it stands, it is not
known whether the peakedness of C(X1, X2|X+ = h) is sufficient for T-structures,
because it is not known whether there exists any other class of latent structures for
continuous indicators that yield peaked C(X1, X2|X+ = h).

Meehl has also claimed that C-structures yield flat C(X1, X2|X+ = h). If this
were true, then evidence, in a given context, that C(X1, X2|X+ = h) was not flat
could rightly be taken as evidence that the data did not arise from a C-structure. It
would, then, follow that evidence that C(X1, X2|X+ = h) was peaked (single or oth-
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erwise) would eliminate all C-structures as possible origins of the data. It is unclear
whether or not this claim of Meehl’s is true. Certainly, for the case of dichotomous
indicators, there exist C-structures (e.g., certain Rasch structures, see Maraun et
al., 2003) that yield non-flat C(X1, X2|X+ = h).

It might be asked why any attention should be paid to decision-making machin-
ery of the type that is MAXCOV, when there are available to the researcher sophis-
ticated likelihood based inferential techniques for latent class and profile model-
ling (see, e.g., Magidson & Vermunt, 2004), these techniques apparently offering
the researcher the added advantage of not having to restrict himself to the case of
two classes. The making of valid decisions about whether data arose from a partic-
ular latent structure, S, rests on both population level and inferential consider-
ations. In the first place, it must be established at the population level (non-inferen-
tially) that there do exist manifest properties that can be employed to make valid
decisions. This is the task of deducing necessary and/or sufficient conditions of S.
Following Guttman (e.g., 1977) and Meehl, it is our belief that such population is-
sues must be resolved before inferential issues can be fruitfully addressed. At pres-
ent, little is known about the population-level basis for distinguishing between T-
and C-structures, and T- and multi-class discrete structures. We, therefore, believe
that the proliferation of likelihood-based inferential procedures “for fitting latent
class and profile models” can only lead to a proliferation of empirical claims
whose logical standing is unclear. While it is, of course, attractive to envision pos-
sessing “the flexibility of fitting a 2 to k class latent profile structure,” it might be
asked whether one should not first know what are the manifest properties on the
basis of which the researcher can validly claim to have detected and distinguished
between these various latent structures (if, in fact, such properties do exist).
Meehl’s taxometric program represents an attempt to provide such answers with
respect one particular class of latent structures, the taxonic structures.
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APPENDIX

Let the 2 by 1 vector X contain the random variates X1 and X2. Then, by definition,
the 2 by 2 covariance matrix of X1 and X2 conditional on X+ = h, is
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in which A is the range space of random vector X. Because

Equation 35 can be rewritten as

which, using the definitions provided above Equation 4, can be rewritten as

Note the identity substitute the right member
into Equation 38, simplify, and conditional covariance structure 4 follows.
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