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Testing and measurement in psychological science has a
long and rich history, the roots of which can be traced back
to the very origins of the discipline. Anyone engaged in
empirical research in which quantitative measures are em-
ployed will need to become acquainted, at least to some
extent, with measurement issues. However, the current state
of applied (i.e., data-based) test analytic practice more than
hints at the fact that there does not exist among researchers
a clearly defined and established set of conventions as to
what, exactly, a test analysis is to consist or on how the test
analyst is to proceed. For instance, on what grounds is one
justified in compositing across a set of test items to produce
a test score? At what point in a test analysis does the
evaluation of measurement precision occur? Or of validity?
And what is the relationship between the two, and how does
it bear, if at all, on the coherency of particular test analytic
practices? On what grounds does one justify the choice of a
particular statistical model in a given test analysis? Answers
to these and similar questions are not, as it turns out, as easy
to find as one might think, and, hence, it is no wonder that
the applied test analytic literature consists in the application

of a host of different procedures and techniques with seem-
ingly little common rationale on which their use is based.1

Since the publication of the recommendations of the APA
Committee on Test Standards (American Psychological As-
sociation [APA], 1954) and Cronbach and Meehl’s (1955)
subsequent paper, a great deal of validity theory has been
generated and a number of sophisticated and complex val-
idation frameworks have been produced. Cronbach himself
elaborated substantially on many of the ideas put forth in the
1955 paper. He was one of the first to emphasize that
validation is a function of the particular uses to which tests
are put (e.g., pragmatic, operationist, scientific; Cronbach,
1988) and that validation of test scores calls for the inte-
gration of many different types of evidence across both
context and time (Cronbach, 1971).

Others have written extensively on the issue of test va-
lidity. Elaborating and extending many of the ideas ex-
pounded by Cronbach, Messick (1980, 1988, 1989, 1995,
1998) argued that test validation is an overall evaluative
judgment about the adequacy and appropriateness of partic-
ular inferences from test scores that should be based on both
the existing evidence for and potential consequences of such

1 A detailed empirical examination of current test analytic prac-
tices will not be given here. The interested reader is referred to
Hogan and Agnello (2004); Meier and Davis (1990); Vacha-
Haase, Ness, Nilsson, and Reetz (1999); and Whittington (1998)
regarding issues pertaining to the legitimacy of particular reporting
practices, to Green, Lissitz, & Mulaik (1977) and Hattie (1984,
1985) as regards practices having to do with the assessment of
unidimensionality of tests and items, and to Blinkhorn (1997) for
a discussion of certain of the problems that might accompany the
employment of complex statistical models in the evaluation of test
data.
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inferences. He also emphasized that validation will often,
and should, involve multiple sources of evidence, including
but not limited to considerations of content, interrelation-
ships both among items responses and between test scores
and external variables, processes underlying item responses
and task performance, experimental manipulations of test
performance, and the value implications and social conse-
quences of using and interpreting test scores in particular
ways (Messick, 1989).

Kane (1992, 2006) has proposed an “argument-based
approach” to validity, which is similar to what Cronbach
(1989) described as the strong program of construct valida-
tion. In the argument-based approach, interpretative argu-
ment is adopted as a framework for collecting and present-
ing validity evidence. Kane has identified several major
types of inferences that commonly appear in interpretative
arguments, each associated with particular assumptions and
each supported by different types of evidence. Other vali-
dation frameworks have been proposed by, among others,
Shepard (1993); Mislevy, Steinberg, and Almond (2003);
and Borsboom, Mellenbergh, and van Heerden (2004).

Cronbach’s influence, and that of those who have ex-
tended and refined his ideas, can be seen clearly in the
validity guidelines specified in the most recent version of
Standards for Educational and Psychological Testing
(American Educational Research Association [AERA],
APA, & National Council on Measurement Education,
1999). For instance, the creators of the document assumed
not only scientific contexts of test development and use but
pragmatic or otherwise utilitarian uses. In addition, closely
mirroring Messick (1989), Standards provides a summary
of different sources of evidence (i.e., those based, respec-
tively, on content, response processes, internal structure,
relations to other variables, and the consequences of testing)
that emphasize different lines of validity evidence as op-
posed to different types of validity. Furthermore, validation
is characterized as an ongoing program of research in which
sound arguments are made for particular interpretations or
uses of test scores.

Although Standards, and the body of validity literature on
which it is largely based, certainly does provide a descrip-
tion of the broad array of issues relevant to testing, the
guidelines it provides pertain more to the broader context of
test validation and less to the singular, data-based analyses
of the psychometric properties of tests used for some
broader research aim. Moreover, aside from emphasizing
that a sound validity argument requires integration of these
various components of test validation, Standards provides
few details about are how they are related to one another
and about how the researcher who wants to demonstrate the
psychometric soundness of the measures he or she employs
should proceed in order to provide evidence to support
particular measurement claims. In fact, very little of the
validation literature in general has been dedicated to devel-

oping explicit data-based test analytic frameworks that tie
together in a coherent manner the different strands of test
evaluation in order to give guidance to the applied test
analyst. It is our aim in the current work to provide such a
framework. Specifically, we propose a step-by-step ap-
proach to data-based assessment of test performance, a
“way of doing business,” if you will, wherein the “business”
is evaluating the performances of tests in particular research
contexts.

A Proposed Framework for Test Analysis

We will admit up front that the expression “test analysis”
carries with it a fair degree of ambiguity, and, hence, the
question as to what exactly a test analytic framework is to
consist may well depend on whom you ask. Whereas the
broader task of test validation, as is described in Standards,
requires, at least potentially, the consideration of evidence
bearing on everything from content to consequences of
tests, as well as on the integration of all of the evidence that
has to date been brought to bear on the validity of scores
from applications of a given test, here we elaborate a
framework that is appropriate primarily for data-based test
analysis. In such analysis, the aim is to determine whether
the responses to the items of a test that has been adminis-
tered are related in ways they should be in order to justify
(a) the forming of item composites (i.e., test scores) and (b)
the entering of such composites into investigations con-
cerned either with other aspects of validity (e.g., conse-
quences of test use) or with the broader evaluation of a test
over various contexts of use.

The logic underlying the framework described below is
grounded in the recognition that the validity and precision
of a test score bear a certain relation to one another and that
a proper evaluation of a test’s performance in a given
instance of use should reflect this relationship. Specifically,
the logic is based on the notion that the various aspects of
the “external” validity of scores on a test of some particular
attribute can be meaningfully explored if and only if there is
evidence that the scores are adequately precise measures of
the common attribute for which the test items have been
designed as indicators.2 But this requires that justification
exists for compositing responses to the items of the test into
a single composite (i.e., that the item responses measure in
common a single primary attribute). We contend, thus, that
establishing what we herein call external test validity is
dependent on first providing evidence that supports the
validity of the internal relations among item responses, or

2 In the interests of generality, we use the term attribute to refer
to whatever property, process, characteristic, theoretical construct,
and so on, a given test is presumed to measure.
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the internal test validity,3 and that a test score formed as
result of such evidence shows an acceptable degree of
measurement precision (i.e., as determined by the conven-
tions set forth in a given research domain).

Thus, the framework proposed here is not intended to
address all of the issues relevant to test validity. Rather, it
speaks to a relatively specific arena of test evaluation,
namely, that pertaining to the appropriateness of choosing
particular psychometric models and scoring rules in order to
form suitably “reliable” and “valid” test scores that may the
be meaningfully used in further analyses. As such, it spec-
ifies guidelines for evaluating test performances on the basis
of a subset of the different sources of validity evidence
described in Standards and other validation frameworks,
specifically, those bearing on internal test validity, precision
of measurement, contextual validity,4 and external test va-
lidity. The framework does not, conversely, provide an
explicit rationale for conducting analyses of content, pro-
cess, or consequences of test use. However, the absence of
these aspects of validation should not be taken as an indi-
cation that we place no importance on these issues. To the
contrary, our interest is in providing a rationale according to
which the psychometric soundness of scores from a test
whose content validity (and, perhaps, also other components
of validity) has been well established.

The components of the framework for conducting data-
based test analyses, presented in the order in which they
should be addressed, are as follows:5

1. The formal structure of the test is specified.

2. An appropriate translation of the formal structure
into a set of quantitative requirements for the joint
distribution of item responses is made; the result-
ing translation is called the quantitative character-
ization of the formal structure.

3. The conformity of the joint distribution of item
responses (in a focal population) to the chosen
model is assessed.

4. Conditional on the conformity of the joint distri-
bution of item responses to the model, an optimal,
model-implied compositing rule is derived and
employed in order to scale the respondents with
respect to the attribute purportedly measured by
the items of the test.

5. The reliability (or, more generally, the precision)
of the resulting composite is estimated.

6. Conditional on the composite possessing an ade-
quate degree of precision, the composite is entered
into external validation studies, or, more generally,
into tests of theory-generated hypotheses about the

attribute for which the composite is taken to be an
indicator.

A test, then, may rightly, but provisionally, be judged to
be performing adequately in a focal population of respon-
dents if it (a) conforms to its formal structure (i.e., the
theory describing the relationships between the responses to
items of a test and the attribute purportedly measured by
those items ) and the measurement precision of the resulting
composite is adequate and (b) has behaved, to date, “as it
should behave,” or as predicted by the “nomothetic span” of
the test (i.e., the theory relating responding to the test to
both other tests of the same attribute and tests of different
attributes; cf. Embretson, 1983).

1. Specification of the Formal Structure of the Test

According to the authors of Standards,

the conceptual framework for a test may imply a single dimen-
sion of behavior, or it may posit several components that are
each expected to be homogenous, but that are also distinct from
each other. . . . The extent to which item interrelationships bear
out the presumptions of the framework would be relevant to
validity. (AERA et al., 1999, p. 13)
Here, we refer to this conceptual framework as the formal

structure of a test and define it as a specification of how the
items of a test were designed to measure a given attribute of
interest, including, at least roughly, how the distribution of
the attribute across a population of individuals is to be
conceptualized, how the items are linked to the attribute,
and whether or not they are viewed as error-laden indicators
of the attribute. We call this the formal structure, both to
highlight its emphasis on the form of various properties of
the test and the attribute it is intended to measure and to
distinguish it from the internal structure of the test, the latter
of which is relevant but not equal to the formal structure of
the test.

A clear specification of the formal structure of a test is the
starting point for any data-based test analysis that is to be
evaluative in aim. If a test is to be meaningfully judged as
performing adequately (or inadequately, for that matter) in
a focal population, senses must be assigned antecedently to
these and similar evaluative terms, and the specification of
the formal structure of a test is the first step in fixing the
senses of these terms. Furthermore, a formal structure must

3 Internal test validity—and external test validity—should be
kept distinct from the more general concepts of internal validity
and external validity, as defined in Campbell and Stanley (1963).

4 By “contextual validity” we mean any and all aspects of the
generalizability of score interpretations across types of persons,
settings, and times (cf. Messick, 1989).

5 Elements of the framework presented were initially initially
sketched out in Maraun, Jackson, Luccock, Belfer, and Chrisjohn
(1998) and in Slaney (2006).
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be worked out for each test individually and for each ap-
plication of a test, because, as noted by Cronbach (1989, p.
148), “a test unsuitable in one setting can serve well in
another.” And, so, what constitutes adequate performance
for a given test administered to respondents drawn from a
focal population of interest may well be different for an-
other test, or for the same test with either a different target
population or a different context of measurement in mind.
Analyses for which one cannot specify the formal structure
are not founded on clearly stipulated senses of the test
“behaving as it should behave” and similar notions; hence,
they yield evaluative claims that are at best ambiguous and
at worst vacuous.

However, rarely is the formal structure of a test laid out in
exact terms, and, thus, it will often need to be deduced both
from the information available about particular formal prop-
erties of the test (e.g., item response formats) and from the
theoretical structure of the test (i.e., the current theory
regarding both the attribute for which the test was designed
as a measure and the test itself). Furthermore, the compo-
nents that should properly comprise the formal structure of
a test are open to debate; yet, it would seem that, minimally,
the formal structure of any test should specify the following
five components: (a) the theoretical “distributional form” of
the attribute of which the items of the test are thought to be
measures6 (i.e., how the attribute is conceived to vary across
individuals in the population under study); (b) the item
response format or formats; (c) the number of attributes that
the items were designed to measure; (d) the (theoretical)
form of the regressions of the items on the attribute; and (e)
the error characteristics of the items.

The distribution of the attribute in the population will, for
simplicity, be characterized as taking on one of two forms:
“continuous” for attributes that can conceivably take on
many (perhaps an infinity) of ordered values and “categor-
ical” for attributes that can assume a finite number of
unordered values. As regards item type, commonly em-
ployed response scale formats are continuous (Co), x-point
graded (xPL), and categorical (Ca), with the most com-
monly encountered special case of the latter being dichot-
omous (Di). Although, in practice, the number of attributes
measured can take on any positive integer, for expository
purposes, we will restrict our discussion to tests (or sub-
scales of a test) that are conceptualized as measuring a
single attribute. Examples include the 21 items of the Beck
Depression Inventory—II (BDI–II; Beck, Steer, & Brown,
1996) as measures of depression, the 34 items of the Well-
Being Scale of the Multidimensional Personality Question-
naire (Tellegen, 1981) as measures of well-being, and the 48
items of the Extraversion subscale of the NEO Personality
Inventory (Costa & McRae, 1985) as measures of extraver-
sion.

The sense of “regression” as concerns the item/attribute
regressions refers to how item responding is conceptualized
as varying with the level of the attribute. As with the
theoretical distributional form of the attribute, these regres-
sions are nonmathematical (or, more accurately, pre-math-
ematical) because the attribute is not, technically speaking,
a random variable but, rather, is an attribute (e.g., property,
characteristic, process) that the items were designed to
measure. Frequently encountered conceptualizations of the
item/attribute regressions are monotone increasing (MI),
linear increasing (LI), x-point ordered categorical (xOC),
S-shaped (S), and inverted U-shaped (U). Finally, for the
sake of generality, the error characteristics of the items will
be allowed to assume two possible values, error free (EF) or
error in variables (EIV), even though in modern test analytic
practice, the latter is virtually always assumed to be the
case.

We acknowledge that providing an unambiguous specifi-
cation of what and how the items of a given test measure
runs somewhat counter to the commonly adopted construct
validation approach to test evaluation, the aim of which is to
simultaneously validate both tests of and theories about
particular constructs (cf. Cronbach & Meehl, 1955; Peak,
1953). However, as Kane (2006) notes, “A system in which
theories are evaluated by comparing their predictions to
measurements, and the measurements are validated in terms
of the theory, clearly has the potential for circularity” (p.
46). We further contend that such a practice lacks the power
to pronounce on the quality of a test as a measure of the
attribute (“construct”) in question. If the aim in a test
analysis is to evaluate the performance of a test that is being
used as a measure of some particular attribute, the analysis
is confirmatory in nature and, thus, requires that one must be
able, at least potentially, to work out how the test has been
conceptualized as a measure of the attribute under study.
For instance, the formal structure of a test consisting of
7-point Likert items designed to be indicators of anxiety
proneness will likely differ in important ways from that of
a test designed to measure mathematical ability with a set of
true/false items. Without this initial specification of the
formal structure, the test analyst will have no basis for
choosing one measurement model over another and, hence,
will be unable to judge the quality of the test’s performance
within the particular context of measurement at hand.

Now this is not to say that the formal structure of the test
exits in some sort of Platonic realm, direct access to which
is denied to the researcher, who can then merely guess at

6 We thank a reviewer of an earlier draft of this article for
pointing out the importance of adding this component of the
formal structure.
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what it is that the test measures. Quite to the contrary, in
fact: Presumably, the researcher has chosen the particular
test either because it has been designed as a measure of the
phenomenon under study or because he or she has some
other reason to believe that scores generated from applica-
tion of the test represent the phenomena in some theoreti-
cally or practically relevant way. As such, in identifying the
formal structure of the test, he or she will likely appeal to
current theory regarding the attribute (e.g., anxiety) for
which the test is being used as a measure. Thus, the formal
structure, at least for the present purpose, is not something
to discover about the test. Rather, its specification consti-
tutes a first step toward choosing, on the basis of careful
consideration, an appropriate measurement model in order
that the psychometric properties of the test can be properly
evaluated. And, although there may be some ambiguity or
debate surrounding different components of the formal
structure of a given test, if the aim is to evaluate particular
uses or interpretations of test scores, one must first be able
to confirm that a test is “working” (i.e., that there are good
grounds for producing those test scores as representations of
the attribute such scores are intended to represent).

For example, the BDI–II is a self-report instrument for
measuring severity of depression consisting of 21 items,
each of which lists a symptom. The severity of the symptom
is rated by the test taker on a 4-point response scale ranging
from 0 to 3 (Steer, Ranieri, Kumar, & Beck, 2003, p. 59).
On the basis of the scoring rationale given by the authors
(see Beck et al., 1996), it may be reasonably presumed that,
for each item, low ratings correspond with a lesser degree of
depression and higher ratings with a greater degree of
depression. As with most measures of clinical phenomena,
the BDI–II items are considered to be imperfect indicators
of depression. Thus, a reasonable specification of the formal
structure for the BDI–II is {Co,4PL,1,4OC,EIV}, that is, a
test for which a set of 4-point Likert items is designed as
error-laden indicators of a single attribute (depression) that
varies considerably in degree over a population of individ-
uals. For a given item, the relationship between the item and
the attribute (i.e., the item/attribute “regression”) may be
best conceived of as four individual ordered category re-
gressions, in which the probability of responding to a given
category varies across levels of the attribute (e.g., for a
severely depressed individual, the probability of endorsing a
“3” is higher than the probability of endorsing a “2,” and so
on; see Samejima, 1969, 1996, for an approach to modeling
such graded item responses).

Obviously, because the formal structure is a linguistic
specification of how the items of a test were designed to
measure the attribute, it does not have any specific material
implications for the joint distribution of item responses
(hereafter, simply referred to as “the joint distribution”), the

fulfillment of which is needed in order to justify claims
about the conformity of test behavior to the specified formal
structure. Testable requirements of the joint distribution
must be generated through the translation of the components
of the formal structure into quantitative (i.e., mathematical)
counterparts. In other words, the test analyst must choose,
on the basis of the specified formal structure, a measurement
model for assessing the internal test validity of the data at
hand.

2. Derivation of the Quantitative Characterization

Whereas the formal structure describes the theoretical
relationship between an unobservable attribute and the ob-
servable indicators that are the test items, the quantitative
characterization is the deduced, testable empirical conse-
quences of the formal structure for the joint distribution of
responses to those items. It is the quantitative embodiment
of the formal structure and specifies the properties that must
be possessed by the joint distribution so that item responses
will be correctly judged as conforming (or not) to that
specified formal structure.

To construct a quantitative characterization of a given
formal structure, one maps the components of the formal
structure into mathematical counterparts. Because the for-
mal structure for most tests can be characterized in terms of
the formal structures for sets of mutually disjoint sets of
items, each of which is meant to measure a relatively
distinct attribute (or facet of a higher order attribute), most
of the measurement models of interest will be defined in
terms of particular formal translations of “the items measure
just one thing” (i.e., will be founded on particular concep-
tualizations of unidimensionality). In practice, this means
choosing an appropriate unidimensional measurement mod-
el.7 When such models are employed as quantitative char-
acterizations of formal structures, the correspondence rela-
tions are as follows:

1. The attribute for which the test items were designed to
be indicators is represented by a random variate defined on
a focal population of interest (e.g., a random latent variate,
�, for which test items are taken to be indictors).

2. The notion that the test items measure a single attribute
is paraphrased as the claim that the item responses are
unidimensional in a sense that is dependent upon the other

7 Once again, this does not preclude translations of formal
structures that invoke particular multidimensional models. How-
ever, compositing items under such scenarios is more complex
and, as such, notions of precision and validity may not be as
straightforward as in the unidimensional case that we address
explicitly here.
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components of the formal structure of the test, namely, the
item/attribute regressions and the error characteristics of the
items (e.g., as defined by local conditional independence in
many classes of latent variable models).

3. The item/attribute regressions referred to in the formal
structure are paraphrased as analogous to item/� regres-
sions. In a loose sense, the latter describe the nature of the
relationship between the attribute under study (which is
itself represented by the random variate �) and the items of
the test (e.g., the S-shaped item/� regressions that are spec-
ified in item response models used to model dichotomous
indicators of a continuous latent trait).

4. Most measurement models model the situation in
which test items are conceptualized as being fallible indi-
cators of an attribute. Thus, it is natural to paraphrase formal
structures with the EIV component as latent variable models
(in contrast, for example, to component models).

If the aim is to evaluate the psychometric soundness of a
test, the test analysis must begin with a choice of a quanti-
tative characterization in which each and every component
of specified formal structure is appropriately represented;
the translation of each of the components of the formal
structure into quantitative counterparts collectively consists
in a statistical model that implies particular empirical re-
quirements for a joint distribution of a set of item responses.
This “isomorphism” between the formal structure and quan-
titative characterization is essential because a model-im-
plied empirical result will be relevant only in the case that
the chosen quantitative characterization (i.e., model) appro-
priately represents all of the components of the formal
structure at hand. Lacking this match between the specified
formal structure and the quantitative characterization, a
given empirical result will be irrelevant for confirming (or
disconfirming) that the test is performing in the manner it
was designed to perform.

However, there is, at least in theory, the possibility of
constructing many sound (and many unsound) quantitative
translations of a given formal structure, as there are many
different measurement models from which to choose, at
least one of which will describe, at least reasonably well, a
joint distribution of item responses (cf. Roskam & Ellis,
1992). Hence, mere conformity of the joint distribution to
some model can have no necessary implications for the
judgment of the performance of the test as a measure of the
attribute it was designed to measure. Put differently, if
“adequate test performance” were to be equated with simply
finding a model that happens to describe the joint distribu-
tion, tests would, as a matter of course, be judged as
performing adequately, and, conversely, there would exist
no grounds for indicting a test.

It has become commonplace for researchers conducting
test analyses to fit models to test data, typically with the aim

of finding the best fitting out of a set of competing models;
however, in the context of test evaluation, the “best” model
is not simply the model that best describes the data in a
statistical (usually loss function) sense. If the model does
not consist in an appropriate translation of each of the
components of the formal structure into quantitative coun-
terparts, it cannot reasonably be considered the “best”
model, quite regardless of what the particular fit function
indicates. For example, if the results of a linear factor
analysis indicate a good model-to-data fit by some conven-
tional criterion but the item/attribute regressions are best
conceptualized as U-shaped (i.e., with formal structure
{Co,Co,1,U,EIV}), these linear factor analytic results will
have no bearing on judgments as to the adequacy of the test
(cf. van Schuur and Kiers, 1994). Just as the value of a
Pearson product–moment correlation coefficient will have
little relevance to claims about the strength of a nonlinear
relationship between two variables, the fit of a measurement
model that is a poor translation of the components of the
formal structure to test data will not provide an answer as to
whether the test’s items are related in a way that is consis-
tent with theoretical expectations. The onus is, therefore, on
the test analyst to choose as a quantitative characterization
the model that is the best available match to the particular
formal structure in question (i.e., the one that provides the
most reasonable representation of all the components of the
specified formal structure).

Table 1 shows how a number of formal structures that are
likely to be encountered for tests used in the social and
behavioral sciences are mapped into particular quantitative
characterizations (i.e., into particular measurement models
or classes thereof). For instance, for tests whose formal
structure specifies that a set of continuous items measure,
with error, a single common “continuous” attribute, and in
which the item/attribute regressions are conceptualized as
monotone increasing (i.e., {Co,Co,1,MI,EIV}), an appropri-
ate mapping induces a class of models known as unidimen-
sional monotone latent variable (UMLV) models (see Hol-
land & Rosenbaum, 1986, for a description of the properties
that can be used to check whether such a UMLV model
describes a joint distribution).

Table 1 also lists a special subclass of UMLV models that
is arguably the most commonly employed set of models in
applied test analyses. This is the class of unidimensional,
linear common factor (ULCF) models. The mapping rela-
tions for formal structures specifying continuous items as
fallible measures of a single “continuous” attribute, with
linear item/attribute regressions (i.e., {Co,Co,1,LI,EIV}),
are as follows: The relevant attribute is represented by a
latent variate,�. In this case, it is a “common factor.” The
linear factor analytic paraphrase of the notion that the items
measure just one attribute in common is the uncorrelated-
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Table 1
Examples of Quantitative Characterizations of Common Formal Structures (FS)

FS FS 3 quantitative characterization mapping Model or set of models

{Co,Co,1,MI,EF} A � Co 3 The attribute is represented by a random variate, Ya, which is
distributed continuously over population P.

Component models
(e.g., linear principal-
components models)I � Co 3 For each item, responding is represented by a random

variable Xj, which is continuously distributed over P.
D � 1 3

f�X�Y)� �
j�1

k

f(Xj�Y) (i.e., the Xj are statistically independent).

R � MI 3 E�X�Y)�g(Y), in which g is a vector of functions and
d

dY
g(Y) �0.

E � EF 3 The conditional covariance matrix, C�X�Y)�� , is diagonal
and positive definite (i.e., the Xj are required to have
positive error variances).

{Co,Co,1,MI,EIV} A � Co 3 Attribute represented by random variate �; � continuously
distributed over P.

UMLV models (cf. Holland &
Rosenbaum, 1986)

I � Co 3 Responding for each item represented by random variable
Xj ; the Xj are continuously distributed over P.

D � 1 3
f�X��)� �

j�1

k

f(Xj��)(i.e., the Xj are locally independent).

R � MI 3 E�X��)�g(�) , in which g is a vector of functions, and
d

d�
g(�) �0 .

E � EIV 3 Conditional covariance matrix, C�X��)��, diagonal and
positive definite.

{Co,Co,1,LI,EIV} A � Co 3 Attribute represented by random variate �; � continuously
distributed over P.

Linear factor analytic models
(cf. Jöreskog, 1966, 1969;
Spearman, 1904)I � Co 3 Responding for each item represented by random variable

Xj; the Xj are continuously distributed over P.
D � 1 3 The conditional covariance matrix, C�X��)��, is a k � k

diagonal matrix (i.e., the Xj are conditionally
uncorrelated).

R � LI 3 E�X��)���� , with the elements of � having the same sign.
E � EIV 3 Conditional covariance matrix, C�X��)��, diagonal and

positive definite.
{Co,Di,1,S,EIV} A � Co 3 Attribute represented by random variate �; � continuously

distributed over P.
Binary item response models

(e.g., Rasch’s 1-parameter
logistic model [Rasch, 1960],
2-parameter IRT models
[Birnbaum, 1968; Lord,
1952, 1953])

I � Di 3 Responding for each item represented by random variable
Xj; Xj Bernoulli distributed over P.

D � 1 3
P�X�x��)� �

j�1

k

P(Xj�xj��), j�1..k (i.e., the Xj are locally

independent).
R � S 3 The conditional mean function for each item,

E�Xj��) � P(Xj � 1��), is represented by either
eaj(��bj)

1 � eaj(��bj) or �(aj(� � bj)).

E � EIV 3 V�Xj��) � P(Xj � 1��)[1 � P(Xj � 1��)] � 0 .
{Co,xPL,1,xOC,EIV} A � Co 3 Attribute represented by random variate �; � continuously

distributed over P.
Graded response models (e.g.,

Samejima’s graded response
model [Samejima, 1969,
1996], Muraki’s modified
graded response model
Muraki, 1990])

I � xPL 3 Responding for each item represented by random variable
Xj; Xj has x-PL category distribution over P, and

�
k�1

x

P�Xjk��) � 1, k � 1..x.

(table continues)
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ness of the item responses conditional on � (i.e., the off-
diagonal elements of the conditional covariance matrix, 	,
are all zero). The linear item/attribute regressions specified
in the formal structure are paraphrased as linear item/�
regressions. That is, for all items, the mean item response
conditional on � is a linear function of �. The fallibility of
the items as indicators of the attribute is modeled according
to the usual factor analytic paraphrase (i.e., that the condi-
tional covariance matrix is positive definite). This means
that the elements along the diagonal, which represent the
“unique” (error) variances, each have a positive sign.
Jointly, the components of this quantitative characterization
imply that the population covariance matrix of the items, �,
may be factored as follows:

� � ��
 � �,

in which � is a vector of factor loadings and �, as stated
above, is diagonal and positive definite. This consequence is
then a requirement that must be satisfied by the joint distri-
bution in order that a test whose formal structure has been
specified to be {Co,Co,1,LI,EIV} may be judged as, in fact,
conforming to its formal structure. Table 1 lists classes of
quantitative characterizations appropriate for a number of

other formal structures that are likely to be encountered in
practice.8

3. Test of the Conformity of Data to Model

Up to this point we have specified that a test analysis must
begin with a specification of the formal structure of the test
being evaluated. Then, in order that the conformity of test
behavior to the specified formal structure may be estab-
lished, one must find a quantitative characterization that
gives an adequate description of the relations between the
items and the attribute they are presumed to measure and
among the items themselves. However, putting precise
boundaries on what is meant by “adequate” is by no means
a simple issue. Rather, it is one that has generated discus-

8 For a further example of how one might choose an “appropri-
ate” quantitative characterization of a given formal structure, see
Mellenbergh’s (1994) characterization of a generalized linear item
response theory that subsumes many of the better known and
employed psychometric models. See also Thissen and Steinberg
(1986) for a taxonomy of item response models that may be
employed in the analysis of categorical item response data and
McDonald (1999) for description of both common factor models
and item response models.

Table 1 (continued)

FS FS 3 quantitative characterization mapping Model or set of models

D � 1 3
P�X�x��)�� �

j�1

p

P(X*
jk�x*

jk��), j�1..p, k�1..x, in which

P�X*
jk � x*

jk��) is probability of responding in or above the
kth category of the jth item.

R � xOC 3 For each j, l � (x� 1) boundary response regressions,
eaj(��bjk)

1 � eaj(��bjk).

E � EIV 3 V�Xjk��) � P(Xjk � 1��)[1�P(Xjk � 1��)]�0.
{Ca,Di,1,M,EIV} A � Ca 3 Attribute represented by random variate �; � discretely

distributed across m categories over P, with �
i�1

m

P�� � i�

� 1,i � 1..m.

Latent class models (cf. Clogg,
1995; Heinen, 1996;
Lazarsfeld, 1950; Lazarsfeld
& Henry, 1968)

I � Di 3 Responding for each item represented by random variable
Xj; Xj Bernoulli distributed over P.

D � 1 3
P�X�x��)� �

j�1

k

P(Xj�xj��), j�1..k.

R � M 3 Conditional mean function equal to the probability of response
for item j, that is, E(Xj�� � i) � P(Xj � 1�� � i).

E � EIV 3 V�Xj�� � i) � P(Xj � 1�� � i)[1 � P(Xj � 1�� � i)] � 0.

Note. A � distributional form of the attribute measured by the items of T (Co � continuous; Ca � categorical); I � item response format (Co �
continuous; Di � dichotomous; xPL � x-point graded); D � number of attributes items measure in common (1, . . ., p); R � theoretical form of
item/attribute regressions (MI � monotone increasing; LI � linear increasing; S � S-shaped; xOC � x-point ordered categorical; M � flat line or not flat
line); E � error characteristics of items (EIV � error in variables; EF � error free).
a As is conventional, here Y denotes an observed random variables, whereas � is used to denote a latent, or unobserved, variable.
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sions within the psychometric literature on topics ranging
from comparisons of different indices of model fit (cf.
Barrett, 2007, and associated commentaries in Volume 42
of Personality and Individual Differences for a recent dis-
cussion pertaining to structural equation models) to model
selection and model equivalence (cf. Lee & Hershberger,
1990; Raykov & Penev, 1999; Stelzl, 1986).

Because here we are concerned primarily with present-
ing a rationale for analyzing test data, a review of the
complex (and considerable) literature on such issues will
not be attempted. Rather, as is emphasized by Kane
(2006), we wish to underscore the point that if the (latent)
variates implied by various measurement models are to
function as representations of attributes measured by
tests, and the manifest variates (i.e., the item responses)
are thought to be linked to each other and to the latent
variate in particular ways, “Empirical evaluations of how
well the model fits the data . . . provide an empirical
check on the validity of the indicators of the latent
variables” (p. 43). To this end, test analysts will need to
choose an index (or a set of indices) of model fit in order
to adequately adjudge whether a given measurement
model describes a set of item responses (and, by exten-
sion, whether the test behavior conforms to the specified
formal structure). For the present purpose, suffice it to
say that a given test can justifiably be said to conform to
its formal structure in a focal population if (a) the chosen
quantitative characterization is an appropriate paraphrase
of the formal structure and (b) some chosen fit function is
suitably “small” such that it can be reasonably concluded
that the quantitative characterization provides a good
description of the test data (see Thissen, Steinberg,
Pyszczynski, and Greenberg, 1983, for an example that
describes a procedure for fitting a unidimensional linear
common factor model to a set of 9-point Likert items).

However, regardless of which particular fit function is
employed, if one is to justifiably claim that test behavior is
(or is not) in keeping with the formal structure of the test,
there must be some formal assessment of whether the joint
distribution conforms to an appropriately chosen quantita-
tive characterization. In the absence of this, or some other
sound justification for judging a test’s conformity to its
formal structure, any further steps taken in an evaluative test
analysis are inherently ambiguous, as the analyst has not
established that the test items are indicators of a single
attribute, nor that they relate to this attribute in the manner
described by the specified formal structure. Hence, there
would be no grounds for forming an item composite or for
assessing the precision and external test validity of this
composite once formed (or other components of validity
that require that test scores be conceptualized as indicators
of attributes).

4. Derivation of an Optimal, Model-Implied
Composite

Typically, test constructors and users alike are not satis-
fied with measuring a given attribute of interest with a
single item. Rather, they want to have multiple indicators of
the attribute, indicators that they may ultimately composite
in some manner in order to produce a more reliable measure
than is given by any single indicator. However, Standard
1.12 in Standards clearly states that “where composite
scores are developed, the basis and rationale for arriving at
the composites should be given” (AERA et al., p. 20).
Hence, composites can legitimately be produced only if
there exists both a rational argument for doing so (i.e., that
the items of the test are presumed to measure a given
attribute in common) and evidence that the rationale is
sound (i.e., that the item responses can be legitimately
represented by some appropriate unidimensional model). If
both the rationale and evidence exist, the resulting compos-
iting rule assigns to each individual in a focal population a
single real number and thereby scales this population of
individuals with respect to the random variate that repre-
sents the attribute in question.

Very often, the tests employed in the social and behav-
ioral sciences come with “off-the-shelf” compositing rules,
and the undisputed champion of such rules is the un-
weighted sum. However, it cannot be decided by fiat that a
set of items do, in fact, measure a single attribute in com-
mon. The issue of a test’s compositability in some popula-
tion is open to question, and claims of compositability must
be justifiable. If a test can be shown to be legitimately
compositable, the issue becomes which composite to use.
The logic is as follows:

1. The formal structure of given test specifies that the
items of the test are indicators of, or measure in common, a
single attribute.

2. The formal structure is mapped into an appropriate
quantitative characterization (i.e., an appropriate unidimen-
sional model is chosen).

3. If the joint distribution of item responses satisfies the
requirements imposed by the chosen quantitative character-
ization, the performance of the test is said to be in keeping
with its formal structure. In particular, satisfaction by the
joint distribution of the requirements imposed by a given
unidimensional model means that the item responses are
unidimensional in some particular sense. This, in turn, is
taken as meaning that the items measure just one thing in
common, arguably the attribute purportedly measured by
the test.

4. However, the mapping of the formal structure into a
quantitative characterization paraphrases the attribute as a
random variate of some sort, most often as a latent variate.

5. Thus, the task of scaling individuals in a focal popu-
lation with respect to the attribute is paraphrased as the task
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of deriving an optimal estimator (predictor)9 of the random
variate representation of the attribute (i.e., the latent vari-
ate).

6. When the joint distribution satisfies the requirements of
a unidimensional quantitative characterization (i.e., a unidi-
mensional latent variate model), one is justified in estimat-
ing the single latent variate. That is, the condition under
which it makes sense to develop a single optimal estimator
of an unobservable latent variate that is related to the items
in a manner described by the formal structure is when the
joint distribution satisfies the requirements of an appropri-
ately chosen unidimensional measurement model. This es-
timator will, of course, be a composite of the item responses
and will be created according to some particular composit-
ing rule.

7. The particular form of the optimal compositing rule
will be determined jointly by characteristics of the model
(e.g., number of free parameters), commitment to a partic-
ular definition of “optimal” (e.g., maximum likelihood vs.
generalized least squares estimation methods), and prag-
matic considerations (e.g., ease of calculability).

For instance, a test consisting of continuous items that are
taken to be error-laden indicators of a single “continuously
distributed” attribute, and for which the item/attribute re-
gressions are considered to be linear (i.e., a test with formal
structure {Co,Co,1,LI,EIV}), is appropriately paraphrased
by a ULCF model (see Thissen et al., 1983). If the joint
distribution of item responses satisfies the requirements
imposed by this quantitative characterization, the items are
unidimensional in the linear factor analytic sense, and the
common factor is taken as a representation of the attribute
the items were designed to measure. Under this condition,
one is justified in deriving an estimator of the common
factor, a random variate. And, according to the correspon-
dence between the formal structure and this quantitative
characterization, estimation of this common factor (by one
of a number of different possible methods; cf. McDonald &
Burr, 1967) is the operational counterpart of scaling indi-
viduals with respect to the attribute for which the items of
the test were designed as measures.

Regardless of which optimality criteria (technical, prag-
matic, or a combination thereof) are adopted in a given test
analysis, the point is that there is no globally correct com-
positing rule. Any legitimate compositing rule is tied to the
union of a particular quantitative characterization (i.e.,
model), statistical principle, and pragmatic considerations,
and there exists latitude in regard to the choice of each. The
possibility of virtual exchangeability between unweighted
and weighted composites (cf. Grayson, 1988; Wainer, 1976)
should not be taken as justification for the perfunctory
practice of choosing the former as the default choice. The
preference of a particular composite over all others should
be the result of a careful consideration of optimality and
practicality trade-offs.

5. Estimation of the Reliability of the Composite

In Standards (AERA et al., 1999) it is stated that regard-
less of the form of the items a measure comprises, providing
information about measurement error for test data is essen-
tial to the proper evaluation of the measure in question.
According to the standards listed there, reliability informa-
tion may be reported as variances or standard deviations of
measurement errors, as any of a set of potential indexes
(e.g., classical reliability and/or generalizability coeffi-
cients), or as test information functions. Furthermore, it is
noted that the reporting of reliability coefficients in the
absence of the details concerning the methods used in the
estimation of such coefficients, sample characteristics, and
measurement procedures “constitutes inadequate documen-
tation” (AERA, 1999, p. 31). Although it is recognized that
unreliable scores may still be useful in certain contexts of
test use,

the level of a score’s unreliability places limits on its unique
contribution to validity for all purposes. . .To the extent that
scores reflect random errors of measurement, their potential for
accurate prediction of criteria, for beneficial examinee diagno-
sis, and for wise decision making is limited. (p. 31)
The scores whose reliabilities are of interest to the current

discussion are those of legitimately formed composites of
item responses.

Although the applied researcher typically adopts the ex-
pression “reliability” to refer to the measurement precision
of test scores generally, the distinction between the defini-
tions of measurement precision born out of classical and
modern test theories respectively has long been recognized
by psychometricians. Here, we speak generally about the
measurement precision of a composite of test items, which

9 The latent variable models considered herein, and throughout
psychometrics, are random latent variable models (i.e., those in
which the latent variable has a distribution). Such models are to be
contrasted with those in which each person has a “person param-
eter” to be estimated. However, as Holland (1990) pointed out,
there is no sense to the notion of maximum likelihood estimation
(or any other type of estimation) of � in the random models, as �
is not a set of person parameters but, rather, a random variate.
Hence, in random latent variable models, � may be predicted but
not estimated. However, maximum likelihood terminology is used
here in order to maintain consistency with standard treatments. It
should be noted that an additional complication arises in cases in
which the chosen quantitative characterization is an indeterminate
latent variable model. In such models, there exist an infinity of
random variates, Ui, each of which satisfies the requirements for
latent variablehood (cf. Guttman, 1955, Schonemann & Wang,
1972, and Steiger & Schonemann, 1978, for discussions of the
indeterminacy of factor score matrices); hence, the question of
what exactly is being predicted is left ambiguous. Although these
issues will undoubtedly ultimately need to be resolved by psycho-
metricians, they do not bear on the logical coherence of the
framework proposed herein.
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is conceptualized as follows: In an analysis of the perfor-
mance of a test in a focal population, if a sound (unidimen-
sional) quantitative characterization of the formal structure
is shown to describe the joint distribution, one is justified in
compositing the item responses, with an optimal, model-
implied composite, the latter of which is some function of
the items of the test. The precision of the composite will,
additionally, be a function of the latent variate (or which-
ever random variate is a representation of the attribute in the
particular quantitative characterization at hand) and can be
defined in terms of either reliability or information (see
Mellenbergh, 1996). Regardless of whether one chooses to
conceptualize precision in terms of reliability or in terms of
test information, distinctive forms of each usually can be
derived for particular quantitative characterizations.

For example, a test whose formal structure can legiti-
mately be paraphrased by a unidimensional linear common
factor model (i.e., {Co,Co,1,LI,EIV}), such as any of the
classical methods for estimating reliability of (or lower
bounds to) an unweighted sum of the item responses, could
be employed to produce an estimate of score precision (e.g.,
Spearman–Brown, Cronbach’s alpha); alternatively, the test
information function could be used to indicate the relative
degree of score precision for individuals located within a
specified range on the latent factor dimension. Regardless of
which particular strategy is adopted, the specific nature of
the composite will dictate to a large extent which strategies
for producing information about score precision are legiti-
mate and which are not.

6. Entering the Composite Into External Test
Validation Studies

Up to this point in a data-based test analysis, support has
been amassed that the items of the test measure in common
just one thing (i.e., empirical support for internal test valid-
ity has been given) and a composite has been produced to
estimate individuals’ relative standing with regard to that
one thing. However, it has not been settled that this one
thing is, in fact, the attribute the test items were designed to
measure (i.e., it is possible to have a very precise measure
of a single attribute but one that does not measure the
particular attribute that it was designed to measure). In fact,
at least insofar as the measurement of traits is concerned, no
definitive case can ever be made about the identity of the
attribute that the composite measures (Cronbach & Meehl,
1955). Certainly a great deal more evidence can be accu-
mulated that has direct bearing on the provisional claim that
the scores on the composite are error-laden measurements
of the attribute under study. This evidence is accumulated in
an ongoing program of (external) construct validation (cf.
Cronbach, 1971; Cronbach & Meehl, 1955; Loevinger,
1957; Peak, 1953).

In general terms, the logic of such a program of investi-
gation can be outlined as follows:

1. A given test, T, comprises a set of items, each of which
is designed to be an observable indicator of some (typically
unobservable) attribute, A.

2. Variation in the responding of individuals in some
focal population to the items of T is caused by a complex
web of relations involving A, other attributes, and additional
sources (e.g., situational and method factors).

3. The extant theory pertaining to A postulates particular
relationships (a) between A and its indicators (or compos-
ites of its indicators), (b) between A and other attributes,
and (c) between indicators (or composites) of both the same
and different attributes (cf. Cronbach & Meehl, 1955). If we
use the current notation, the theory pertaining to (a) de-
scribes the formal structure of T, whereas the theory per-
taining to (b) and (c) describes the nomothetic span of T (cf.
Embretson, 1983). It is the latter possibility that bears on
what we herein refer to as external test validity.

4. If Steps 1–5 of the test analytic framework have been
satisfied, some optimal composite of item responses, de-
noted here by �, is an estimator of the latent variate, which
is taken to be a representation of A. Thus, � stands in for the
items of T in all external test validation analyses. In partic-
ular, evidence of external test validity accrues from � be-
having in a manner that is in keeping with testable conse-
quences of the nomothetic span of T.

5. Because there is, in principle, an infinity of testable
consequences of the nomothetic span of T and, at any stage
in an ongoing program of construct validation, only a small
subset of these can be derived and tested, a given test is, in
principle, always deemed to be provisionally construct
valid.

Finally, it should be noted that external test validity may
be investigated in potentially many different ways, includ-
ing (but certainly not limited to) producing correlations
between composite scores and variables external to the test.
Guidelines have been provided for investigating distinct
aspects of external test validity in terms of everything from
classical test-criterion relationships to discriminant and con-
vergent evidence (Cronbach, 1971) to correlational evi-
dence based on the multitrait–multimethod matrix (Camp-
bell & Fiske, 1959) and many others. The current
framework does not itself provide an explicit approach for
gathering evidence in support of external test validity;
rather, our aim here is to bring the test analyst to the point
at which embarking on such investigations may be justified
on the grounds that the test scores on which such investi-
gations are based have been produced according to sound
logic and have subsequently been shown to have adequate
precision. Then, these composites may be meaningfully
entered into external test validity investigations, whatever
their nature.
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Summary and Discussion

It has been claimed here that despite a relative prepon-
derance of test theoretic results generated over the past
several decades, very little work has been dedicated to the
development of explicit test analytic frameworks that stip-
ulate how such results should be employed in passing judg-
ment on the performance of a test in a given application. It
is important to keep in mind that, in its current form, the
framework is meant to provide a rationale for conducting
data-based test analysis. In such analysis, the primary aim is
neither to make discoveries about what a test measures or
about the attribute it has been designed to measure but,
rather, to determine whether the test items may be coher-
ently composited into suitably precise scores that may then
be taken as representations of examinees’ standings with
respect to the attribute thought to underlie the test. The logic
on which the framework is based does not, however, pre-
clude the possibility of making discoveries about the test
during the course of an evaluative analysis (e.g., that it does
or does not perform as it was designed to perform in a given
population or particular context of employment). Nor does
it rule out the possibility that there will be equivocation over
what constitutes an appropriately specified formal structure
or that, over time, changes in either the theoretical structure
or certain formal properties of the test (e.g., alterations in
item stems or in modes of response) may necessarily lead to
changes in the specification of a test’s formal structure and,
hence, in the appropriateness of a given measurement model
as a quantitative characterization. So, although the require-
ments of the individual data-based test analysis call for a
sequential approach, such as the one presented here, the
larger game of validation, in which the framework has a
limited role, need not proceed in such a systematized fash-
ion.

Some Possible Extensions of the Basic Framework

The framework presented herein assumes that the re-
sponding to a test’s items is caused by an underlying at-
tribute that the test is designed to measure (albeit an at-
tribute for which a latent variable becomes a
representation). This is why such a strong emphasis has
been placed on translating the formal structure into a quan-
titative characterization that is unidimensional in some
sense, such that compositing the items of the test into a
single metric may be justified. In addition, with the current
setup, the test analytic scenarios to which the framework
may be reasonably applied are restricted to a consideration
of inter- but not intraindividual differences. Admittedly, the
omission of these two (and arguably other) features of tests
limits the applicability of the framework in its present form
to a subset of test analytic scenarios that might reasonably
be encountered by applied test analysts.

Here, we consider two possible additions to the formal
structure as it is originally presented.10 First, Edwards and
Bagozzi (2000) made the distinction between reflective and
formative measures.11 As they noted, reflective measures
are those for which item responding is thought to be
“caused” by some attribute (again, for which the latent
variate is a represention), and formative measures are those
relevant to situations in which the item responses induce a
latent variable (e.g., socioeconomic status as induced by
compositing in some way a set of measures, such as annual
income or highest level of education achieved). Whereas the
present work deals only with the reflective case, many
testing applications may call for a formative conceptualiza-
tion (Borsboom, Mellenbergh, & van Heerden, 2003). In
order to broaden the class of potential quantitative charac-
terizations (i.e., models), the current framework could be
expanded to include a causal status of the items component,
for which the possible values would be reflective (R) and
formative (F).

A second potential expansion of the formal structure
concerns the temporal structure of scores generated from
applications of a given test. As is, the framework does not
include time as a component of formal structures and,
hence, does not allow for straightforward consideration of
intraindividual change with respect to the attribute being
measured. In order to accommodate testing applications in
which time series analyses are the aim, one should add a
temporal structure of composite component of the formal
structure, with static (S) and dynamic (D) as potential val-
ues. Such an addition would lead to the inclusion of a
variety of time series models as candidate quantitative char-
acterizations (cf. Hamaker, Dolan, & Molenaar, 2005; Mo-
lenaar, 1985, 1994; Molenaar, Huizenga, & Nesselroade,
2003; Rovine & Molenaar, 2005; van Rijn & Molenaar,
2005).

Further Development of Test Theory Models

Although the current framework does not bear directly on
advances and developments in psychometric theory, its
pragmatic utility is in large part dependent on such advances
and developments. In particular, due to its reliance on
statistical models, test analysis will be generally more fruit-
ful and informative as improvements in statistical modeling
procedures are made. Here we identify two specific areas in

10 We thank a reviewer of an earlier draft of this article for
suggesting these important extensions of the formal structure.

11 Although Fornell and Bookstein (1982) were the first to use
this terminology, Blalock (1964) is credited with first making the
distinction between measures as effects of constructs versus causes
of them; the distinction has also been identified by Bollen and
Lennox (1991) in the context of what they refer to as cause and
effect indicators.
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which further work in psychometrics and quantitative psy-
chology would benefit test analytic practice.

First, in the context of the present work, the proposed frame-
work accommodates only the specification of necessary, but
not sufficient, criteria for particular latent structures. That is, in
order to answer to the needs of a truly evaluative test analysis,
there must be clear and unambiguous means of adjudging the
conformity of test behavior to the specified formal structure.
This requirement means that one must be able to articulate the
empirical requirements for the joint distribution of item re-
sponses; if these requirements are shown to hold, this implies
that a given latent structure (and, hence, a given formal struc-
ture) underlies the data. However, as it stands right now, the
framework presented herein furnishes only the specification of
necessary conditions, which do not necessarily imply the latent
structure of interest. And so, although one can rightly adjudge
that a given latent structure does not underlie responding to the
test if the particular empirical requirements do not hold for the
joint distribution, one cannot, strictly speaking, claim that the
latent structure does underlie the data if the empirical require-
ments for the joint distribution do, in fact, hold.12 Rather, one
simply acts as if they do and thereby concludes that the test
does conform to its formal structure. However, this lack of
sufficiency conditions is by no means specific to measurement
models but, rather, is a feature of latent variable modeling
generally. Development of better and stronger criteria for latent
structures will benefit test analysis, with its heavy reliance on
latent variable modeling, and will strengthen any area of re-
search in which the use of such modeling procedures has
become an accepted methodology.

Second, different formal structures can be accommodated by
the framework proposed herein only to the extent that there
exist mathematical models into which the components of those
complex formal structures may be mapped. The development
of more and more complex models will accommodate more
and more complex formal structures and will lead to better
quantitative translations and, hence, sounder decisions by re-
searchers about the quality of the tests they employ. Moreover,
the veracity of the framework is also reliant on the general
soundness of the particular statistical modeling procedures
employed therein. Because the framework relies on inferential
techniques, if a particular procedure is performing poorly, the
claims born out of the test analysis may clearly be compro-
mised, even if the test analyst adheres strictly to the frame-
work. To the extent that improvements are made in the mod-
eling techniques that are available to the test analyst, the
pragmatic value of the framework will also be increased.

12 See Maraun, Slaney, and Goddyn (2003) for a description of
the logic underlying these two distinct senses of criteria of latent
structures, and see McDonald (1967) for an example in which a
unidimensional, quadratic factor structure and a two-dimensional,
linear factor structure imply the same covariance structure.
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