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Dual scaling is a set of related techniques for the analysis of a wide assortment of categorical
data types including contingency tables and multiple-choice, rank order, and paired compari-
son data. When applied to a contingency table, dual scaling also goes by the name “correspon-
dence analysis,” and when applied to multiple-choice data in which there are more than 2 items,
“optimal scaling” and “multiple correspondence analysis.” Our aim of this article was to ex-
plain in nontechnical terms what dual scaling offers to an analysis of contingency table and
multiple-choice data.

Dual scaling is a term that was coined by Nishisato (1980) to
describe a set of related techniques for the analysis of a wide
assortment of categorical data types including contingency
tables and multiple-choice, rank order, and paired compari-
son data. When applied to a contingency table, dual scaling
also goes by the name “correspondence analysis” (e.g.,
Lebart, Morineau, & Warwick, 1984), and when applied to
multiple-choice data in which there are more than two items,
“optimal scaling” (Gifi, 1990) and “multiple correspondence
analysis” (e.g., Greenacre, 1984). Nishisato’s Dual3 program
(Microstats, 1986) and the optimal scaling routines of the
Categories module of SPSS (Version 10.0) are among many
programs available to researchers who require a dual scaling
analysis of their categorical data. Because categorical data
arise so very frequently within the behavioral and social sci-
ences, dual scaling should rightly be a technique at the front
of every researcher’s toolbox. However, for a variety of rea-
sons, it has not yet become well known. Our aim of this arti-
cle was to explain in nontechnical terms what dual scaling of-
fers to an analysis of contingency table and multiple-choice
data. Those interested in the mathematical basis for the tech-
nique can consult Nishisato (1980) or Gifi (1990), whereas
those interested in the dual scaling of more esoteric data
types can consult Nishisato (1980, 1993).

PCA FOR CONTINUOUS VARIATES

Dual scaling can be understood from a number of distinct but
related perspectives. One such perspective can be developed
via the recognition that dual scaling is really just a principal
component analysis (PCA) carried out on categorical data.
Recall what is involved in a PCA of continuous data, for ex-

ample, the data produced when 200 individuals are scored
with respect each of the 14 subscales of Version 3 of the
Wechsler Adult Intelligence Scale (WAIS–III; Wechsler,
1997). For analysis, the set of 14 WAIS–III subscale scores
of a given individual can be thought of as his or her 14 variate
intelligence profile. By using the 14 subscale scores as coor-
dinates, each of the 200 individuals can then be represented
as a point in 14-dimensional euclidean space. In analogous
fashion, each of the 14 subscales can be represented as a
point in 200-dimensional euclidean space. The euclidean
space that contains the objects under study (individuals, ani-
mals, groups, etc.) can be called object space (OS), and the
space that contains the variates under study can be called the
variate space (VS). The collection of object points forms a
point cloud (OC) embedded in OS, and the collection of
variate points forms a point cloud (VC) embedded in VS.
Consider the simple case in which, for example, 100 individ-
uals are scored with respect two variates, and a standard
scatterplot is produced. The 100 points displayed in the
scatterplot comprise the OC, and this OC is embedded in a
two-dimensional OS (the space generated by placing a y-axis
at a right angle to an x-axis). In the WAIS–III example, on the
other hand, each individual is measured with respect to 14
variates, the individuals thus forming a 200-point OC em-
bedded in a 14-dimensional OS. The subscales form a 14-
point VC embedded in a 200-dimensional VS.

When the scientist inquires as to the possibility that the
200 individuals under study fall empirically into distinct
clusters with respect to their intelligence profiles or
whether Individual 3 is more similar to Individual 5 than to
Individual 34 in regard to his or her intelligence profile, the
scientist is expressing an interest in certain features of the
OC. The former question, for example, is a question about
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the topology (organization) of the points that comprise this
point cloud to wit, whether it is comprised of a number of
smaller point clouds separated by empty spaces or alterna-
tively, whether the points of which it is comprised are dis-
tributed smoothly throughout OS. The latter question
centers on a comparison of the distances, within OS, be-
tween the points corresponding to Individuals 3 and 5 on
one hand and Individuals 3 and 34 on the other. Analogous
questions can be asked about the subscales, notably,
whether they “go together” or alternatively, form a number
of distinct clusters. In this case, the researcher’s interest is
in topological features of VC.

There is, however, a fundamental problem that must be
overcome if these and similar questions are to be answered. If
OS is two-dimensional, then the topology of OC can be de-
scribed directly, as one does when one examines a scatterplot
and describes its features. However, if OS and VS are of high
dimensionality, then OC and VC cannot be examined and
hence cannot be described directly. Humans can visualize
objects located in three dimensions, but cannot examine the
organization of a cloud of points located in, for example, 14
dimensions. Univariate and bivariate quantitative indexes
such as means, variances, and covariances provide informa-
tion about the organization of VC and OC in their embedding
spaces, but what the researcher needs is a method by which
low-dimensional projections (pictures) of VC and OC can be
produced so that she or he can see what these point clouds ac-
tually look like. Data analytic tools such as PCA and multidi-
mensional scaling were invented to address precisely this
need.

Consider the general case of data produced when each of
N objects is scored on p continuous variates. A PCA of such
data can address the following issues:

PCA 1. The first step in a description of the arrangement
(topology) of the points that comprise VC and
OC is to determine the dimensionalities of these
point clouds. It is a fact that VC and OC have
precisely the same dimensionality, for example,
t, and that t ≤ min(N,p) in which min(N,p) is
equal to the smaller of N, the number of objects,
and p, the number of variates. Hence, in the
WAIS–III example, the dimensionality t of OC
and VC can be no greater than min(200,14) = 14.
On the other hand, the WAIS–III subscales were
built to measure multiple facets of a single prop-
erty, intellectual functioning, and hence, it is
quite reasonable to conjecture that t will turn out
to be less than 14. If, for example, t turned out to
be equal to 1, then (a) the points representing the
WAIS–III subscales would lie on a line, that is, a
single dimension, within their 200-dimensional
VS, and (b) the objects would lie on a line within
their 14-dimensional OS. In such a case, the to-
pology of each of OC and VC would be particu-

larly simple. A larger value of t, such as in the
case in which all Verbal subscales occupied one
dimension and all Performance subscales an-
other, would indicate a more complicated ar-
rangement of points. The first question that must
be answered then is “what is the value of t?”

The answer is the following: A PCA involves
the extraction of the eigenvalue/eigenvector
pairs, {λ1,v1}, {λ2,v2}, …, of the p × p
covariance matrix, S, of the variates in which λi
is the ith eigenvalue, and vi is the ith eigenvector
and in which {λ1,v1} contains the largest
eigenvalue, {λ2,v2} the next largest, and so
forth.1 It can be proven that the value of t is equal
to the number of non-zero eigenvalues extracted
and can range from 1 to min(N,p).

PCA 2. How are the points that comprise VC arranged
within VS? That is, what is the topology of VC?

The answer is the following: Once again, one
cannot directly examine the topology of VC, and
a low-dimensional picture is required. This pic-
ture is provided by the eigenvectors of S, the
covariance matrix. Each variate has a value on
each eigenvector, and the best r-dimensional pic-
ture of VC is produced by plotting each variate
according to its values on the first r eigenvectors
(those corresponding to the r largest
eigenvalues). However, to allow the researcher to
examine this picture, r must be chosen to be less
than 3 and preferably, equal to 2. Plotting each
variate according to its values on the first two
eigenvectors gives the best two-dimensional pic-
ture of VC, and to the extent that this picture is a
“good picture” of VC, a description of the ar-
rangement of the points within this picture can
be taken as a description of the topology of VC.
For example, variates that are strongly linearly
related will be situated at close proximity within
this picture, whereas those that are unrelated will
be plotted further apart. Subsets of variates that
are mutually strongly related will appear within
the picture as a cluster of points.

Unfortunately, if t is greater than 2, use of a
two-dimensional picture will involve a loss of in-
formation and possibly, mistaken claims being
made about the topology of VC. The question
then becomes, “in using the two-dimensional
picture produced in a PCA to make claims about
the topology of a t > two-dimensional VC, how
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1It is also a common practice to employ the correlation matrix of
the variates rather than the covariance matrix, the effect being to
equate the standard deviations of the variates in the sample. If the
aim is to make inferences about a population of interest, the
covariance matrix should be employed.
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much information is, in fact, lost (how good is
the PCA approximation)?” The total variation in
VC (and OC) is equal to the sum of the t nonzero

eigenvalues of S, , and the proportion of

variance in VC accounted for by the best r-di-

mensional picture is equal to . Thus,

the proportion accounted for by the best two-

dimensional picture is equal to .

The larger is P2, the better will be the quality of
the picture and the more accurate will be the de-
scription of VC made on the basis of the picture.

PCA 3. How are the points that comprise OC arranged
within OS? That is, what is the topology of OC?

The answer is the following: Steps analogous
to those previously described for viewing VC
within VS can be taken to view OC within OS.
The optimal picture of VC was produced by plot-
ting the variates with respect to their values on
eigenvectors. The best r-dimensional picture of
OC, on the other hand, is produced by plotting
individuals with respect to their first r “compo-
nent scores.” The jth component score of Indi-
vidual i, cij, is produced by multiplying each of
Individual i’s scores on the p variates by the val-
ues of these variates of the jth eigenvector, vj and

summing the results: . Once

again, r should be set to 2, a scatterplot produced
of the pairs [ci1,ci2], i = 1 … N, and a description
provided of the topological features of this plot.

DUAL SCALING FOR CATEGORICAL
VARIATES

Now consider the case in which the researcher must answer
questions analogous to PCA 1 through PCA 3, but in which
his or her data are at the nominal or ordinal level of measure-
ment. The researcher must now analyze data for which
covariances and Pearson product–moment correlations can-
not be meaningfully computed and hence on which a stan-
dard PCA cannot be carried out.2 This is where dual scaling

comes in because it is a variant of PCA carried out on cate-
gorical variates. Consequently, we consider the dual scaling
analysis of a contingency table and some multiple-choice
data.

Contingency Tables

Muntigl and Turnbull (1998) studied the structures of the ar-
guments of N = 155 couples involved in long-term, positive,
intimate relationships. Each argument was broken down into
a number of turns, and the behavior occurring within each
turn was assigned to one of a number of categories. Five cate-
gories of behavior described Turn 2: irrelevancy claim, chal-
lenge, contradiction, contradiction plus counterclaim, and
counterclaim. The same five categories plus one additional
category, orientation to Turn 1, described behavior that oc-
curred during Turn 3. The first three turns of a hypothetical
argument might then be as follows: T1→Individual A states
proposition P; T2→Individual B challenges the correctness
of P; T3→Individual A contradicts this challenge and makes
a counterclaim. Interest was in the relationship between the
behavior occurring in Turns 2 and 3.

Table 1 contains the contingency table, or cross-
tabulation, of the 155 couples with respect T2 and T3 as re-
ported in Muntigl and Turnbull (1998). The ijth entry of
this table, nij, is equal to the number of couples in catego-
ries i of T2 and j of T3. The row marginals, ni*, correspond
to the number of couples in the categories of T2, and the
column marginals, n*j, to the number of couples in the cate-
gories of T3. This contingency table contains all of the
sample information that is relevant to the making of infer-
ences about the relationship between T2 and T3. Now, very
often in the social sciences such an analysis would involve
only a test of the null hypothesis, H0: T2 and T3 are statisti-
cally independent using the Pearson chi-square statistic,

. However, much more is

required before the researcher can justifiably claim an un-
derstanding of the relationship between the variates. The
following issues must be addressed (C = contingency):

C 1. When the elements of a given row of the contin-
gency table are divided by their row marginal,
they then become conditional probabilities. For
example, dividing the elements of row 1 by n1*,
which is equal to 12, yields the set of conditional
probabilities [0,0,0,.083,.167,.750], and these
are the probabilities of occurrence of each T3 be-
havior conditional on “irrelevancy claim” having
occurred in T2. The number .750, for instance, is
the probability of an “orientation to Turn 1” oc-
curring in T3 given that an irrelevancy claim has
occurred in T2. The five rows of conditional
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probabilities thus created form a point cloud, for
example, VCr, in six-dimensional space. An
analogous set of conditional probabilities can be
created for each column of the contingency table
by dividing the elements of each column by their
respective column marginals. The six columns
of conditional probabilities thus created also
form a point cloud, for example, VCc, in five-
dimensional space.

The fact VCr and VCc are embedded in six-
and five-dimensional spaces, respectively,
means that the relationship between T2 and T3 is
potentially multidimensional. If the hypothesis
of statistical independence is, in fact, false, then
the dimensionality, t, of this relationship must be
between 1 and min(5,6) – 1 = 4 (i.e., 1 and the
smaller number of categories minus 1). The loss
of one dimension results from the fact that the el-
ements within each of the five rows (and six col-
umns) of conditional probabilities sum to unity,
indicating the presence of a linear dependency.
Given a rejection of the hypothesis of statistical
independence, the next step is to make an infer-
ence as to the dimensionality, t, of the relation-
ship between T2 and T3.

C 2. Given a decision about the value of t, what is the
form of the relationship between T2 and T3
within this t-dimensional space? This question
can also be stated as “which categories of T2 ‘go
with’ which categories of T3?”

Both of issues C 1 and C 2 can be addressed in a dual scal-
ing analysis. Dual scaling involves the extraction of the
eigenvalues and eigenvectors of a matrix M1, calculated from
the contingency table, whose elements quantify the departure
of two categorical variates from statistical independence (see
Nishisato, 1980). Matrix M1 plays a role analogous to that of
the covariance matrix for continuous variates in that it quan-
tifies the associations among either the rows (T2 categories)
or columns (T3 categories) of the contingency table. In anal-

ogy to standard PCA, the answer to question C 1 is that t is
equal to the number of nonzero eigenvalues of matrix M1. In
fact, the sum of the t nonzero eigenvalues of M1 is equal to

, a measure of the departure from independence of two

categorical variates. Thus, one can think of the departure
from statistical independence of T2 and T3 as distributed in a
t-dimensional space. Question C 2 is also addressed in a fash-
ion analogous to that of standard PCA, in that the best r < t di-
mensional picture of the relationship between T2 and T3 is
produced by plotting the categories of each variate according
to the first r coordinates output in a dual scaling analysis,
these coordinates based on the first r eigenvectors extracted
from matrix M1. Once again, it is most useful to produce a
two-dimensional plot (i.e., choose r to be 2), and if the plot is
of good quality, then a description of the organization of the
categories as displayed in the plot can be taken as a descrip-
tion of the relationship between the two variates.

Application of Nishisato’s (1980) Dual3 (Microstats,
1986) program to the contingency table of Table 1 yields the
(edited) output presented in Table 2. As can be seen, the hy-
pothesis that T2 and T3 are statistically independent in the
population should be rejected (α = .05; χ2(20, N = 155) =
96.742, p < .05. Hence, the inference can be made that T2 and
T3 are associated and that the population dimensionality of
this relationship is between 1 and 4. Output from Dual3 is
presented one dimension/solution at a time beginning with
output associated with the largest eigenvalue of M1. Each
eigenvalue of M1 is labeled in the output as “squared correla-

tion ratio,” and the sum of these eigenvalues is equal to ,

in this case, . Thus, .624 is the total variance

to be accounted for. Within the output for Solution 2, one
finds cumulative = 94.91%; this is equal to 100 times the sum
of the first two eigenvalues over the sum of all eigenvalues,

100 × P2, and calculated as .

This indicates that the best two-dimensional picture accounts
for roughly 95% of the association between T2 and T3 and
hence that t is, essentially, equal to 2.

In the output, the categories of T2 are referred to as
“rows,” and those of T3, “columns.” Dual3 produces two
types of coordinates: “weighted” and “normed.” The
normed coordinates of Category 1 of T2 (i.e., an irrele-
vancy claim in Turn 2) are, for example, [.740, –1.638],
whereas the weighted coordinates for Category 1 of T3
(i.e., an irrelevancy claim in Turn 3) are [.308, –.257]. The
normed coordinates of each solution/dimension are normal-
ized to have a sum of squares that is equal to N, whereas
the weighted categories of solution/dimension j are normed
categories that have been multiplied by the square root of
the jth eigenvalue of M1. Because solutions/dimensions that
account for a large proportion of the total variance are those
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2

N
χ

TABLE 1
Contingency Table of Turn 2 and Turn 3

Turn 3

Turn 2 irr ch c c&cc cc tlo ni*

irr 0 0 0 1 2 9 12
ch 2 0 0 0 2 14 18
c 1 4 10 2 1 11 29
c&cc 1 1 1 1 4 1 9
cc 2 2 3 9 57 14 87
n*j 6 7 14 13 66 49

Note. N = 155. irr = irrelevancy claim; ch = challenge; c = contradiction;
c&cc = contradiction plus counterclaim; cc = counterclaim, tlo = orientation
to Turn 1; ni* = n in row; n*j = n in column.

2

N
χ

96.742
.624

155
=

(.374 .218)
100 94.91

.624
+× =
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with large eigenvalues, weighted coordinates reflect the rel-
ative importance of each dimension in accounting for the
total variance to be explained. The choice as to which types
of coordinates should be used to plot the row and column
categories has been the subject of some controversy (see,
e.g., Greenacre, 1989), the issue being what a plot of each
type of coordinates allows the researcher to conclude about
the associations amongst the categories. Nishisato (1988)
recommended that one set of categories (e.g., those of T2)
should be plotted using normed coordinates and the other
set (those of T3) weighted coordinates. Given this choice,
first, the distances among the T3 points in the two-
dimensional picture are approximations to the associations
among the T3 categories. In particular, the greater is the as-
sociation between two T3 categories, the closer these cate-
gories will be in the two-dimensional picture. Second, each
T3 category is positioned in the two-dimensional picture in
such a way that it is closest to the T2 categories for which
the associated conditional probabilities are large (i.e., those
T2 behaviors that have a high likelihood of occurrence
given the T3 behavior in question).

The coordinates of the 11 categories (T2 categories
normed, T3 categories weighted) are plotted in Figure 1, and
hence, Figure 1 is a best picture of the (essentially) two-
dimensional relationship between T2 and T3. The picture re-
veals the following: (a) The T3 behaviors form three distinct
clusters, counterclaim and contradiction plus counterclaim,

contradiction and challenge, and irrelevancy claim and ori-
entation to Turn 1; (b) counterclaim in Turn 2 is positioned
close to counterclaim in Turn 3 and contradiction plus coun-
terclaim in Turn 3, indicating that a counterclaim or a contra-
diction and counterclaim in Turn 3 is often preceded by a
counterclaim in Turn 2. In fact, counterclaim in Turn 2 has a
high probability of occurrence conditional on each of coun-

terclaims in Turn 3 ( ) and contradiction plus coun-

terclaim in Turn 3 ( ); (c) contradiction in

Turn 2 is positioned close to contradiction in Turn 3, indicat-
ing that a contradiction in Turn 3 is often preceded by a con-
tradiction in Turn 2. In fact, contradiction in Turn 2 has a
high probability of occurrence conditional on a contradiction

in Turn 3 ( ); (d) orientation to Turn 1 and

irrelevancy claim in Turn 3 are situated in the middle of the
picture and are not close to any Turn 2 behaviors in particu-
lar, indicating that no Turn 2 behaviors are more likely than
any others to precede an irrelevancy claim or an orientation
to Turn 1 in Turn 3; and (e) challenge in Turn 3 is positioned
between contradiction in Turn 2 and counterclaim in Turn 2
due to the fact that the former have high probabilities of oc-
currence conditional on the latter.

Multiple-Choice Data

Items 1, 4, 7, and 21 of the Beck Depression Inventory (BDI;
Beck, 1996) ask respondents about their current degree of
sadness, loss of pleasure, self-dislike, and loss of interest in
sex, respectively. Each of these items has a four-category re-
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TABLE 2
Output From Dual3 Analysis

Row-Column Associationa

Turn 2 (Rows) Turn 3 (Columns)

Normed Weighted Normed Weighted

Solution 1b

irr 0.7403 0.4528 0.5038 0.3082
ch 1.0300 0.6300 1.0428 0.6378
c 1.5586 0.9533 1.5176 0.9282
c&cc –0.1262 –0.0772 –0.4608 –0.2818
cc –0.8217 –0.5026 –1.0464 –0.6400
tlo 0.8875 –0.6400

Solution 2c

irr –1.6376 –0.7651 –0.5508 –0.2573
ch –1.9276 –0.9005 1.9027 0.8889
c 1.3037 0.6091 2.1638 1.0109
c&cc 0.7910 0.3696 0.4504 0.2104
cc 0.1083 0.0506 0.1138 0.0532
tlo –1.0954 –0.5118

Note. irr = irrelevancy claim; ch = challenge; c = contradiction; c&cc =
contradiction plus counterclaim; cc = counterclaim; tlo = orientation to Turn
1.
aχ2(20, N = 155) = 96.73873*; total variance accounted for = .6241208.
bSquared correlation ratio = .37409; delta (total variance accounted for):
partial = 59.94%, and cumulative = 59.94%. cSquared correlation ratio =
.21827; delta (total variance accounted for): partial = 34.97%, cumulative =
94.91%.
*Significant at p = .05 level.

FIGURE 1 Best two-dimensional picture of Turns 2 and 3 catego-
ries. T2 = Turn 2; T3 = Turn 3; irr = irrelevancy claim; c = contradic-
tion; c&cc = contradiction plus couterclaim; cc = counterclaim; tlo =
orientation to Turn 1.
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sponse scale, with Category 1 reflecting low depression and
Category 4 reflecting a high depression. Although these re-
sponse scales are at least at the ordinal level, one can treat
them as nominal and let the data determine how the 16 item
categories go together. Table 3 contains a small data set in
which the first five individuals are depressed inpatients and
the last five are university undergraduates.3 The aim is to an-
swer questions PCA 1 through PCA 3, but now because the
items are viewed as being at the nominal or ordinal level of
measurement, covariances and correlations and hence stan-
dard PCA can no longer be employed.

In a dual scaling of such data, the data matrix is first
recoded to produce an N × c indicator matrix in which N is
equal to the total number of participants, and c is equal to the
total number of categories of the items. The four BDI items
have a total of 16 categories, and the 10 × 16 indicator matrix
for the data of Table 3 is presented in Table 4. In this indica-
tor matrix, columns 1 through 4 represent the four categories
of Item 1, the next four columns are the categories of Item 4,
and so forth. Individuals receive unities for those categories
in which they appear and zeros elsewhere. The indicator ma-
trix itself is then transformed into matrix M1, which, once
again, quantifies the degree of association between the cate-
gories. Finally, the eigenvalue/eigenvector pairs of matrix
M1 are extracted and questions PCA 1 through PCA 3 an-
swered in the usual way.

Now, for the BDI data, we have a 10-individual OC em-
bedded in a 16-dimensional OS and a 16-category VC em-
bedded in a 10-dimensional VS. The dimensionality, t, of
each of VC and OC can be no greater than the smaller of c
– p (the total number of categories minus the number of
items) and min(N, c). Hence, because c – p = 16 – 4 = 12,
and min(N, c) = min(10,16) = 10, t can be no greater than

10. Because BDI items are viewed as being indicators of a
single depression construct, the categories of any subset of
BDI items should, in theory, be unidimensional (occupy but
one dimension), and the categories of each item should
have the same ordering along this single dimension. Yet of
course, the dimensionality of a set of items is not a property
of item content per se but rather of the responses of the in-
dividuals under study to this item content. In any case,
aside from the upper bound of 10, the value of t is an em-
pirical issue.

A dual scaling of the data in Table 3 was carried out using
Homals, an optimal scaling routine found in the categories
module of SPSS Version 10.0 (see Meulman & Heiser,
1999). Table 5 contains an edited version of the output. Ma-
trix M1 turns out to have eight nonzero eigenvalues, indicat-
ing that the dimensionality, t, of VC and OC is equal to 8.
However, at this point a problem arises, for in the case of
multiple-choice data, the sum of the eigenvalues of M1 is al-

ways equal to (the average number of categories per

item minus 1). That is, the total information to be explained is
determined not by features of the relationships among the
item categories but merely by the total number of items and
categories. In this example, the total information is equal to

. On the other hand, the eigenvalues of M1 must lie

between 0 and 1, and therefore, unlike in a standard PCA, a
two-dimensional dual scaling solution for Table 3 can ac-

count for at most of the variation in each of

VC and OC. Hence, according to P2, the traditional measure
of variance explained, a two-dimensional solution can look
poor regardless of the relationships that exist among the item
categories. In response to this problem, Nishisato (1993)
suggested a number of alternatives to P2. One such alterna-
tive is derived by noting that the average of the eigenvalues

of M1 is equal to , that solutions for which have

certain undesirable properties, and thus by redefining the to-

tal information to be explained as

.

In our example, the two largest eigenvalues of M1 are

equal to .876 and .634, , and

. The coordinates used to locate each of

the 16 categories in their optimal two-dimensional picture
are found in Table 5 under the heading of “Category
Quantifications” and for the individuals under the heading
“Object Scores.” The categories are plotted in Figure 2, and
the individuals are labeled by their group (D = depressed in-
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3Typically, dual scaling would be used to analyze much larger
data sets. The data set analyzed here is small for ease of viewing.

TABLE 3
BDI Raw Data

BDI Items

Sample 1 4 7 21

Depressed inpatients
1 4 4 4 4
2 3 4 2 1
3 4 4 4 4
4 4 3 4 4
5 4 4 2 3

University undergrads
1 3 2 1 1
2 1 1 2 1
3 2 1 2 3
4 1 1 1 1
5 1 1 2 2

Note. BDI = Beck Depression Inventory.
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patient, U = university undergraduate) and response pattern
(their values on the four items) in Figure 3.

Examining Figure 2, the following three clusters are evi-
dent: (a) Category 3 of Item 4 and Category 4 of Items 1, 4,
7, and 21; (b) Category 1 of Items 7 and 21 and Category 3
of Item 1; and (c) Category 1 of Items 1 and 4; Category 2
of Items 1, 7, and 21, and Category 3 of Item 21. Category
2 of Item 4 is off by itself and evidently is not strongly as-
sociated with any of the other categories. Category 3 of
Item 7 does not appear in the representation because it was
not endorsed by any of the respondents. Thus, although
there is some evidence that as per expectation, categories of
like kind go together, the data by no means squares per-
fectly with this expectation. In Figure 3, the optimal two-
dimensional picture of OC, each individual is positioned
closest to the four categories in Figure 2 that comprise his
or her response pattern (i.e., the four categories that de-
scribe him or her). Note that the five depressed inpatients
are located to the left of the picture and are somewhat sepa-
rated from the university undergraduates who are found to
the right. Hence, as would be expected, the depressed inpa-
tients have a higher likelihood of being in Category 4 of
each of the items. One can also see that the first undergrad-
uate (U1) has an unusual response pattern and as a result is
an outlier within the plot. This individual’s higher scores on
Items 1 and 4 are not accompanied by higher scores on
Items 7 and 21. Moreover, this individual is the only one to
provide the response of 2 to Item 4 (evidently, this is why
Category 2 of Item 4 is an outlier in VC). Notice also that
in the plot of VC, Category 4 of Items 1 and 4 are “pulled
toward” Category 2 of Item 7 and Category 3 of Item 21
because the fifth depressed inpatient (D5) has the unusual
response pattern (4423), a mixture of the response patterns
found in Clusters 1 and 3.
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TABLE 4
Indicator Matrix

BDI Items and Response Categories

1 4 7 21

Sample 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Depressed inpatients
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0

University undergraduates
0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0

Note. BDI = Beck Depression Inventory.

TABLE 5
Dual Scaling Analysis Output

Category
Quantifications

BDI Items
Response
Category

Marginal
Frequency

Dimension

1a 2b

1 1 3 0.905 0.387
2 1 0.540 1.597
3 2 0.671 –1.421
4 4 –1.149 0.021

Missing 0
4 1 4 0.813 0.689

2 1 0.983 –2.225
3 1 –1.586 –0.240
4 4 –0.663 –0.073

Missing 0
7 1 2 0.992 –1.293

2 5 0.449 0.635
4 3 –1.410 –0.197

Missing 0
21 1 4 0.797 –0.700

2 1 0.866 1.120
3 2 0.088 1.136
4 3 –1.410 –0.197

Missing 0
Object scores

Depressed
inpatients

1 –1.322 –0.175
2 0.358 0.616
3 –1.322 –0.175
4 –1.586 –0.240
5 –0.364 0.676

University
undergraduates

1 0.983 –2.225
2 0.846 0.400
3 0.540 1.597
4 1.001 –0.360
5 0.866 1.120

Note. BDI = Beck Depression Inventory.
aEigenvalue = .876. bEigenvalue = .634.
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FINAL REMARKS

Dual scaling is not a factor analysis technique. It does not rest
on talk of unobservable or latent entities. It is instead a com-
ponent technique whose aim is the representation of the rela-
tionships that exist in a set of categorical variates. This is
made possible through the recognition that when one in-
quires as to the nature of the relationships that exist in a set of

variates, one is, in fact, inquiring as to the topology of the
point cloud formed by the variates, this point cloud embed-
ded in a high-dimensional space. Dual scaling projects infor-
mation about such point clouds into a low-dimensional rep-
resentation. The lack of popularity of the technique may well
be a result of a lack of awareness as to what is involved in de-
scribing multivariate relationships.

Many treatments of component and factor analysis ex-
plain to researchers that they should examine results one di-
mension at a time and interpret each dimension by examining
its correlations with each variate (these correlations often
called “loadings”). However, if the aim is to come to an un-
derstanding of the relationships that exist in a set of variates,
this approach is insufficient because to describe the relation-
ships that exist in a set of variates is to describe the organiza-
tion or topology of VC in VS, that is, its clusterings and
empty spaces. However, the researcher can no more describe
the topology of VC by considering the coordinates of the
variates one dimension at a time than can the geographer
meaningfully describe the topological features of a city by
describing the positions of buildings, parks, and hills one di-
rection at a time. In both cases, what is required is a high-
quality, two-dimensional picture.

Note that we have said virtually nothing about statistical
inference in this article. There have now been invented a
range of inferential tools that can be employed in a dual
scaling analysis including the construction of bootstrap
confidence intervals for the parameters (the eigenvalues
and category coordinates) of dual scaling solutions (see,
e.g., Greenacre, 1984). However, the chief aim of a dual
scaling analysis is not statistical inference but rather the de-
scription of the high-dimensional categorical data structures
that often arise in psychological research. The researcher
who believes he or she has found an interesting relationship
through the employment of dual scaling should, as per
sound scientific practice in general, attempt to replicate the
finding at a later date.
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