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A method for selecting between K-dimensional linear factor models and (K C 1)-

class latent profile models is proposed. In particular, it is shown that the conditional

covariances of observed variables are constant under factor models but nonlinear

functions of the conditioning variable under latent profile models. The performance

of a convenient inferential method suggested by the main result is examined via

data simulation and is shown to have acceptable error rate control when deciding

between the 2 types of models. The proposed test is illustrated using examples

from vocational assessment and developmental psychology.

It is usual to make a distinction between continuous and categorical variables
in psychometric theory. Models involving latent variables of either one type or
the other are well known (e.g., Bartholomew & Knott, 1999), and more recent
innovations have allowed both continuous and categorical latent quantities to be
specified within a single mixture or hybrid model (e.g., De Boeck, Wilson &
Acton, 2005; Muthén, 2007). Consequently, there is a great deal of choice about
the appropriate level of measurement when representing substantive concepts as
latent variables. The general topic of this article is how to make such choices,
and in particular the problem of selecting between linear factor models and
latent profile models is addressed.
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MODEL SELECTION 911

Approaches to selecting between continuous and categorical latent variables
can be roughly categorized into three types: (a) selection based on statistics
measuring overall goodness of fit, (b) graphical methods, and (c) taxometrics.
In this introduction each of these is reviewed in turn before outlining the
present approach. The following discussion employs a terminological distinction
between structures and models. The former refers to a family of parametric
probability distributions defined by a common set of equations, for example,
the set of all normal distributions. The term model is reserved for a particular
parameterization of a structure, for example N.0; 1/.

Goodness of fit indices do not consistently distinguish continuous and categor-
ical latent variables. In particular, it has been shown that various K-dimensional
linear factor structures (KLF) and .K C 1/-class latent profile structures (KLP)
are formally equivalent at the level of the second-order moments of the observed
variables (Bartholomew & Knott, 1999, chap. 6; McDonald, 1967, § 4.3; see
also the following section of this article). This means that, for any given factor
model, a latent profile model with an identical model-implied covariance matrix
always exists (P. C. M. Molenaar & von Eye, 1994). For this reason, goodness
of fit statistics based on unconditional covariances (e.g., Browne, 1984) cannot
be used to discriminate the two structures.

More recently Bauer and Curran (2003, 2004) have addressed the conflation
of finite mixtures with normal components and nonnormal homogeneous popu-
lations. In this more general context Lubke and Neale (2006, 2008) have argued
that goodness of fit based on the joint distribution of the manifest variables,
rather than only the second-order moments, should provide a more effective
means of discriminating the two types of latent spaces. Their simulation studies
indicate that goodness of fit indices based on likelihoods can correctly identify
the type of data-generating model. The success of this approach appears to be
contingent on large class separation, the number of observations per class, and
on the particular fit statistic(s) employed. In cases where the class separations
are moderate (e.g., !1 within-class SD), the practical difficulties of detecting
mixtures via their marginal distributions are well known (Everitt & Hand, 1981;
Frühwirth-Schnatter, 2006). It is desirable to pursue methods that address these
difficulties.

McDonald (1967) proposed a graphical method for distinguishing latent pro-
files from either linear or nonlinear factor models. His suggestion was to examine
the modality of factor scores, which are unimodal for factor structures but will
asymptotically approach a discrete distribution with .K C 1/ peaks for KLP.
However, as indicated by Steinley and McDonald’s (2007) simulation study, for
finite sample size the usefulness of this approach is also contingent on class
separation and the observed mixing proportions. In practice this approach is not
unlike other graphical approaches based on marginal distributions (e.g., Everitt
& Hand, 1981, chap. 5).
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912 HALPIN AND MARAUN

With regard to selection (as opposed to estimation of model parameters),
Meehl’s taxometric methods such as MAXCOV and MAXEIG are also largely
graphical in nature (e.g., Ruscio, Haslam, & Ruscio, 2006; Waller & Meehl,
1998). A major restriction of such methods is that they are only formulated for
the case of K D 1. Nonetheless, procedures such as MAXCOV (Meehl & Yonce,
1996) provide an important innovation because they do not employ the marginal
distribution of the manifest variables per se but the distribution of two manifest
variables conditional upon a third. A similar but more general method for the
detection of differential item functioning between two groups was described
by Holland and Rosenbaum (1986) under the rubric of conditional association.
In the current article, this basic insight is applied to the case of K ! 1 for
continuously distributed outcome variables.

The basic outcome of the present research is as follows: When two or more
observed variables are conditioned on a linear combination of the remaining
observed variables, Y , the resultant covariance functions in Y are constant under
KLF but nonlinear under KLP. This is a sharp, observable distinction between
KLF and KLP that has the following advantages: (a) it requires only mild and
plausible restrictions on the parameter arrangements of particular models, (b) it
is insensitive to misspecification of K, and (c) it leads to a convenient asymptotic
chi-square test under the null hypothesis of KLF.

It is important to emphasize at the outset the logic of the proposed statistical
test. In particular, it is based only on the sufficiency and not the necessity of
the two structures considered in this article. This means that the test can only
be used as evidence against either one or the other type of model, and the valid
form of argument here is modus tollens. To elaborate this point, consider the
following informal null and alternative hypotheses:

Ho: The conditional covariances of the manifest variables are constant.
H1: The conditional covariances of the manifest variables are not constant.

Upon rejecting (accepting) Ho , any model that implies constant conditional
covariances may also be rejected (accepted). In this article we show that the
linear factor models are one such structure but that KLP is not. Therefore
rejection of Ho implies a rejection of KLF (but not KLP) and rejection of H1

implies rejection of KLP (but not KLF). This is how the test discriminates the
two structures, by providing evidence against either one or the other.

The test does not allow one to make a decisive conclusion for KLF or KLP.
This is because other types of models exist that also imply Ho or H1. Therefore,
to argue from H1 to KLP is to affirm the consequent, as is the argument from
Ho to KLF. For example, it is shown here that heteroscedastic factor models
(e.g., Hessen & Dolan, 2009) imply that H1 is true, and so these are also
plausible candidates if H1 is retained. It is also the case that many regression
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MODEL SELECTION 913

models with Gaussian error terms will imply Ho. As another example, nonlinear
factor models (e.g., Bauer, 2005; McDonald, 1967) can imply constant, linear,
or nonlinear conditional covariance functions, depending on the moments of the
posterior distribution of the latent variables.

To summarize, the interpretation of Ho and H1 is not restricted to the two
structures under consideration in this article because these structures are only
sufficient but not necessary for the hypotheses. When researchers are concerned
to distinguish these two structures (i.e., to reject one or the other), we show that
a test of Ho against H1 can be used for that purpose and we provide such a
test. As with any null hypothesis test, it should be interpreted within an overall
research context. The reader may also find it useful to revisit Bollen’s (1989)
remarks on statistical tests in the structural equation modeling (SEM), which
are equally relevant to the present research.

The remainder of this article is organized as follows: The next section spec-
ifies the models of interest and describes the selection problem. Then our
solution is presented and illustrated by means of two examples. The first example
uses vocational aptitude test data from the Armed Services Vocational Aptitude
Battery (ASVAB; see Segall, 2004) and illustrates a case in which the test rejects
the latent profile structure. The second example is based on the responses of
female children to the Water Level Task (WLT; Piaget & Inhelder, 1969), and
it shows that the test rejects KLF when the data are known to be KLP. Finally,
a simulation study is used to describe the error rates of the proposed inferential
procedure. In the discussion section of this article we consider ways of extending
the proposed approach to a broader class of structures.

THE PROBLEM OF DISTINGUISHING LINEAR FACTOR
MODELS AND LATENT PROFILES MODELS

Definitions of the K-dimensional linear factor structure and .K C1/-class latent
profile structure are given directly. In all cases let x0 D ŒX1; : : : ; XJ ! denote a
J -vector of continuous manifest variables. Let ™ denote either a K-vector of
continuous latent variables (under KLF) or a .KC1/-class latent variable (under
KLP). This dual use of ™ simplifies the discussion greatly and context settles its
interpretation. The notation fU represents the density function of U when U is
continuous and in the case that U is finite-valued, fU denotes its discrete mass
function. It is assumed that x and ™ are jointly distributed in the population of
interest.

Using this notation, KLF is defined in terms of the normal factor model of
Bartholomew and Knott (1999):

™ ! NK .0; I/ (1)
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914 HALPIN AND MARAUN

and

xj™ ! NJ .ƒ™; C.xj™//; (2)

where ƒ is a J " K matrix .J > K/ of rank K and C.xj™/ is diagonal. For the
latent profile structure (e.g., Lazarsfeld & Henry, 1968; Vermunt & Magidson,
2002), two analogous statements are employed:

f™ D

(

 k ; ™ D k

0; ™ ¤ k
k D 0; : : : ; K (3)

with  k > 0 and
P

 k D 1, and

xj™ D k ! NJ .E.xj™ D k/; C.xj™ D k//; (4)

with the E.xj™ D k/ being linearly independent and C.xj™ D k/ diagonal for
k D 0; : : : ; K. Linear independence of the conditional expectations implies the
more familiar requirement that, for all k ¤ l ,

•kl # E.xj™ D k/ $ E.xj™ D l/ ¤ 0; (5)

which is used later. As described in the following section, a main source of
continued interest in KLP is that it is indistinguishable from KLF when using
goodness of fit indices based on the covariance matrix of x.

Statement of the Model Selection Problem

The covariance decomposition

† # C.x/ D E™ŒC.xj™/" C C™ŒE.xj™/" D ‰ C ƒƒ0; (6)

with ‰ diagonal and rank .ƒƒ0/ D K, is the usual premise for estimation
of factor models (Joreskog, 1967). It has also been discussed how this same
decomposition is implied by KLP (e.g., Bartholomew & Knott, 1999, chap. 6;
McDonald, 1967 chap. 4; P. C. M. Molenaar & von Eye, 1994; Steinley &
McDonald, 2007). In applied contexts, this means that KLF and KLP have
identical fit at the level of second-order moments, and so covariance-based tests
of goodness of fit (e.g., those used in SEM) cannot distinguish the models. We
briefly provide a more thorough reiteration of this selection problem.

As with KLF, the matrix ‰ is diagonal under KLP by local independence.
The factorization and rank of C™ ŒE.xj™/" under KLP can be established as
follows: Define M to be the J " .K C 1/ matrix whose r th column is equal to
E.xj™ D r $ 1/ and let D # diagf kg. Then rank(M) D rank(D) D K C 1. Also
let 1 denote a conformable vector whose elements are equal to 1.

D
ow

nl
oa

de
d 

by
 [S

im
on

 F
ra

se
r U

ni
ve

rs
ity

] a
t 1

6:
47

 2
5 

Ja
nu

ar
y 

20
16

 



MODEL SELECTION 915

Using this notation E.x/ D MD1 and

C™ŒE.xj™/! D ŒM ! MD110!DŒM ! MD110!0

D MŒI ! D110!DŒI ! D110!0M0:
(7)

Because the order of ŒI ! D110! is K C 1, the rank of the product in Equation
(7) is equal to that of ŒI!D110! (Harville, 1997, §17.5). It is also readily verified
that ŒI ! D110! is idempotent. Hence

rank.C™ ŒE.xj™/!/ D tr.I ! D110/ D .K C 1/ ! tr.D110/ D K: (8)

Equation (8) shows that C™ŒE.xj™/! has the same rank under KLP as under
KLF. Furthermore, because C™ŒE.xj™/! is Grammian by construction and its
rank is K, there exists a J "K matrix U such that C™ŒE.xj™/! D UU0 (Harville,
1997, theorem 14.3.7). Thus KLP implies the covariance decomposition given
in Equation (6).

This problem was initially posed by McDonald (1967, § 4.3), although
in that case the situation was further complicated by considering nonlinear
factor models as a third alternative. Bartholomew (1987, § 2.4) provided an
independent statement of the problem and interpreted it as demonstrating that
latent distributions are poorly determined by observed second-order moments.
At this point a satisfactory solution has yet to be proposed (but see Lubke &
Neale, 2006; Steinley & McDonald, 2007), and this is the main motivation of
this article.

EMPIRICAL DISCRIMINATION OF KLF AND KLP

In this section the covariance matrix of a partition of manifest variables condi-
tional on a function of the remaining manifest variables is derived under KLF
and KLP. Formulation of conditional covariances of this type has precedent in
item response theory (e.g., Holland & Rosenbaum, 1986) and Meehl’s taxo-
metric procedures (e.g., Waller & Meehl, 1998). The graphical interpretation of
these results is briefly considered before moving on to consider an inferential
procedure.

Conditional Covariances Under KLF and KLP

Begin by partitioning x as Œxp; xJ !p!0 where xp is a selection of 2 < p < J
manifest variables to be referred to as covariance generating or output indicators
(Meehl & Yonce, 1996). The remaining .J ! p/ variables can be used to define
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916 HALPIN AND MARAUN

the scalar-valued function Y ! f .xJ !p/, which is referred to as an input or
conditioning indicator.

The following remarks about input and output indicators are relevant to further
developments. First, in the sequel it is required that Y j™ is normally distributed
under both structures. As the structures are specified earlier, this is assured when
Y is a linear combination of one or more manifest variables. In practice, the use
of linear combinations with a large number of indicators is advisable when the
normality of Y j™ is in question. It is also required that, under KLP, at least one
class separation is nonnull on both Y and xp (see Equation (14) later). This is
the only restriction we place on the parameters of either structure. Intuitively,
it means that Y and xp are also indicators of KLP. For KLF, this requirement
follows directly from its specification. Finally, note that Œxp; Y !0 satisfies the
requirement of local independence for both KLF and KLP, which follows from
the local independence of x (Loeve, 1963, p. 224).

Because the following analysis treats the manifest variables mainly in terms
of xp and Y , the subscript p will be dropped for notational simplicity where
this is unambiguous (e.g., when conditioning on Y ). The consequence is merely
to consider a p-vector rather than a J -vector of manifest variables under the
notation of x.

Denote the covariance matrix of a set of p output indicators conditional on an
input indicator by †xjY ! C.xjY /. Letting the subscript ™jY denote expectation
over the posterior density of ™, the usual method of covariance decomposition
yields

†xjY D ExjY ŒC.xjY; ™/! C C™jY ŒE.xjY; ™/!

D E™jY ŒC.xj™/! C C™jY ŒE.xj™/!
(9)

with the second equality in Equation (9) following from local independence
of Œxp; Y !0. Note that both latent structures imply that the matrix ‰xjY !
E™jY ŒC.xj™/! is diagonal and hence that the off-diagonal elements of †xjY may
be written using only C™jY ŒE.xj™/!.

Under KLF it is readily shown that

C™jY ŒE.xj™/! D ƒpŒC.™jY /!ƒ0
p; (10)

where ƒp is the p"K matrix of loadings corresponding to xp . Letting  k.Y / !
p.™ D kjY /, it is tedious although again straightforward to demonstrate that,
under KLP,

C™jY ŒE.xj™/! D
XX

k<1

 k.Y / l .Y /•kl •
0
kl : (11)
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MODEL SELECTION 917

Equations (10) and (11) show that the distribution of ™jY is required in order
to obtain an explicit expression for the elements of †xjY under either structure.

Considering the KLF case first, we write Y j™ ! N.ƒY ™; ¢2
Y j™/, where ƒY is

the 1"K vector of loadings on Y . Then it is a routine application of multinormal
theory to show that

™jY ! NK

 

Y

ƒY ƒ0
Y C ¢2

Y j™

# ƒ0
Y ; ¢2

Y j™Œƒ
0
Y ƒY C I!!1

!

: (12)

Substitution from Equation (12) into Equation (10) yields

†xjY D ‰xjY C ¢2
Y j™Œƒp Œƒ0

Y ƒY C I!!1ƒ0
p!: (13)

Inspection of Equation (13) shows that, under KLF, the elements of †xjY are
constant over Y . If the factors are not orthogonal the identity matrix in Equation
(13) is replaced by a nondiagonal matrix, and this matrix is also constant over
Y . However, if ¢2

Y j™
varies with ™ (e.g., Hessen & Dolan, 2009), so will the

conditional covariances. This point is revisited later.
Next consider the case of KLP. From Equations (9) and (11) it follows that

†xjY D ‰xjY C
XX

k<1

0

B

B

@

 kfY j™Dk #  l fY j™Dl
 

K
X

mD0

 mfY j™Dm

!2

1

C

C

A

•kl •
0
kl (14)

with the explicit function obtained from requirement that the Y j™ D k are
normal. Here the  k.Y / are written using Bayes’s rule and the •kl are in xp

rather than x. In Equation (14) is seen that off-diagonal elements ¢Xi Xj jY , i ¤ j ,
are weighted sums over the pairwise products of the posterior distributions of
the latent classes. These are nonlinear functions of Y given that at least one
class separation is not null on both Y and xp.

Equation (14) was analyzed by Maraun and Slaney (2005) for the case of
K D 1. They showed that (a) the conditional covariances are single-peaked
functions of Y when the within-class variances are equal, and (b) the conditional
covariances can be either one- or two-peaked when the within-class variances are
unequal. Their analysis was facilitated by the fact that in the two-class case, only
one of the  k.Y / is independent. When K > 1 the first and second derivates
(with respect to Y ) of Equation 14 cannot be analytically solved for zero, so its
behavior cannot be described by conventional methods. In the next section we
consider some graphical examples to show that off-diagonal elements of †xjY

are not, in general, well approximated by a constant.
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918 HALPIN AND MARAUN

In summary, this section has show that †xjY is constant under Gaussian factor
models but nonlinear under latent profile models with Gaussian components.
Note that we have not shown that these latent structures are the only ones with
these implications for †xjY , and indeed it has been discussed how heteroscedastic
factor models can also imply nonlinear conditional covariances. We now turn to
consider the usefulness of these results for selecting between KLF and KLP.

Graphical Methods

Covariance-based methods for distinguishing unidimensional linear factor mod-
els from the two-class latent profiles have been proposed by Meehl (e.g., Meehl
& Yonce, 1996, Waller & Meehl, 1998). The results given in the previous section
allow these methods to be extended to K > 1. In particular, each of the ¢Xi Xj jY ,
i ¤ j , can be plotted as a function of Y to visually inspect the form of the
curve. Examples of the 2LP and 3LP structures were generated using Equation
(14) and are shown in Figure 1. For examples of the 1PL case see Maraun and
Slaney (2005). Analytic examples of factor models are not shown because their
(constant) behavior is obvious from inspection of Equation (13).

Each curve in Figure 1 represents a single conditional covariance function
from a different latent profile model. Functions with matching types of lines in
either panel have similar weighting schemes given by the •kl . The details of
the curves are summarized in the caption. It is important to note that there are

FIGURE 1 Analytic conditional covariance functions of some latent profile models. For

each curve the mixture proportions are equal. On the left panel, the conditioning variables’

within-class means range from 0 to 4 and on the right panel these range from 0 to 8.

Within-class variances of the conditioning variables are between 1 and 2.
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MODEL SELECTION 919

14 parameters to vary for the 2LP covariances, and 19 under 3LP, so the figure
should not be taken to illustrate the full range of possible curves.

The two plots in Figure 1 were constructed to demonstrate that these con-
ditional covariance functions are not well suited to distinguish the number of
latent classes. In particular, this has implications for applications of MAXCOV.
A single-peaked conditional covariance curve is not specific to two-class latent
profile models but is also compatible with three- and four-class mixtures (see the
solid lines in Figure 1). Our work with these covariance functions supports the
conjecture that when the within-class variances are equal, the number of extrema
is between 1 and .K !1/ inclusive; when the within-class variances are unequal,
the number of extrema is between 1 and 2.K ! 1/ inclusive. If this conjecture
is correct, a single-peaked curve is possible for any value of K. Of course, a
similar consideration holds under KLF: the conditional covariances are constant
for all values of K. The implication is that, although these functions can be used
to distinguish KLF and KLP, they cannot be used to determine the number of
factors in a factor model or the number of classes in a latent profile model.

Figure 1 provides some insight at the “population level,” but sample-based
procedures must be employed in practice. In Figure 2, the 2LP models from
Figure 1 were used for data generation and the covariance curves were plotted.
The data generation protocol is described later in our simulation study, and
Ruscio et al. (2006) discuss how to obtain sliding window plots of conditional

FIGURE 2 Empirical conditional covariance functions of some latent profile models. The

same parameters from the 2LP curves in Figure 1 were used for data simulation. In the

left panel each covariance function is obtained from a total sample size of N D 2000 and

i D 1; : : : ; 18 sliding windows with a per window sample size of ni D 200 and an overlap

between windows of m D 100 observations. In the right panel N D 300, ni D 30, and

m D 15.
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920 HALPIN AND MARAUN

covariances. In the left panel of Figure 2 a total of 2,000 observations were
used, and in the right panel 300 observations. The plots to the left reproduce
the relevant properties of the analytic curves from the right panel of Figure 1
quite well (i.e., the number and location of extrema). When the sample size
is decreased to 300, the shape of the plots becomes more irregular and more
difficult to interpret. A sample size of 300 is the minimum sample size for
MAXCOV advised by Meehl (Meehl & Yonce, 1996).

Sample-based graphical procedures also depend on their performance under
factor models. Some examples for 2LF are given in Figure 3. The interpretation
of Figure 3 is analogous to that of Figure 2, and the parameter arrangements
are described in the caption. In both panels of Figure 3, the overall fluctuation
of the covariances is notably less than that found in Figure 2. However, flatness
is only a marked property of the 2LF-1 and 2LF-2 curves in the left panel. It is
difficult to judge the apparent fluctuations without knowledge of the sampling
variance of the covariances, and, as with all graphs, the resolution used on the
axes affects the apparent shape of the curves.

Many other numerical examples are available in the taxometric literature and
these have made use of more sophisticated graphical methods (see Ruscio et al.,
2006). The examples given here serve to show that covariance plots can be useful
for distinguishing KLF and KLP at larger sample sizes. Because the graphical
approach is more difficult to interpret at moderate sample sizes, other means for
selecting between KLF and KLP are desirable.

FIGURE 3 Empirical conditional covariance functions of some linear factor models. The

parameter arrangements for three linear factor models were randomly selected and used for

simulation. Covariance functions in the left and right panels were obtained using the sample

size specifications described in Figure 2.
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MODEL SELECTION 921

A CHI-SQUARE TEST FOR MODEL SELECTION

This section outlines the derivation of an inferential procedure suggested by
the foregoing results. Begin by recalling from Equation (13) that, under KLF,
the ¢Xi Xj jY , i ¤ j , are constant over Y . Next consider a partition of a closed
interval Œa; b! of Y

a D yo < y1 ! ! ! < yR D b: (15)

Let FY denote the cumulative distribution function of Y and write zr D FY .yr /
for r D 1; : : : ; R. Then requiring that

maxfzr " zr!1jr D 1; : : : ; Rg D minfzr " zr!1jr D 1; : : : ; Rg (16)

ensures that the intervals Yr D Œyr!1; yr ! all have equal probability under FY .
KLF then implies

EY 2Yr Œ¢Xi Xj jY ! D EY 2Ys Œ¢Xi Xj jY ! (17)

for any interval Œa; b! of Y , any choice of R, and all r , s D 1; : : : ; R. The main
significance of Equation (17) is as follows: If two or more groups of output
variables are formed by selecting on equiprobable subsets of Y , the population
covariances within each group are always equal under KLF.

We now explain why Equation (17) is false under KLP, the basic idea being
to let R become large for an arbitrary choice of Œa; b!. In order for Equation
(17) to be true, it must be the case that the integrand of EY 2Yr Œ¢Xi Xj jY !, namely,
fY .¢Xi Xj jY , is constant over all choices of Œa; b! and R. From Equation (14) we
have

fY :¢Xi Xj jY D
XX

k<1

0

B

B

@

 kfY j™Dk !  l fY j™Dl

K
X

mD0

 mfY j™Dm

1

C

C

A

•ikl •jkl ; (18)

where •ikl is the univariate analogue of •kl . Equation (18) is not constant over
Y , which can be confirmed by taking its derivative in Y . Therefore Equation
(17) is false under KLP. Roughly, this means that if we form a sufficient number
of equiprobable groups by selecting on Y , we are sure to obtain at least two
groups whose population covariances differ when KLP is true.

The foregoing considerations show that Equation (17) provides a means
of discriminating the two structures—it is true under KLF and false under
KLP. Note again that only sufficiency, not necessity, of the structures has been
considered. In the next section we outline the derivation of a statistical test of
Equation (17) when KLF is true and for any integer R 2 Œ2; 1/.
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922 HALPIN AND MARAUN

FIGURE 4 Integrand of expected conditional covariances. The same parameter arrange-

ments from the 2LP curves in Figure 1 were used to obtain integrands of the expected

conditional covariance functions. The median value of the conditioning variable is denoted

on each function by y! . Subtracting the integrals to the left of y! from those to their right

yields the following values: 2LP-1: 0.0724; 2LP-2: 0.1381; 2LP-3: 0.4271.

Before presenting the details of the proposed test, it is worthwhile to note that
R does not have to be large in order for Equation (17) to be false under KLP. In
particular, Figure 4 serves to illustrate that R D 2 is sufficient in some cases. The
figure shows Equation (18) for the 2LP curves considered in Figure 1 together
with the median values of Y . As described in the caption, for all three cases the
median split on Y is sufficient for Equation (17) to be false. However, it is not
clear whether such differences are large enough to be detected inferentially. We
address this question in more detail in the examples and simulation study that
follow.

Outline of the Derivation of a Test Statistic

Begin by defining the row vector

qij D ŒEY 2Y1 Œ¢Xi Xj jY ! ! ! !EY 2YR Œ¢Xi Xj jY !! (19)

for each pair i ¤ j , and i , j D 1; : : : ; p. Then let Q denote the .p.p"1/=2/#R
matrix with rows qij and let w denote an R-dimensional column vector of
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MODEL SELECTION 923

constants wr such that w01 D 0. We propose to test the following null hypotheses
under KLF:

Ho W Qw D 0: (20)

Equation (20) is the formal statement of the null hypothesis considered in the
introduction to this article.

To this end we consider the distribution of xjY under KLF, which is

xjY ! NP .Y " b; †xjY /: (21)

Here b is the p-vector whose i th element is given by ¢Xi jY =¢2
Y . Because E.xjY /

varies with Y , it is useful to formulate the test statistic in terms of the vector
of residuals e # xp $ Y " b. Then ejY ! NP .0; †xjY / and hence the ejy 2 Yr ,
r D 1; : : : ; R, are i.i.d. multinormal.

From here a test of the hypothesis given in Equation (20) is readily obtained.
The test is adapted from Seber (1984, chap. 3) and Steiger (1980). It is a
quadratic form statistic based on Fisher-transformed correlations computed on
random samples from ejY 2 Yr , r D 1; : : : ; R, and has an asymptotic chi-square
distribution.

Let P denote the .p.p$1/=2/ by R matrix of Fisher-transformed correlations
corresponding to Q. For r D 1; : : : ; R let ¡r denote the r th column of P,
let O¡r denote the estimated Fisher-transformed correlations computed on nr

independent observations from ejY 2 Yr , and let !r denote the covariance
matrix of .nr $ 3/1=2 O¡r . Because the ejY 2 Yr are i.i.d. multivariate normal
under KLF, it follows that !r D ! and as the nr ! 1 (see, e.g., Steiger,
1980),

OPw ! Np.p!1/=2

 

0;

R
X

rD1

w2
r

.nr $ 3/
!

!

: (22)

Next let A be any consistent estimator of !. Then, p limnr !1 A!1! D I,
and the asymptotic distributional result can be obtained using theorem 2.5.2 of
Searle (1971):

 

R
X

rD1

w2
r

.nr $ 3/

!!1

w0 OP0A!1 OPw ! ¦2.p.p $ 1/=2/: (23)

The distributional result in Equation (23) can be used to test the null hypothesis
in Equation (20). We now provide two examples of its application.
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924 HALPIN AND MARAUN

TABLE 1
Summary of Five ASVAB Subtests for N D 500 Respondents

AR PC AI MK AO

M !0.42 !0.35 !1.74 !0.11 !0.37

SD 1.05 1.01 0.93 1.03 1.03

Skew (SE D 0:11) !0.35 !0.157 0.592 !0.170 0.079

Kurtosis (SE D 0:22) !0.29 !0.807 0.790 !0.590 !1.016

Note. AI D Auto Information; AO D Assembling Objects; AR D Arithmetic Reasoning;

MK D Mathematics Knowledge; PC D Paragraph Comprehension.

Numerical Example of the Proposed Test:
Rejection of KLP

In this section an example from aptitude testing is used to illustrate a scenario
in which KLP is rejected. The purpose of this example is twofold. First, we
describe the steps used to compute the test statistic in Equation (23). Each
step can be easily performed with available software, and a simple Fortran 95
algorithm that combines all the necessary steps is also available from the authors.
Second, multiple choices of the input variable Y are considered in conjunction
with multiple values of R, which serves to illustrate the consistency of the test
across these parameters.

We analyzed a random sample of N D 500 complete responses to five
subtests of the ASVAB (see Segall, 2004). The battery was administered to a
total of 7,127 youths between ages 12 and 18 as part of the National Longitudinal
Survey of Youth 1997.1 The subtests employed were Arithmetic Reasoning
(AR), Paragraph Comprehension (PC), Auto Information (AI), Mathematics
Knowledge (MK), and Assembling Objects (AO). The data fit a unidimensional
factor model reasonably well based on second-order moments (root mean square
error of approximation D 0.07; 95% confidence interval D [0.04, 0.10]). Based
on marginal maximium likelihood, a separate sample from the same five subtests
of the ASVAB of 1997 was found to fit a factor model with heteroscedastic errors
on AR and AO (D. Molenaar, Dolan, & Verhelst, 2010). Also, as reported in
Table 1, the present data show mild to moderate univariate skew and kurtosis.
In light of the observed violations of the assumptions of KLF and the relatively
large sample size, the present example can be taken to illustrate the robustness
of the proposed procedure.

The analysis proceeded by selecting each of the i D 1; : : : ; 5 subtests as an
input variable Y . For each choice of Y , the following steps were followed: First
the four output variates were regressed on Y in order to obtain the residuals

1Retrieved March 30, 2008, from http://www.nlsinfo.org/web-investigator/.
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MODEL SELECTION 925

described below Equation (21); this required four univariate linear regressions
for each value of i . The input variate was then ordered and the quantile of
the nth ranked observation on Y was estimated as n=N C 1. Subsequently a
series of R D 2; : : : ; 5 groups of residuals was formed, the maximum value
of R based on sample size considerations. For each value of R, the groups
were formed by selecting on adjacent, disjoint intervals of Y . The requirement
of equiprobability of each group under FY was obtained via equality of group
sample sizes, although the Rth group was required to have a smaller sample
size when N=R was not an integer. The Fisher-transformed correlations were
then estimated in the usual manner for each group of residuals.

Each of the foregoing procedures can be readily performed with the usual
built-in utilities of most general statistical packages, whereas the following will
additionally require some easily programmable matrix operations.

For each value of R, the vech of the Fisher-transformed correlation matrix
was computed for each group and stored as a column of the matrix P in Equation
(21). Then covariance matrix of the Fisher transforms was computed using the
pooled estimates (Seber, 1984, chap. 3) and inverted. Next a normed vector of
weights with alternating signs was produced. For even values of R the weights
were chosen such that jwrj D w for all r and so the general form of the weight
vector is w D Œw; !w; w; !w; : : : !0. For odd values of R, the negative weights
were equal to .1 ! w=w!/, where w is the positive weight and w! is equal
to the floor function of R=2. Finally, the quadratic form in Equation (21) was
computed and its tail probability evaluated under the testing distribution.

The results of the analysis are presented in Table 2. It can be seen that most
of the observed tail probabilities under the testing distribution are quite large.
Two exceptions occur for the case of R D 4, yet these values of the test statistic
are also not entirely out of keeping with the null distribution. The overall weight
of the evidence suggests that there is no violation of the factor structure. Note
that because all 20 tests reported in Table 2 are computed on the same data,

TABLE 2
Chi-Square Values Using Each ASVAB Subtest as Input Variable

AR PC AI MK AO

R D 2 1.29 (.97) 9.09 (.17) 7.86 (.25) 5.79 (.45) 5.39 (.49)

R D 3 5.33 (.50) 2.57 (.85) 2.90 (.82) 2.70 (.84) 2.96 (.73)

R D 4 12.9 (.05) 10.93 (.09) 4.58 (.60) 2.37 (.88) 2.96 (.81)

R D 5 5.15 (.52) 9.04 (.17) 1.74 (.94) 3.11 (.79) 2.88 (.82)

Note. AI D Auto Information; AO D Assembling Objects; AR D Arithmetic Reasoning;

MK D Mathematics Knowledge; PC D Paragraph Comprehension. Table entries are the observed

chi-square statistic (df D 6) followed in parentheses by its tail-probability under Equation (23).

D
ow

nl
oa

de
d 

by
 [S

im
on

 F
ra

se
r U

ni
ve

rs
ity

] a
t 1

6:
47

 2
5 

Ja
nu

ar
y 

20
16

 



926 HALPIN AND MARAUN

interpretation of error rates is not appropriate in this context, and we defer
discussion of error rates until the simulation study of the following section. The
present example only serves to illustrate a case where the proposed test leads to
acceptance of a factor structure for a variety of combinations of R and Y when
the data are known to fit 1LF reasonably well.

Numerical Example of the Proposed Test:
Rejection of KLF

In this section we discuss data from the WLT (Piaget & Inhelder, 1969). The task
has been traditionally used to discriminate among children at different phases of
cognitive development. Success on the task requires the respondent to correctly
indicate that the surface of still water is always horizontal regardless of the
orientation of the container in which the water sits. The task is well known
to produce bimodal distributions among children of different Piagetian stages
of development (e.g., operational and preoperational) and to also have a strong
gender effect. This example therefore serves to illustrate the performance of the
test statistic when the factor would be implausible.

Our sample consisted of 285 observations from children age 8 to 12 years.
Responses to the WLT were recorded as angles (in degrees) of the water level
drawn by the children for bottles whose orientations ranged between 0ı and 90ı

from upright. The present example employs the N D 160 complete responses of
the female participants to five different bottle orientations. The fit of these data to
the unidimensional factor structure was tentative but not decisively unacceptable
(RMSEA D 0.08; 95% CI D [0.01, 0.15]). Descriptive statistics are presented
in Table 3, and a more thorough discussion of the full data set can be found in
Bringman, Buitenweg, van der Kooij, and Sierksma (2006).

The analysis followed the aforementioned procedure. Due to the relatively
small sample size, the test was only conducted for R D 2 and 3, and the latter
should be interpreted with caution. The results of the analysis are presented in
Table 4, where it can be seen that the test rejects the null hypothesis in most
cases. There are, however, two cases where the observed tail probability is quite

TABLE 3
Summary of Water Level Task for N D 160 Female Respondents

15ı 30ı 45ı 60ı 75ı

M 23.00 29.91 34.91 35.05 36.87

SD 31.80 34.77 34.91 43.09 40.63

Skew (SE D 0:19) 0.62 0.28 0.19 0.46 0.28

Kurtosis (SE D 0:38) 0.37 !0.55 !0.82 !1.66 !0.75
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MODEL SELECTION 927

TABLE 4
Chi-Square Values Using Each Water Level Task Angle as Input Variable

15ı 30ı 45ı 60ı 75ı

R D 2 20.90 (.002) 15.70 (.015) 2.32 (.88) 10.99 (.09) 27.63 (< .001)

R D 3 3.21 (.78) 14.74 (.02) 17.58 (.008) 10.08 (.09) 17.63 (.007)

Note. Table entries are the observed chi-square statistic (df D 6) followed in parentheses by

its tail-probability under Equation (23).

large, which may be attributable to a variety of reasons including the small
values of R and the large sampling error due to small within-group sample
size. Nonetheless, the weight of the evidence allows for the conclusion that a
factor model does not fit the data even though the fit of the marginal covariance
structure was not conclusive in this respect. Because a latent profile model is in
keeping with theories that posit discrete stages of development, whereas the fac-
tor model is not, the conclusion to accept KLP has clear theoretical implications.

This example also illustrates that the test can produce the correct rejection
of KLF when using a simple median split on the input variable. The following
simulation study sheds more light on the question of error rate control for the
case of R D 2.

Simulation Study: Error Rates of the Proposed Test
Statistic When R D 2

As explained earlier, the intended purpose of the proposed test is to make infer-
ences about KLF and KLP when sample size is not adequate to make reliable
use of graphical methods. Therefore this section considers the performance of
the test for the minimal value of R (i.e., the maximal value of nr ) and for small
.N D 30/ to moderate .N D 300/ sample sizes. If the power of the test is
adequate for the case of a median split then there is little reason to consider
larger values of R. The study leads to the favorable conclusion that the test can
be reliably applied under these circumstances.

Data were generated and analyzed using Fortran 95. To generate data under
the KLF structure, factor loadings and specific variances were assigned pseudo-
random values in the ranges [0, 1] and ˙1:5, respectively. In order to generate
data under KLP the conditional mean vectors were assigned pseudorandom
numbers between ˙2 and the conditional variances were obtained from the
diagonal of the inner product of a J ! J matrix of pseudorandom numbers
between ˙1. The maximum value of the within-class variances is therefore
equal to the number of observed variables, and so it was always possible for class
separations to be less than the within-class variances. The  k were also assigned
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928 HALPIN AND MARAUN

pseudorandom numbers, and the observed mixture was given by comparing
realizations of a pseudorandom U.0; 1/ variable with the  k . The analysis used
one randomly selected input indicator to conduct one test for each data set.

The four factors addressed in this simulation study were (a) model type
(KLF or KLP), (b) number of latent variate/components .K D 1; : : : ; 4/,
(c) number of covariance generating variables .p D 2; : : : ; 7/, and (d) sample
size .N D 30; 50; 100; 200; 300/. For each combination of the four factors, 5,000
independent trials were recorded, yielding a total of 1,200,000 data simulations.
The proportion of times out of 5,000 that the observed chi-square statistic
led to a rejection of the null hypothesis at the .01 and .05 alpha levels was
recorded. Under KLF this proportion is the empirical alpha level of the test,
and under KLP it is the empirical power of the test. Together these values
provide a comprehensive description of the test’s error rate control under the
two structures. Tables 5 and 6 report the observed proportions for KLF at the
.01 and .05 alpha levels, respectively. Tables 7 and 8 present this information
for KLP.

Considering Tables 5 and 6 first, the empirical alpha levels correspond quite
well to the theoretical probability of Type I error when only a single covariance
is considered (i.e., when p D 2). This is the case even if N D 30. Rather
surprisingly, when the number of covariance-generating variables increases, the
empirical alpha levels decrease. This is likely attributable to the weighting
coefficients .nr ! 3/!1, which have been reported to be inaccurate for high
dimensional quadratic form statistics based on Fisher-transformed correlations,
although improved weighting schemes have not been published (see Fouladi &
Steiger, 1999). In the present context the observed departure from the theoretical
probabilities implies that the number of Type I errors is less than expected. This
may suggest the use of a more liberal alpha level in applications with large
values of p. In general, Tables 5 and 6 provide an initial indication that the
proposed test performs satisfactorily under the null hypothesis: it does not reject
the linear factor model more often than it should.

Turning to Tables 7 and 8, the most notable trend is due to sample size.
For N D 30, the empirical power is inadequate. However, by the time the
total sample size has increased to 300, the average power has reached more
acceptable levels (approximately 0.83 for ’ D :05 and 0.75 for ’ D :01). It is
also the case that the average power to detect a 1LP structure at a given sample
size is generally less than that when K > 1.

An interaction between sample size and the number of covariance-generating
variables is also apparent. As N increases, the value of p for which power is
a maximum also increases. For example, at N D 100, the average empirical
power increases from p D 2 to p D 4 and then decreases again for p > 4.
At lower values of N the number of output variables that maximizes power is
less than four. Based on Tables 7 and 8, the best testing situation for correctly
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MODEL SELECTION 929

TABLE 5
Empirical Probabilities for Linear Factor Structure at .01 Alpha Level

Sample Size Factors p D 2 p D 3

Output

p D 4

Variables

p D 5 p D 6 p D 7 Average

N D 30 K D 1 .0142 .0096 .0054 .0038 .0018 .0012 .0060

K D 2 .0104 .0072 .0040 .0014 .0004 .0004 .0040

K D 3 .0120 .0108 .0046 .0024 .0006 .0002 .0051

K D 4 .0152 .0070 .0036 .0012 .0004 .0000 .0046

Average .0130 .0087 .0044 .0022 .0008 .0005 .0049

N D 50 K D 1 .0118 .0076 .0036 .0028 .0014 .0008 .0047

K D 2 .0112 .0086 .0042 .0024 .0006 .0002 .0045

K D 3 .0112 .0078 .0036 .0012 .0000 .0004 .0040

K D 4 .0094 .0076 .0052 .0016 .0002 .0002 .0040

Average .0109 .0079 .0041 .0020 .0005 .0004 .0043

N D 100 K D 1 .0096 .0108 .0042 .0022 .0018 .0008 .0049

K D 2 .0112 .0064 .0028 .0016 .0008 .0004 .0039

K D 3 .0094 .0090 .0036 .0020 .0008 .0000 .0041

K D 4 .0090 .0056 .0040 .0008 .0006 .0002 .0034

Average .0098 .0080 .0036 .0017 .0010 .0003 .0041

N D 200 K D 1 .0102 .0080 .0056 .0030 .0024 .0012 .0051

K D 2 .0104 .0066 .0040 .0018 .0000 .0002 .0038

K D 3 .0120 .0048 .0024 .0002 .0000 .0000 .0032

K D 4 .0110 .0054 .0030 .0010 .0002 .0000 .0034

Average .0109 .0062 .0038 .0015 .0007 .0004 .0039

N D 300 K D 1 .0112 .0080 .0032 .0034 .0024 .0024 .0051

K D 2 .0108 .0040 .0030 .0006 .0002 .0000 .0031

K D 3 .0090 .0078 .0022 .0006 .0006 .0000 .0034

K D 4 .0102 .0072 .0024 .0014 .0004 .0000 .0036

Average .0103 .0067 .0027 .0015 .0009 .0006 .0038

Note. Each table entry is the proportion out of 5,000 that a data simulation led to rejection of

the null hypothesis in Equation (20) at the specified alpha level.

retaining a latent profile model would be one where N D 300 and the number
of output variables used is between four and six. From inspection of Tables 5
and 6, this situation is also favorable for Type I error control.

In summary, conclusions based on Tables 5 through 8 include the following:
The minimal sample size for which a power of 0.80 may be obtained when using
an alpha level of .05 is N D 200, or 100 observations per group. At this sample
size, Type I and II error rates are well controlled when using between four and six
output variables. Therefore the test is most useful with at least 200 observations
on five or more indicators. Further discussion is provided in the next section.
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930 HALPIN AND MARAUN

TABLE 6
Empirical Probabilities for Linear Factor Structure at .05 Alpha Level

Sample Size Factors p D 2 p D 3

Output

p D 4

Variables

p D 5 p D 6 p D 7 Average

N D 30 K D 1 .0526 .0368 .0264 .0152 .0114 .0084 .0251

K D 2 .0468 .0348 .0186 .0076 .0044 .0010 .0189

K D 3 .0530 .0358 .0186 .0082 .0040 .0014 .0202

K D 4 .0542 .0346 .0186 .0088 .0030 .0006 .0200

Average .0517 .0355 .0206 .0099 .0057 .0029 .0210

N D 50 K D 1 .0476 .0408 .0222 .0174 .0108 .0060 .0241

K D 2 .0544 .0382 .0214 .0102 .0030 .0012 .0214

K D 3 .0498 .0356 .0174 .0092 .0036 .0018 .0196

K D 4 .0484 .0342 .0180 .0078 .0038 .0006 .0188

Average .0501 .0372 .0197 .0112 .0053 .0024 .0210

N D 100 K D 1 .0504 .0424 .0294 .0164 .0138 .0070 .0266

K D 2 .0562 .0306 .0182 .0090 .0052 .0022 .0202

K D 3 .0486 .0346 .0178 .0092 .0026 .0004 .0189

K D 4 .0474 .0328 .0204 .0060 .0026 .0004 .0183

Average .0507 .0351 .0215 .0102 .0060 .0025 .0210

N D 200 K D 1 .0558 .0434 .0298 .0164 .0130 .0096 .0280

K D 2 .0520 .0348 .0206 .0126 .0026 .0012 .0206

K D 3 .0536 .0342 .0150 .0060 .0030 .0006 .0187

K D 4 .0526 .0320 .0164 .0066 .0018 .0002 .0183

Average .0535 .0361 .0204 .0104 .0051 .0029 .0214

N D 300 K D 1 .0472 .0372 .0226 .0212 .0118 .0102 .0250

K D 2 .0470 .0288 .0178 .0094 .0058 .0018 .0184

K D 3 .0492 .0338 .0158 .0070 .0032 .0006 .0183

K D 4 .0496 .0320 .0156 .0062 .0034 .0006 .0179

Average .0483 .0329 .0179 .0110 .0060 .0033 .0199

Note. Each table entry is the proportion out of 5,000 that a data simulation led to rejection of

the null hypothesis in Equation (20) at the specified alpha level.

DISCUSSION

This article has provided a method for the empirical discrimination of Gaus-
sian linear factor models and latent profile models with Gaussian components.
Graphical approaches were shown to be useful with large sample sizes, but
the interpretation of such graphs in taxometric applications should be modified.
In particular, a single-peaked conditional covariance function is not necessarily
indicative of two classes. In place of graphical methods, we also developed an
asymptotic chi-square test based on Fisher-transformed correlations. This test
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MODEL SELECTION 931

TABLE 7
Empirical Probabilities for Latent Profile Structure at .01 Alpha Level

Sample Size

Latent

Classes p D 2 p D 3

Output

p D 4

Variables

p D 5 p D 6 p D 7 Average

N D 30 K D 1 .1432 .1354 .1006 .0666 .0450 .0300 .0868

K D 2 .1504 .1442 .1148 .0836 .0486 .0334 .0958

K D 3 .1422 .1294 .1060 .0806 .0506 .0336 .0904

K D 4 .1346 .1324 .0970 .0688 .0566 .0316 .0868

Average .1426 .1353 .1046 .0749 .0502 .0322 .0900

N D 50 K D 1 .2226 .2416 .2044 .1686 .1258 .0874 .1751

K D 2 .2140 .2504 .2264 .1838 .1406 .1040 .1865

K D 3 .2108 .2436 .2200 .1874 .1464 .0970 .1842

K D 4 .2040 .2224 .2198 .1814 .1444 .1014 .1789

Average .2129 .2395 .2176 .1803 .1393 .0975 .1812

N D 100 K D 1 .3392 .4254 .4420 .4044 .3530 .2998 .3773

K D 2 .3368 .4326 .4624 .4470 .4034 .3488 .4052

K D 3 .3212 .4358 .4636 .4392 .4010 .3576 .4031

K D 4 .3118 .4168 .4564 .4316 .3854 .3572 .3932

Average .3273 .4277 .4561 .4306 .3857 .3408 .3947

N D 200 K D 1 .4800 .6310 .6630 .6592 .6368 .5902 .6100

K D 2 .4724 .6436 .7096 .7188 .7166 .6962 .6595

K D 3 .4490 .6318 .6988 .7264 .7240 .7024 .6554

K D 4 .4478 .6150 .7098 .7284 .7114 .6902 .6504

Average .4623 .6303 .6953 .7082 .6972 .6697 .6439

N D 300 K D 1 .5456 .7228 .7600 .7806 .7624 .7414 .7188

K D 2 .5460 .7572 .8220 .8388 .8350 .8170 .7693

K D 3 .5212 .7440 .8238 .8432 .8430 .8360 .7685

K D 4 .5196 .7276 .8142 .8416 .8458 .8276 .7627

Average .5331 .7379 .8050 .8260 .8215 .8055 .7548

Note. Each table entry is the proportion out of 5,000 that a data simulation led to rejection of

the null hypothesis in Equation (20) at the specified alpha level.

requires both a moderate sample size .N ! 200/ and a moderate number of
covariance-generating variables .4 " p " 6/ for good error rate control. A
rather surprising finding was that the observed Type I error rate was less than
expected under the theoretical null distribution when p > 2. Research along
the lines of Fouladi and Steiger (1999) would be beneficial to shed light on
this phenomenon, but in the present application it is rather unproblematic. More
pressingly, it would be useful to devise an optimal strategy for selecting input
and output indicators and for interpreting discrepant results when multiple tests
are conducted on a single data set.
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932 HALPIN AND MARAUN

TABLE 8
Empirical Probabilities for Latent Profile Structure at .05 Alpha Level

Sample Size

Latent

Classes p D 2 p D 3

Output

p D 4

Variables

p D 5 p D 6 p D 7 Average

N D 30 K D 1 .2502 .2554 .2012 .1544 .1074 .0714 .1733

K D 2 .2590 .2714 .2290 .1800 .1196 .0898 .1915

K D 3 .2442 .2546 .2184 .1790 .1294 .0890 .1858

K D 4 .2414 .2552 .2114 .1744 .1326 .0870 .1837

Average .2487 .2591 .2150 .1720 .1223 .0843 .1836

N D 50 K D 1 .3404 .3788 .3418 .2874 .2294 .1720 .2916

K D 2 .3294 .3952 .3668 .3160 .2632 .2032 .3123

K D 3 .3326 .3860 .3650 .3304 .2694 .2150 .3164

K D 4 .3216 .3678 .3674 .3266 .2640 .2128 .3100

Average .3310 .3820 .3602 .3151 .2565 .2007 .3076

N D 100 K D 1 .4598 .5596 .5768 .5360 .4868 .4280 .5078

K D 2 .4602 .5770 .6138 .5942 .5538 .4930 .5487

K D 3 .4428 .5722 .6098 .5924 .5526 .5106 .5467

K D 4 .4358 .5620 .5972 .5872 .5466 .5216 .5417

Average .4496 .5677 .5994 .5774 .5350 .4883 .5362

N D 200 K D 1 .5826 .7326 .7616 .7622 .7308 .6860 .7093

K D 2 .5874 .7498 .8018 .8186 .8126 .7880 .7597

K D 3 .5562 .7402 .8060 .8230 .8096 .7934 .7547

K D 4 .5670 .7342 .8122 .8256 .8120 .7906 .7569

Average .5733 .7392 .7954 .8074 .7913 .7645 .7452

N D 300 K D 1 .6440 .8036 .8332 .8462 .8232 .8116 .7936

K D 2 .6462 .8324 .8866 .8962 .8882 .8730 .8371

K D 3 .6228 .8254 .8866 .8998 .8954 .8892 .8365

K D 4 .6194 .8188 .8816 .9008 .9008 .8816 .8338

Average .6331 .8201 .8720 .8857 .8769 .8638 .8253

Note. Each table entry is the proportion out of 5,000 that a data simulation led to rejection of

the null hypothesis in Equation (20) at the specified alpha level.

It is important to recall that the hypotheses on which the test is premised are
only implied by the sufficiency, not the necessity, of the two latent structures
considered in this article. This means that, although the test can be used to
reject either a factor structure or a latent profile structure, it can not lead to a
decisive conclusion in favor of either. Thus it would be useful to conduct further
research on the functional form of conditional covariances under other alternative
models of interest and devise means of making inferences about these functions.
In particular, it would be useful to consider the conditional covariances of factor
mixture models.
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MODEL SELECTION 933

In summary, this article has demonstrated that the choice between continuous
and categorical latent variables is not merely a matter of theoretical preference
but also has empirical, testable implications. By deriving such implications,
latent variable methodology can be brought to bear on problems of theory
formation in domains where the distinction between categories and continua
is of importance.
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