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In his article, “An Alternative to Null-Hypothesis Significance Tests,” Killeen (2005) urged the discipline
to abandon the practice of pobs-based null hypothesis testing and to quantify the signal-to-noise
characteristics of experimental outcomes with replication probabilities. He described the coefficient that
he invented, prep, as the probability of obtaining “an effect of the same sign as that found in an original
experiment” (Killeen, 2005, p. 346). The journal Psychological Science quickly came to encourage
researchers to employ prep, rather than pobs, in the reporting of their experimental findings. In the current
article, we (a) establish that Killeen’s derivation of prep contains an error, the result of which is that prep

is not, in fact, the probability that Killeen set out to derive; (b) establish that prep is not a replication
probability of any kind but, rather, is a quasi-power coefficient; and (c) suggest that Killeen has
mischaracterized both the relationship between replication probabilities and statistical inference, and the
kinds of claims that are licensed by knowledge of the value assumed by the replication probability that
he attempted to derive.

In his article, “An Alternative to Null-Hypothesis Significance
Tests,” Peter Killeen (2005) suggested that at least some of the
defects inherent to the practice of null hypothesis significance
testing, the brand of inference that has come to dominate work
within the social and behavioral sciences (see, e.g., Berger &
Selke, 1987; Krueger, 2001; Loftus, 1996; Nickerson, 2000), could
be overcome by a reorientation of the inferential problem. Follow-
ing the lead of Greenwald, Gonzalez, Harris, and Guthrie (1996),
Killeen suggested that the researcher shift his or her focus from
parameters to observables and quantify the signal-to-noise prop-
erties of experimental outcomes as a coefficient of replicability.
The product of this conceptual shift in focus was a new coefficient,
prep, which Killeen (2005) described as the probability of obtaining
“an effect of the same sign as that found in an original experiment”
(p. 346). According to Killeen (2005), “prep . . . captures tradi-
tional publication criteria for signal-to-noise ratio, while avoiding
parametric inference and the resulting Bayesian dilemma. In con-
cert with effect size and replication intervals, prep provides all of
the information now used in evaluating research, while avoiding
many of the pitfalls of traditional statistical inference” (p. 345).
Despite the fact that two of the commentators on Killeen’s article,
Doros and Geier (2005) and Macdonald (2005), presented analyses
that appeared to reveal errors in Killeen’s derivation of prep, the
journal Psychological Science nevertheless adopted the stance that
researchers “are encouraged to use prep rather than p values”
(Cutting, 2005) in their submissions to the journal.

Although we agree that an approach to inference that is dominated
by null hypothesis significance testing is badly in need of reform,

Killeen’s (2005) coefficient prep is most certainly not the solution. We
will, herein: (a) establish that Killeen’s derivation of prep contains an
error the result of which is that prep is not, in fact, the probability that
Killeen set out to derive; (b) establish that prep is not a replication
probability of any kind, but is, rather, a quasi-power coefficient, very
much the same kind of coefficient that researchers currently compute
in their power analyses; (c) suggest that Killeen has mischaracterized
both the relationship between replication probabilities and statistical
inference and the kinds of claims that are licensed by the possession
of knowledge of the value assumed by the replication probability that
he attempted to derive. Before turning to the task of elucidating these
charges, we review the basis for Killeen’s very reasonable dissent
over the inferential machinery that is indigenous to the social and
behavioral sciences and provide a point-for-point account of his
derivation of prep.

Killeen’s (2005) Motivation for Inventing prep

As he makes clear in his article, Killeen (2005) turned his attention
toward the derivation of a coefficient of replicability in response to
what he perceived to be the existence of fundamental defects inherent
to the inferential decision-making machinery employed by the psy-
chological researcher. Reasonably enough, the chief object of his
dissatisfaction was the practice of carrying out null hypothesis signif-
icance tests. Killeen (2005) noted that null hypothesis significance
tests are “based on inferred sampling distributions, given a hypothet-
ical value for a parameter” (2005, p. 345) and that decisions about
parameters are made on the basis of p values. However, statisticians
have developed a number of distinct logics for the testing of hypoth-
eses about parameters, including the Fisherian, Neyman–Pearsonian,
and Bayesian approaches. Whereas these logics are, in many respects,
irreconcilable, the first two have been fused to form what Gigerenzer
et al. (1989) call the hybrid approach (see also Chow, 1996), and it is
this approach that is dominant in the testing of hypotheses within
psychology. Because the Fisherian, Neyman–Pearsonian, Bayesian,
and hybrid approaches have complicated linkages to issues that arise
in a consideration of prep, it is worthwhile to briefly review each.
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We follow Killeen (2005) in using a control group/experimental
group design for purposes of exemplification. Thus, let E and C
stand for experimental and control conditions, respectively, and let
Xj, j � �E, C�, represent the dependent variate conditional on each
of E and C, and with conditional distributions Xj � N��j, �2�,
j � �E, C�. The aim is to decide whether the treatment has an
impact on the dependent variate, a question standardly paraphrased
as whether the two population means, �E and �C, are equal.1

Because this question pertains to parameters, the problem is infer-
ential in nature, and decision making will be based on samples of
size nE and nC that are drawn from E and C.

Fisher was largely responsible for marrying experimental design
and analysis to statistical analysis (Gigerenzer et al., 1989). Given
the setting of a control group/experimental group design, the aim
of a Fisherian statistical analysis is to test the null hypothesis H0:
�E � �C. To this end, a statistic must be found whose sampling
distribution is known under the condition that H0 is true, and, in

this particular case, the classical choice is t �
�ME � MC�

sP�1

nE
�

1

nC

, in

which ME and MC are the two sample means and sp is the pooled
within-sample standard deviation. If H0 happens to be true, t has a
central t distribution on �nE � nC � 2� degrees of freedom. On
the basis of the single samples taken from each of E and C, a single
realization of t, called tobs, is produced. The significance level
(called now the p value or pobs) of the test statistic is defined as
P��t� � �tobs� � H0 true) and is used to quantify the discordance of the
data with the null hypothesis. Although the p value was a legacy
of the theory of outlier detection employed by astronomers, in
particular, Benjamin Peirce’s 1852 rule for the rejection of outly-
ing astronomical observations (Gigerenzer et al., 1989), Fisher
himself was uneasy with its employment and acknowledged that it
was “not very defensible save as an approximation” (Fisher, 1956,
p. 66). According to Fisher, whereas the p value quantifies evi-
dence against H0 (the smaller the value, the greater the evidence
against H0), it cannot be validly employed to support the conclu-
sion that H0 is true. Although Fisher entertained the idea that a
single p value of sufficiently small magnitude might be taken as
grounds for (provisionally) rejecting H0, he was actually a staunch
believer in the necessity of carrying out replication attempts
(Fisher, 1935). To him, the communication of results was of
fundamental importance, and he believed that all p values should
be published, thereby allowing the research community the oppor-
tunity to consider the cumulative evidence against H0. In Fisher’s
view, the p value expressed an evidential relationship between an
individual sample and H0 on the basis of which the researcher
formed a mental attitude toward H0 (Fisher, 1956).

Neyman and Pearson (1928/1967 and 1933, for example), who
viewed certain features of the Fisherian approach as logically un-
founded, replaced Fisher’s single null hypothesis with a null and
alternative hypothesis pair, the respective members of which were H0

and H1. They viewed the aim of a hypothesis test as being that of
making an optimal decision about which of the possible states of
nature, H0 or H1, is the case. On the Neyman–Pearsonian account,
such decision making risks two types of error: the Type I error,
rejecting H0 when it is, in fact, true, and the Type II error, retaining H0

when it is false. An optimal decision-making strategy is one in which
� 	 P(Type I error) is made small and 
(�, �) 	 P(retain H0 � �, H0

false by �) is made small for fixed � and values of � the detection of
which are of interest. For fixed �, the latter aim is realized by
choosing the sample size to be such that Power(�, �) 	 1� 
(�, �)
is made acceptably large for values of � the detections of which are of
interest. Through a consideration of error rates, and the costs inherent
to their control, a formal decision rule is created, and, on the basis of
single samples drawn from each of XE and XC, the researcher decides
whether he or she will act as if H0 is the case or H1 is the case. When
a decision about which of H0 and H1 is made on the basis of an
individual test, the researcher is instantly either correct or incorrect
and cannot know which. Confidence in decision making does not
come from the results yielded by a particular set of data but from the
long-run error control properties of the test procedure under which
decisions are made.

Fisher’s approach to inference was, in part, a response to the
Bayesian approach. In the Bayesian approach, probabilities are
used to express the degree of belief in, or plausibility of, hypoth-
eses about parameters (see, e.g., Gelman, Carlin, Stern, & Rubin,
2004). The focal point of Bayesian inference regarding the hy-
potheses H0 and H1 is the posterior probability that expresses the
degree of plausibility that the data confer upon the null hypothesis.
From Bayes’s theorem, the posterior probability of H0 is as fol-
lows:

P�H0 true � �t� � �tobs�� �
P��t� � �tobs� � H0 true�P�H0 true�

P��t� � �tobs��
.

On the Bayesian account, the researcher should favor H0 if
P�H0 true � �t� � �tobs�� � 0.5. However, in order to compute this
posterior, the researcher must possess knowledge of the prior
probability of the null being true. Frequentist statisticians such as
Fisher, Neyman, and Pearson deny that these prior distributions
can be given a coherent meaning within the probability calculus,
whereas Bayesian statisticians reject the necessity of frequentist
interpretations, taking priors to be nonfrequentist quantifications of
the researcher’s prior degree of belief in each hypothesis (Gelman
et al., 2004; Silvey, 1970). Interestingly, although Fisher was a
critic of nonfrequentist Bayesian posterior probabilities, he none-
theless invented a highly controversial Bayesian-like approach
called fiducial inference (see Hannig, 2006), a topic that arises in
Macdonald’s (2005) commentary on Killeen’s (2005) article.

The hybrid approach is a mixture of Fisherian and Neyman–
Pearsonian logic (Chow, 1996). In statistical analyses of the hybrid
sort, the researcher will, among other things: (a) follow Neyman
and Pearson (1967) in attending to error rates; (b) replace Neyman
and Pearson’s frequentist interpretation of these rates as bearing on
the quality of the test procedure with Fisherian styled claims such
as “the null hypothesis was rejected, p  .1,” which express a
mental attitude toward H0; and (c) adhere to Fisher’s (1935)
prohibition on the drawing of conclusions on the basis of nonsig-
nificant results. Strictly speaking, the term null hypothesis signif-
icance test applies to hypothesis tests carried out within a Fisherian
framework. However, a careful consideration of Killeen’s (2005)
criticisms of inference makes it clear that they apply equally well

1 It should be noted that Fisher (1956) was careful to distinguish between
a hypothesis stated in terms of parameters and the scientific hypothesis
having to do with the causal efficacy of the treatment. The former is only
a convenient stand-in for the latter.
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to the Fisherian, Neyman–Pearsonian, and hybrid approaches.
Thus, we take the term null hypothesis significance test, or signif-
icance test for short, to designate inferential hypothesis tests car-
ried out within any of these three frameworks.

According to Killeen (2005), significance tests are problematic for
two reasons. First, the decisions they render about hypotheses are
based on the p value. Along with many others (e.g., Berger & Selke,
1987; Nickerson, 2000), Killeen considers the p value to be a subop-
timal data-based measure of the plausibility of a given null hypothesis
(an opinion held, as a matter of fact, by Fisher, 1956, himself).
Killeen’s belief is that what would be truly useful to the researcher are
Bayesian posterior probabilities of the form P(H0 true � data). How-
ever, the calculation of a posterior probability requires that the re-
searcher be in possession of a prior distribution, and priors “are
largely unknowable” (Killeen, 2005, p. 345). Thus, Killeen (2005)
concludes, “Significance tests without priors are the ‘flaw in our
method’” (p. 345). Second, Killeen (2005) views psychology as
misdirected in following the lead of Fisher in placing such great
importance on the acquisition of knowledge pertaining to parameters:
“It is rare for psychologists to need estimates of parameters; we are
more typically interested in whether a causal relation exists between
independent and dependent variables” (2005, p. 345). He quotes, with
approval, Geisser’s (1992) lamentation that the cost of this preoccu-
pation has been that the field of psychology has paid little attention to
“inference about observables” (p. 1) and concludes that “our unfor-
tunate historical commitment to significance tests forces us to re-
phrase these good questions [hypotheses of the existence of causal
relations] in the negative, attempt to reject these nullities, and be left
with nothing we can logically say about the questions” (2005, p. 346).

Killeen (2005) acknowledges that the defects he identifies have
been discussed for some time and concludes that “when so many
experts disagree on the solution, perhaps the problem itself is to
blame” (p. 345). Thus, Killeen’s (2005) most critical step is to attempt
to provide “an alternative, one that shifts the argument by offering ‘a
solution to the question of replicability’” (p. 346). This alternative
involves expressing the signal-to-noise information generated by an
experiment as a coefficient of replicability. Killeen (2005) states that
“Greenwald, Gonzalez, Guthrie, and Harris (1996) reviewed the
NHST [null hypothesis significance test] controversy and took the
first clear steps toward a useful measure of replicability. They showed
that p values predict the probability of getting significance in a
replication attempt when the measured effect size, d�, is equal to the
population effect size, �” (p. 346). However, the focus of Greenwald
et al. on the probability of replicating a rejection of a null hypothesis
“replicates the dilemma of significance tests” (cited in Killeen, 2005,
p. 346). Killeen’s desire to move the discipline away from the notion
of significance led him to attempt to derive quite a different proba-
bility, namely, the probability of obtaining “an effect of the same sign
as that found in an original experiment” (2005, p. 346). The fruit of his
attempt to derive this probability is his prep, a coefficient that he
claims overcomes the defects inherent to significance tests by captur-
ing “traditional publication criteria for signal-to-noise ratio, while
avoiding parametric inference and the resulting Bayesian dilemma”
(Killeen, 2005, p. 345).

Killeen’s (2005) Derivation of prep

In subsequent sections of this article, we establish that prep is
not equivalent to the probability that Killeen (2005) set out to

derive, that being the probability of obtaining an effect of the
same sign as that found in an original experiment. Killeen
claimed that, in prep, he had produced a version of this target
probability that was not dependent on the unknown parameter �.
However, as we show below, the illusion that the dependency of
the target probability on � had been eliminated is traceable to an
error present in Killeen’s derivation of prep. It is, therefore,
essential to begin with a step-by-step summary of Killeen’s
derivation of prep.2 According to Killeen:

1. The statistic d� �
ME � MC

sp
is the sample effect and is the

sample analogue of the population effect � �
�E � �C

�
.

2. As nE � nC becomes large, d� will come to be nor-
mally distributed with a mean of � and a variance of

�d
2 �

�nE � nC�2

nEnC�nE � nC � 4�
. That is to say,

d�™™3
Lim

N��, �d
2�.3

3. Let there be an original experiment, results pertaining to
which are subscripted with a 1, and a hypothetical rep-
lication attempt subscripted with a 2. A replication has
occurred if the hypothetical replication attempt yields
“an effect of the same sign as that found in the original
experiment” (Killeen, 2005, p. 346). Thus, if d�1 � 0, a
replication has occurred just when d�2 � 0.4

4. Now, “the probability of a replication attempt having an
effect d�2 greater than zero, given a population effect size
of �, is the area to the right of 0 in the sampling
distribution centered at �” (Killeen, 2005, p. 346). The
calculation of this probability requires that the researcher
know the value of �. Unfortunately, “we do not know the
value of the parameter � and must therefore eliminate it”
(Killeen, 2005, p. 346).

5. Define the sampling errors �1 	 d�1 � � and �2 	 d�2 �
�. It follows from Step 2, that E(�1) 	 E(�2) 	 0 and
V(�1) 	 V(�2) 	 �d

2.

6. It follows from Step 5 that � 	 d�1 � �1, � 	 d�2 � �2,
d�1 	 � � �1, and d�2 	 � � �2.

7. Because a replication has occurred when d�2 � 0, it
follows from Step 6, d�2 	 � � �2, that a replication has
occurred when � � �2 � 0. However, also from Step 6,

2 The organization of our summary of Killeen’s derivation in terms of
lettered points is our own.

3 Henceforth, we symbolize asymptotic results such as d�™™™3
Lim

N��, �d
2�

using the more compact notation d�3 N��, �d
2�.

4 Without loss of generality, we only consider the case in which d�1 � 0
and, hence, in which a replication has occurred when d�2 � 0. The logical
and mathematical principles that apply to this case are identical for the case
in which d�1  0 (and, hence, in which a replication has occurred when
d�2  0).
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� 	 d�1 � �1. Thus, it can be concluded that a replication
has occurred when (d�1 � �1) � �2 � 0.

8. From representation d�2 	 (d�1 � �1) � �2, the fact that “the
expectation of each sampling error is 0 with variance �d

2”
(Killeen, 2005, p. 347), and the fact that d�1 and d�2 are
independent replications, it follows that “the variances add,
so that d�2 � N(d�1, �dR

2 ), with �dR

2 	 �2�d” (Killeen, 2005,
p. 347).

9. Thus, if d�1 � 0, the probability of obtaining an effect
of the same sign as that found in the original experi-
ment is P(d�2 � 0), and it follows from the deduced
distributional result d�2 � N(d�1, �dR

2 ) that this latter
probability is equal to

prep ��
��

d�1

�2�d N�0, 1�, (1)

which is the area under the standard normal distribution beneath

the point
d�1

�2�d

(Killeen, 2005, p. 347), as is illustrated in Figure 1.

Problems with Killeen’s (2005) prep Coefficient

Having detailed Killeen’s (2005) derivation of prep, we will, in
this section: (a) establish that prep is not the probability that Killeen
believed that he had derived, that being the probability of obtaining
an effect of the same sign as that found in an original experiment.
Killeen was, in fact, incorrect in his assessment that the depen-
dency of this target probability on the unknown parameter � could
be eliminated, and the illusion that he had succeeded in eliminating
this dependency is attributable to mathematical error; (b) establish
that the coefficient prep is simply a quasi-power coefficient; and (c)
provide several examples that illustrate the difference between the
quasi-power coefficient prep and the true in vacuo replication
probability P(d�2 � 0 � d�1 � 0)iv (where iv 	 in vacuo) that Killeen
set out to derive.

The Coefficient prep Is Not the Probability Killeen
(2005) Sought to Derive

Up to and including Step 7, there is nothing incorrect about
Killeen’s (2005) derivation. Steps 1 through 7 spell out the as-
sumptions on which Killeen’s derivation is based. These assump-
tions are the following:

1. d�1 and d�2 are each normally distributed;

2. d�1 and d�2 have the same mean, �, and variance, �d
2;5

3. d�1 and d�2 are statistically independent.

The fact that Killeen took Assumptions 1 through 3 as the basis for his
derivation indicates that by “replication,” he meant “replication in
vacuo.” In an in vacuo replication scenario, replication attempts are
imagined as being set within an unchanging world (in particular,
within an idealized world in which whatever happens in the original
experiment does not in any way influence what will happen in a
replication attempt). Clearly, then, in an in vacuo replication scenario,
the researcher does not actually carry out a replication attempt. In-
stead, a random variate d�2 is invented and assigned distributional
properties. This random variate stands for a theoretical infinity of
sample effects imagined as having been produced in vacuo. Because
d�1 and d�2 are defined on the same population of individuals and,
hence, are jointly distributed, Assumptions 1 through 3 are equivalent
to the single distributional claim that d�1 and d�2 have an asymptotic

bivariate normal distribution with mean vector ��

�
� and covariance

matrix ��d
2 0

0 �d
2� or, equivalently, that d�1 	 � � �1 and d�2 	 � � �2,

in which �1 and �2 have an asymptotic bivariate normal distribution,

with mean vector �0
0� and covariance matrix ��d

2 0
0 �d

2�. The zero

off-diagonal elements of these covariance matrices indicate that the
covariance between d�1 and d�2 is equal to zero; this condition is
equivalent to Assumption 3 under the bivariate normality of d�1 and d�2.

The error present in Killeen’s (2005) derivation occurs at Step 8
of the derivation. For the case in which d�1 � 0, Killeen’s prep was
supposed to be equal to P(d�2 � 0), in which d�2 is a normally
distributed random variate. As is well known, for the case of an
arbitrary random variate w that is distributed as N(�, �2), the
probability that w will assume a positive value, P(w � 0), is
equal to the probability that a standard normal random variate

z will assume a value less than or equal to
�

�
. This latter probability,

P�z �
�

��, is equal to ���

�

�

N�0, 1�, the area under the standard

normal distribution to the left of the point defined by the ratio
of the mean and standard deviation of w. At Step 8 of the
derivation, Killeen makes the deduction that d�2 � N�d�1, 2�d

2�,

5 In fact, Killeen makes an asymptotic argument in support of his claim
that d�1 and d�2 are each normally distributed, and the homogeneity of the
variances of d�1 and d�2 is a consequence of this asymptotic argument. Thus,
technically speaking, neither Assumption 1 nor the equality of variance
property is an assumption.Figure 1. The area under the normal curve corresponding to prep.
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and this deduction asserts that the mean of d�2 is equal to d�1 and that
the variance of d�2 is equal to 2�d

2. In prep, Killeen was attempting
to produce P(d�2 � 0), and it follows from his deduction that

P(d�2 � 0) should be equal to �
��

d�1

�2�d

N�0, 1�, the area under the

standard normal distribution to the left of the point defined by the ratio
of the mean and standard deviation that Killeen deduced for d�2.

However, Killeen’s (2005) Step 8 deduction d�2 � N�d�1, 2�d
2� that is the

basis for prep is incorrect. It follows directly from Killeen’s As-
sumptions 1 through 3 that the mean of d�2 is not equal to d�1 but
rather to �:

E�d�2� � E��d�1 � �1� � �2�

� E�d�1� � E��1� � E��2�

� � � 0 � 0

� � (2)

The variance of d�2 is not equal to 2�d
2 but rather to �d

2:

V�d�2� � V��d�1 � �1� � �2�

� V�d�1� � V��1� � V��2� � 2C�d�1, �1� � 2C�d�1, �2�

� 2C��1, �2�

� �d
2 � �d

2 � �d
2 � 2�d

2 � 2�0� � 2�0�

� 3�d
2 � 2�d

2

� �d
2 (3)

Thus, given Killeen’s (2005) stated assumptions, the distri-
bution of d�2 is actually N��, �d

2�, and this distribution certainly
does depend on unknown parameter �. Thus, so too must the
probability P(d�2 � 0). Coefficient prep does not depend on �,
but, contrary to what Killeen claimed, is certainly not a param-
eter-free version of the replication probability that he set out to
derive. As we establish in the next section of the paper, prep is
not a replication probability at all, but is, rather, a quasi-power
coefficient. The illusion that Killeen had eliminated the depen-
dency of P(d�2 � 0) on the unknown parameter � was produced
by his substitution of an incorrect mean (d�1) in place of the true
mean of d�2 (i.e., �) and his substitution of an incorrect variance
(2�d

2) in place of the true variance of d�2 (i.e., �d
2).

Killeen’s incorrect distributional deduction d�2 � N�d�1, 2�d
2� seems

to have been a result of his changing, mid-derivation, the as-
sumptions on which the derivation was based. As may be
recalled, Killeen began the derivation under the stated Assump-
tions 1 through 3, which assert that d�1 and d�2 are statistically
independent, normally distributed random variates with identical
means (�) and identical variances (�d

2). Assumptions 1 through 3
are equivalent to the single claim that d�1 	 � � �1 and d�2 	 ��
�2, in which �1 and �2 have a bivariate normal distribution with

mean vector �0
0� and covariance matrix ��d

2 0

0 �d
2�. However, as

the following simple derivations show, Killeen’s deduction
d�2 � N�d�1, 2�d

2� would be correct only if d�1 were a constant and �1

and �2 were random variates with mean vector �0
0� and covariance

matrix ��d
2 0

0 �d
2�:

E�d�2� � E��d�1 � �1� � �2�
� E�d�1� � E��1� � E��2� �linearity property of

expectation operator)
	 d�1 � 0 � 0 �mean of constant

is constant;
	 d�1 E��1� � E��2� � 0

by definition)

(4)

V�d�2� � V��d�1 � �1� � �2�
� V�d�1� � V��1� � V��2� �by independence of

d�1, �1, and �2)
� 0 � �d

2 � �d
2 �V�d�1� � 0;

V��1� � V��2� � �d
2)

	 2�d
2

(5)

Clearly, the claim that d�1 is a constant and �1 and �2 are random
variates is in conflict with Killeen’s (2005) stated Assumptions 1
through 3, and the result is an array of mathematical contradictions
and, ultimately, a prep coefficient that is not equivalent to the repli-
cation probability that Killeen set out to derive. For example, if, as
needed to make correct the deduction d�2 � N�d�1, 2�d

2�, d�1 were a
constant, then Killeen’s distributional claim d� � N��, �d

2� would be
incorrect: Constants cannot be normally distributed. Alternatively, if
d�1 were a constant, then it could not be true that d�1 	 � � �1, in which
�1 is a normally distributed random variate, with a mean of 0 and a
variance of �d

2. The latter distributional statement could not be true
because, if both d�1 and � were constants, then, by the equation d�1 	
� � �1, so, too, would �1 have to be. But in that case, �1 could not
be a normally distributed random variate with a mean of 0 and
variance of �d

2: Constants can neither be normally distributed nor have
a nonzero variance.

In our opinion, the incorrect deduction that ruined Killeen’s (2005)
derivation resulted from his improper mathematical handling of the
notion of d�1 having been observed. Killeen seems to have been of the
view that when a realization d�1

� is taken on random variate d�1 that is
jointly distributed with random variate d�2, the act of producing this
realization turns random variate d�1 into a constant. (This would
explain how he came to change, mid-derivation, the assumptions on
which the derivation was based.) However, this view is certainly
mistaken. The act of taking a realization of random variate d�1 does not
turn d�1 into a constant.6 Once a realization d�1

� of random variate d�1 is
taken, the information this realization contains about random variate
d�2 is encoded in the conditional distribution of d�2 given that d�1 	 d�1

�.
The conditional distribution of d�2 given that d�1 	 d�1

� is a weighted
“slice” of the bivariate distribution of d�1 and d�2, the slice determined
by d�1

�. If d�2 is dependent on d�1, then the conditional distribution of d�2
given that d�1 	 d�1

� will be more informative about d�2 than is the
unconditional distribution of d�2.

According to Killeen’s (2005) stated assumptions, d�1 and d�2 are
jointly distributed random variates, and this means that the prob-
ability that Killeen needed to derive was a conditional probability:

6 Note that a constant can be characterized as a degenerate random
variate, and taking a realization of a random variate does not turn it into a
degenerate random variate.
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If, in the initial experiment, d�1 	 d�1
� � 0, then the required

probability is P(d�2 � 0 � d�1 � 0); if, in the initial experiment, d�1 	
d�1

�  0, then the required probability is P(d�2  0 � d�1  0).
Because these conditional probabilities are defined under a very
particular conception of replication, namely, the in vacuo scenario,
we henceforth symbolize them as P(d�2 � 0 � d�1 � 0)iv and P(d�2 
0 � d�1  0)iv.7 If two random variates X and Y are statistically
independent, then the conditional distribution of Y given X
reduces to the unconditional distribution of Y.8 Thus, under the
statistical independence assumption (i.e., Assumption 3) of the
in vacuo scenario, P(d�2 � 0 � d�1 � 0)iv reduces to P(d�2 � 0)iv.
Because the distribution of d2 is N��, �d

2�, P(d�2 � 0 � d�1 �
0)iv 	 P(d�2 � 0)iv is then equal to

�
��

�

�d

N�0, 1�, (6)

which is the area under the standard normal distribution beneath

the point
�

�d
(see also Doros & Geier, 2005). As Equation 6 makes

clear, the in vacuo replication probability P(d�2 � 0 � d�1 � 0)iv, the
derivation of which was Killeen’s (2005) aim, most certainly does
depend upon the unknown parameter �.

The Statistic prep Is Simply a Quasi-Power Coefficient

We established in the previous section that, given Killeen’s
(2005) Assumptions 1 through 3 that define the in vacuo replica-
tion scenario, prep is not equivalent to the replication probability
P(d�2 � 0 � d�1 � 0)iv that he set out to derive. As it is already the
case that researchers are urged to include prep rather than the p
value in their submissions to Psychological Science, it is somewhat
urgent that we come to an understanding of exactly what it is that
researchers are calculating when they calculate prep. We now
establish that prep is not a replication probability at all, but rather
a quasi-power coefficient.

Imagine a researcher who, in an initial experiment, wishes to
test the hypothesis pair H0: �1 	 0 and H1: �1 � 0. The researcher
decides to run a size � test, and because d�13 N��1, �d

2�, the critical
value c on which the decision rule “reject H0 if � d�1 obs � � c” is
based is that value for which 1 � �

�c���

c��� N�0, �d
2� � �. Now

imagine that, on the basis of a realization d�1
� of d�1, the researcher

makes the decision to reject H0: �1 	 0 and, because of this
rejection, decides to attempt a replication of the experiment. That
is, he or she decides to draw a second sample and test the
hypothesis pair H0: �2 	 0 and H1: �2 � 0 under the distributional
framework d�23 N��2, �d

2�.
As part of the research design supporting the planned replication

attempt, a power analysis is carried out. The power function

Power���, �� � 1 ��
�c���

c���

N���, �d
2�

is a property of the test procedure. For any possible departure ��,
Power ���, �� quantifies the likelihood that the test procedure will
detect a departure of �� should it actually exist when the size �
procedure is employed. When one assesses Power ���, �� for a

particular possible departure ��, one is not making an assumption
that �� is the value that parameter �2 will assume at the time of
testing. At the time of testing, �2 will assume whatever value it will
assume, and the entire aim in conducting the test procedure is to
make a solid inference about this unknown value. In undertaking
a power analysis, the researcher assesses how the test procedure
will do if it encounters �� when it is employed and perhaps even
makes alterations to the test procedure if he or she deems this
assessed performance to be inadequate. However, at the moment
that the test procedure is employed, nature will be as it is, the test
procedure either will or will not yield the correct decision about �2,
and there is nothing that the test’s power function can say about it.

No test procedure can deliver unimpeachable sensitivity of
detection over the full range of values that can be assumed by �2.
The researcher must nominate a few values of �2 whose detection
is of paramount importance. In the absence of any other evidence
as to what the value of �2 will be, it would be perfectly reasonable
for the researcher to calculate Power �d�1

�, �). After all, d�1
� was

calculated on the sample drawn in the first experiment, and this
sample is thus far the only one that has been drawn. There is, of
course, no necessity that �2 will assume a value that is close to d�1

�

when the replication attempt is actually carried out. The value d�1
�

produced in the initial experiment might have been a poor estimate
of �1, or it may be the case that reality will change before the
replication attempt is carried out, the result being that �1 and �2 are
markedly unequal. Nonetheless, in the absence of any additional
evidence, d�1

� is the best guess as to the value that �2 will assume
when the replication attempt is carried out, and Power �d�1

�, �� is
the probability that the test procedure will detect this departure
should it occur in the replication attempt. This particular hypo-
thetical, produced by inserting the observed sample effect into the
power function, is sometimes called observed power (Onwueg-
buzie & Leech, 2004; O’Keefe, 2007).

If prep were not based on the incorrect variance 2�d
2 but rather on

the correct variance �d
2, it would be equal to

�
��

d1
�

�d N�0, 1� (7)

and, because d�23 N��2, �d
2�, Expression 7 can be read off directly

as the probability that d�2 will be greater than 0 given that its mean,
the parameter �2, happens to be equal to d�1

�. However, prep is
based on an incorrect variance, and therefore, rather than being
equal to Expression 7, it is a lower bound to Expression 7:

prep	�
��

d�1�

�2�d N�0, 1� ��
��

d�1�

�d N�0, 1�. (8)

It may be concluded, then, that prep is a lower bound to the
probability that d�2 will be greater than 0, given that the unknown
parameter �2 happens to be equal to d�1

�. Equivalently, it is a lower
bound to the proportion of an imagined infinity of samples that

7 Because P(d�2 � 0 � d�1
� � 0)iv and P(d�2  0 � d�1

�  0)iv are logically
of a piece, to simplify our presentation we discuss only the former.

8 Similarly, the conditional distribution of X given Y reduces to the
unconditional distribution of X.
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would yield a positive sample effect given that �2 happens to be
equal to d�1

�.
Coefficient prep is not a replication probability. Killeen’s (2005)

substitution of the realization d�1
� in place of the unknown param-

eter �2 makes prep a hypothetical akin to the power coefficients that
researchers compute as a matter of course. Each of the values
returned by Power ���, �� is a hypothetical, equal to the probability
of rejecting H0 if nature happens to be a certain way when the size �
test procedure is employed. Allowing �� to run over its range pro-
duces an infinite-sized class of hypotheticals (the points that form a
power curve). Likewise, allowing d�, in the function

�
��

d�

�2�d N�0, 1�,

to run over its range produces an infinite-sized class of hypotheti-
cals. If one inserts d�1

� into Power ���, ��, one produces observed
power, the probability that the size � test procedure will yield a
rejection of H0 given that �2 happens to be equal to d�1

� when the
procedure is employed. If one inserts d�1

� in place of d� in the
function

�
��

d�

�2�d N�0, 1�,

one produces prep, a lower bound to the probability that the
procedure will yield a positive sample effect given that �2 happens
to be equal to d�1

� � 0 when the procedure is employed. In fact, it
can easily be proven that prep is a monotone-increasing function of
observed power: Increases in observed power correspond to in-
creases in the value of prep. Thus, the coefficient prep can reason-
ably be called a quasi-power coefficient.

In contrast to hypotheticals such as Power ���, ��, observed power,
and prep, there is only one in vacuo probability of obtaining an effect
of the same sign as that found in an original experiment. This
probability, symbolized as P(d�2 � 0 � d�1 � 0)iv, is equal to the
proportion of samples produced in vacuo that contain a positive
sample effect (i.e., for which d�2 � 0). The value it assumes in a
given context is determined not by known properties of the sample
but rather by the value assumed by the parameter �. P(d�2 � 0 �
d�1 � 0)iv is not a hypothetical but rather describes a state of nature
that is unknown to the researcher. Figures 2, 3, and 4 illustrate the
differences between P(d�2 � 0 � d�1 � 0)iv, the replication probabil-
ity Killeen (2005) set out to derive, the quasi-power coefficient prep

he inadvertently produced, and observed power, the hypothetical
that is prep’s close relative.

Examples

For the two populations E and C, let �E 	 20, �C 	 18, and
� 	 4.35, so that � 	 .46. Under random sampling of nE 	 10 and
nC 	 10 from E and C, respectively, it is approximately the case
that d�1 � N(�, �d

2) (Killeen, 2005), so that, under the current
scenario, d�1 is distributed approximately as N(.46, .25).9 Imagine,
now, a researcher drawing samples of size 10 from each of E and C
and calculating a d�1

� of 1.58, unaware, of course, of the fact that d�1 �
N(.46, .25). Using as input the realization 1.58, the researcher calcu-

lates a prep of .987. What does this value indicate? It certainly is not
equal to the probability of obtaining, in a replication attempt, an effect
of the same sign as that found in this original experiment, for prep is
simply a quasi-power coefficient. A value of .987 for prep means that
if an infinity of samples were produced under a population effect that
happened to be equal to 1.58 (the sample effect observed in the
experiment), then at least 98.7% of these samples would yield a
positive sample effect. The researcher could just as easily have cal-
culated any other hypothetical, such as the proportion of positive
sample effects that would be yielded by an infinity of samples under
the condition that �2 happened to be equal to �.78 (the answer being
.13). Alternatively, if the researcher desired a hypothetical that con-
tained exactly the same information as prep, he or she could calculate
observed power, the probability that the test procedure will yield a
rejection of H0 given that �2 happens to be equal to d�1

� when the
procedure is employed. If � were to be set to .01, observed power
would be equal to .61.

Yet, the probability that Killeen sought to derive,
P(d�2 � 0 � d�1 � 0)iv, is not a hypothetical but rather a function
of the unknown parameter �. Under the current scenario, in
which � is equal to .46, P(d�2 � 0 � d�1 � 0)iv is equal to .82,
meaning that if an infinity of samples were produced in vacuo,
82% of these samples would contain a positive sample effect. In
this case, the true probability of an in vacuo replication is
considerably lower than the value of prep, but it is easily shown
that there does not exist a systematic relationship between the
values assumed by these quantities in a particular context.
Sometimes P(d�2 � 0 � d�1 � 0)iv will be lower than prep

and sometimes it will be higher than prep. There does exist a
systematic relationship between the hypotheticals prep and ob-
served power, that being that they are monotone increasing
functions of each other.

If, under an identical sampling scheme, � happened instead to
be equal to 1.15, and the sample drawn yielded a d�1

� of .09, prep

would then be equal to .55, observed power would be equal to
.005, and the true in vacuo replication probability, the propor-

9 Recall Result 2 from the section, Killeen’s (2005) Derivation of prep

section.

Figure 2. The true in vacuo replication probability P(d�2 � 0 � d�1 � 0)iv.
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tion of samples produced in vacuo that contain positive sample
effects, would be equal to .99. Finally, if � happened to be equal
to 1.15 and the sample drawn yielded a d�1

� of �0.2, prep would
then be equal to .61, observed power would be equal to .007,
and the true in vacuo replication probability P(d�2  0 � d�1 
0)iv, which in this case is equal to the probability of drawing a
second sample effect whose sign does not agree with the pop-
ulation effect (some might call this the probability of a second
anomalous result), would be equal to .01. Killeen (2005) be-
lieved that he had succeeded in eliminating the dependency of
P(d�2  0 � d�1  0)iv on � and that this probability was deter-
mined by the sample realization d�1

�, in this case, �0.2. If this
had been true, then it would make sense to take as truth the
sample realization �0.2 and to consider the proportion of in
vacuo–produced samples whose effects agreed in sign with this
realization. However, Killeen was mistaken: P(d�2  0 � d�1 
0)iv is controlled by the population effect, 1.15 in this case, and
it is this value that represents truth when the issue is the impact
of the treatment. In the current scenario, the researcher was
unfortunate to draw a sample that yielded the value �0.2, for
this value creates a mistaken impression about the treatment’s
true impact, which is moderate and positive. The last thing that
the researcher would desire is a replication of this misleading
sample event.

Discussion

Contrary to what Killeen (2005) claimed, prep is not a replication
probability. Killeen’s mathematics contained an error that gave the
(faulty) impression that the dependency of the in vacuo replication
probability P(d�2 � 0 � d�1 � 0)iv on the unknown parameter � could be
eliminated. In replacing the unknown parameter � with the observed
sample effect d�1

� in the function

�
��

�

�2�d N�0, 1�,

Killeen produced prep, a hypothetical that is a lower bound to the
probability that d�2 will be positive, given that the unknown pop-

ulation effect happens to be equal to d�1
� � 0. Further, there does

not exist a systematic relationship between the value yielded by
P(d�2 � 0 � d�1 � 0)iv and the value yielded by prep: Sometimes the
former will be the larger of the two, and sometimes the latter will
be the larger. Moreover, just as for the values of the power
function Power���, ��, the researcher does not need to conduct an
experiment in order to know the values assumed by the function

�
��

d�

�2�d N�0, 1�

as d� runs over its range. To offer prep as a description of the
signal-to-noise properties of an experimental outcome is akin to
offering observed power for the same purpose, and it would be
perverse to offer observed power as the final statement about an
experiment designed to render a decision about the efficacy of
a manipulation. We doubt that researchers would have accepted
prep as a replacement for the p value had they been told the truth
about it.

Despite the lack of usability of prep, Killeen (2005), neverthe-
less, has performed a service in pushing the discipline to step
beyond standard p-value–based inference and consider the general
issue of replication probabilities. We believe, however, that certain
of Killeen’s remarks on the topic of replication probabilities are
misleading and require correction so that the discipline may en-
gage in a fruitful discussion of this issue. First, we propose that
Killeen was incorrect in his suggestions that replication probabil-
ities can be made parameter free (that, essentially, data can control
the parametric sampling distribution of a statistic) and that a
change in focus from classical hypothesis testing to replication
probabilities amounts to a change in focus from parameters to
observables.

Probabilities are simply long-run relative frequencies or, equiv-
alently, proportions defined on an infinitely long sequence of
outcomes of a system. But the notion of an infinitely long sequence
is an abstraction that can only be characterized in terms of gener-
ating functions and their parameters. Replication probabilities can-
not be freed from their dependency on parameters. This is why, in

Figure 3. The quasi-power coefficient, prep.

Figure 4. The area under the normal curve corresponding to observed
power.
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their comment on Killeen’s original article, Doros and Geier’s
(2005) attempts to derive prep on the basis of different sets of
assumptions resulted in legitimate replication probabilities, each
and every one of which featured parameters. It is also manifest in
Killeen’s (2005) derivation of prep, which features asymptotics
(concerning the convergence of sample quantities to population
quantities) and in vacuo replication scenarios (defined, in part, on
the basis of the invariance of certain parameters). An interest in
replication probabilities is a de facto interest in parameters.

It is odd that Killeen (2005) saw replication probabilities, such
as P(d�2 � 0 � d�1 � 0)iv, as a potential improvement on pobs, for a
replication probability such as P(d�2 � 0 � d�1 � 0)iv is not at all the
same kind of quantity as pobs. The value assumed by P(d�2 � 0 �
d�1 � 0)iv is determined by the parameter � and, in order for the
researcher to gain some insight into the value assumed by the
parameter �, he or she would have to engage in inferential decision
making about that particular parameter. The coefficient pobs, on the
other hand, while admittedly suboptimal for the purpose, provides
the researcher with a means of making inferential decisions about
parameters. In replication probabilities such as P(d�2 � 0 � d�1 � 0)iv,
Killeen has not offered the discipline a competitor to pobs but has
instead replaced one inferential problem, the classical need to make
decisions about the value assumed by �, with an equivalent one, the
need to make inferences about the values assumed by replication
probabilities.

Consider a scenario in which nE 	 10, nC 	 10, �E 	 20, �C 	
18, and � 	 .69, so that � 	 2.9. Because it is approximately the case
that d�1 � N(�, �d

2), it follows that, in this scenario, d�1 is distributed
approximately as N(2.9, 0.25). That � is equal to 2.9 will, of course,
be unknown to the researcher. Now, imagine that, on the basis of a
single sample, the researcher obtains a d�1

� equal to �.18. Killeen
(2005) would act as if parameters have been eliminated and that the
(observable) sample realization �.18 has priority. It does not. The
instant that the researcher invokes a population characterization, such
as d�1 � N(�, �d

2), he or she is drawing a formal distinction between
population and sample and implicitly asserting the priority of param-
eters. For it is the value assumed by the parameter �, 2.9 in the current
scenario, that controls the sampling distributions of statistics such as
d�1 and d�2 and the value assumed by the replication probability P(d�2 �
0 � d�1 � 0)iv. So long as a formal distinction between population and
sample is maintained and modeled, the natural definition of treatment
effect is the parameter value 2.9.

Just as it is a misrepresentation to portray replication probabilities,
such as P(d�2 � 0 � d�1 � 0)iv, as being parameter-free and to portray a
focus on replication probabilities as a shift away from classical infer-
ence, so too is it confused to invoke the notion of “inference about
observables,” and to suggest, as does Killeen (2005), that a focus on
replication probabilities amounts to a focus on observables. If by
observable, one means a quantity calculated on the scores produced in
an experiment, then knowledge of the scores allows the researcher to
know the value of any observable of interest. The tools of inference
are not needed when the analytic foci are observables. If Killeen is
correct that psychology should supplant its interest in parameters with
an interest in observables, then the tools of classical statistical infer-
ence can be set aside by the psychologist in favor of the tools of
exploratory data analysis (Tukey, 1977). Certainly, however, the task
of coming to know the value assumed by a replication probability
such as P(d�2 � 0 � d�1 � 0)iv is as inferential a task as there can be. If
the discipline does, in fact, come to quantify the outcomes of exper-

iments through (noninferential) data-analytic explorations of observ-
ables, the need for replication probabilities, along with quantities such
as pobs and power, will have gone the way of the dinosaur.

In the second place, we suggest that Killeen (2005) misrepresented
the kinds of claims that would be licensed by the researcher’s knowl-
edge of the value assumed by the in vacuo replication probability
P(d�2 � 0 � d�1 � 0)iv. Consider a researcher who, in an experiment
conducted in January, produces a d�1

� that is equal to 1.58, a value that
inspires him or her to plan a replication attempt for July. That is to say,
his or her plan is to conduct an experiment in July, the defining
conditions of which are as similar as possible to those of the original
experiment. Killeen’s remarks make it sound as if the researcher’s
awareness of the value of P(d�2 � 0 � d�1 � 0)iv would license state-
ments about the likelihood that the July replication attempt will
yield a positive sample effect. It would not. The in vacuo proba-
bility P(d�2 � 0 � d�1 � 0)iv is defined under Assumptions 1 through
3 that define the in vacuo replication scenario. Whatever its virtues
may be, this scenario does not provide a good description of how
things work in nature.10 First, Assumption 2 of the in vacuo
scenario asserts that the means of d�1 and d�2, that is, �1 and �2, are
equal. However, if, as in the abovementioned scenario, d�1 and d�2
are sample effects defined under an initial experiment and a
temporally removed replication attempt, there is absolutely no
reason to believe that this condition will hold. In the real-world
experimental contexts that psychologists face, change is the norm,
this being the reason that latent growth curve models and time
series models have become so very popular. Second, the very act
of deciding to attempt a replication on the basis of a notable
realization of d�1 implies a violation of Assumption 3, which asserts
the statistical independence of d�1 and d�2.

In a real-world replication scenario involving an initial experi-
ment and a temporally removed replication attempt, the relevant
replication probability is the following:

P�d�2 � 0 � d�1 � 0� �
P�d�1 � 0 � d�2 � 0�

P�d�1 � 0�
,

in which P�d�1 � 0 �̧ d�2 � 0� is the empirical joint distribution function
of d�1 and d�2 (i.e., the probability that d�1 and d�2 will both be greater than
zero). The term empirical joint distribution is employed to distinguish
P�d�1 � 0 � d�2 � 0� from artificial, idealized distributional contexts
such as the in vacuo scenario that is the basis for P(d�2 � 0 � d�1 � 0)iv.
P�d�1 � 0 � d�2 � 0� is not in any way an idealization: Both its form
and the values assumed by its parameters are whatever they are by
virtue of the interaction of the features of the experiment that are

10 Nor does the idealization-heavy brand of inference that is classical
hypothesis testing (famous for its invocation of independence of observa-
tions, population normality, etc.) provide accurate real-world descriptions.
Once again, we urge the discipline to take seriously Killeen’s (2005)
preference for the study of observables by reducing its dependency on
inferential questions and procedures and increasing its employment, as a
basis for quantitative decision making, of noninferential data-analytic
techniques (e.g., de Leeuw, 1988; Tukey, 1977), backed by jackknife- and
bootstrap-based (see, e.g., Efron, 1979) stability analyses. Furthermore,
Killeen was correct about the importance of replicability as a basis for
quantifying the importance of a finding, and the data analytically based
decision making we propose should be embedded within an ongoing
program of attempted replications of findings.
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under the researcher’s control and those that are simply properties of
nature itself. It is not knowledge of the value assumed by the in
vacuo probability P(d�2 � 0 � d�1 � 0)iv, but rather the real-world
replication probability P(d�2 � 0 � d�1 � 0), that would license the
kinds of replicability statements that Killeen would like to make.
To know the value assumed by P(d�2 � 0 � d�1 � 0), however, is to
know both the form of P�d�1 � 0 � d�2 � 0� and the values
assumed by its parameters. Unfortunately, the researcher will not
know either of these required pieces of information. Perhaps the
one thing that can be said about P�d�1 � 0 � d�2 � 0� is that
because the outcome of an initial experiment will influence the
researcher’s decision regarding whether to attempt a replication, it
is likely that its form will be complicated.

Our view is that Killeen (2005) was correct that the issue of
replicability should have a central role in researchers’ assessments of
the empirical results that they produce but that this role is properly
ensured not through the employment of coefficients of replication but
rather through more consistent efforts—chiefly in the form of a
sustained program of replication attempts—to possess the capacity to
replicate experimental outcomes. To possess such a capacity is to be
able to specify the antecedent conditions necessary to bring about the
outcome. Thus, a researcher’s possession of this capacity is a pow-
erful demonstration that he or she has identified the causal antecedents
of a given outcome. A high value of a replication probability such as
P(d�2 � 0 � d�1 � 0)iv is a characteristic of a sampling distribution and,
hence, is in no way equivalent to the possession of this capacity.
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