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Abstract
In the quantitative methodology literature, there now exists what can be considered a received 
account of the enigmatic phenomenon known as regression towards the mean (RTM), the origins of 
which can be traced to the work of Sir Francis Galton circa 1885. On the received account, RTM is, 
variably, portrayed as a ubiquitous, unobservable property of individual-level difference and change 
phenomena, a force that impacts upon the characteristics of individual entities, an explanation for 
difference and change phenomena, and a profound threat to the drawing of correct conclusions 
in experiments. In the current paper, we describe the most essential components of the received 
account, and offer arguments to the effect that the received account is a mythologization of RTM. 
In particular, we: (a) describe the scientific and statistical setting in which a consideration of RTM 
is embedded; (b) translate Galton’s discussion of RTM into modern statistical terms; (c) excavate 
a definition of the concept regression towards the mean from Galton’s discussion of RTM; and 
(d) employ the excavated definition to dismantle certain of the most essential components of the 
received account.
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At any given moment there is an orthodoxy, a body of ideas, which it is assumed that all right 
thinking people will accept without question. (Orwell, 1949, p. 6)

The origins of the widely discussed yet enigmatic phenomenon known as regression 
towards the mean (RTM) can be traced to the eminent geneticist Sir Francis Galton, circa 
1885. Based upon his studies of the distribution of artistic talent and intelligence within 
the family bloodlines of eminent men, “Galton noted that there was a marked tendency 
for a steady decrease in eminence the further down or up the family tree one went from 
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the great man” (Stigler, 1997, p. 107), a tendency that Galton (1885) originally labeled 
reversion or regression towards mediocrity. Galton eventually sought the assistance of 
mathematician J.H. Dickson to attempt to produce a complete quantitative formulation 
of the phenomenon he had observed and described (Stigler, 1997). 

Although it remains far from homogeneous in its details, there has come to exist in the 
literature on quantitative methodology the outline of what can be described as a received 
account of RTM. On this account, captured perhaps most purely in Stephen Stigler’s many 
papers on the topic, Galton grappled with what has been referred to as the “conundrum” of 
“why it was that talent or quality once it occurred tended to dissipate rather than grow” 
(Stigler, 1997, p. 107), and eventually reached a conclusion that has been heralded in mod-
ern times as “one of the grand triumphs of the history of science” (Stigler, 1997, p. 107).

The received account of RTM is constituted of claims of the following sorts:

1. “[U]nless there is perfect correlation between X and Y there must be regression 
towards the average” (Stigler, 1997, p. 105).

2. Regression towards the mean “affect[s] scores on retesting so that they are closer 
to the population mean” (Streiner, 2001, p. 72).

3. “Suppose the first score is exceptionally high—near the top of the class. How well 
do we expect the individual to do on the second test? The answer, regression teaches 
us, is ‘less well,’ relative to the class’s performance” (Stigler, 1997, p. 104).

4. “[T]he regression fallacy is the most common fallacy in the statistical analysis 
of . . . data” (Friedman, 1992, p. 2131).

On the received account, RTM is a potent but unobservable force that can play 
havoc with the scientist’s attempts to study change and to draw correct conclusions 
about the efficacy of treatments and interventions. While the received account does not 
yet contain a definitive explanation of the empirical origins and nature of RTM, proto-
explanations that rest on the properties of true and error scores and, hence, that are 
rooted in classical test theory appear to be ascendant (cf. Karylowski, 1985; Nesselroade, 
Stigler, & Baltes, 1980).

The case that we will herein present departs considerably from this received depic-
tion, for we will argue that, in his attempts to mathematize the phenomena that were 
originally the foci of his investigations, Galton lost sight of these phenomena, and unin-
tentionally founded a now long-standing practice of mythologizing RTM, the chief prod-
uct of which is the received account. The existence of the mythology that is the received 
account has not only militated against a sound historical account of what Galton did and 
did not accomplish, but has also interfered with the modern-day researcher’s capacity to 
conceptualize and coherently investigate change phenomena.

In order to support this verdict, it will be necessary to take stock of the key pieces of 
the puzzle that is the modern-day discussion of RTM. It will be necessary to clarify the 
Galtonian origins of this puzzle and, in so doing, distinguish RTM from the individual-
level phenomena out of which it is constituted. This will, in turn, necessitate a clarifica-
tion of the essential distinction between phenomena and their statistical representations. 
The cornerstone of this analysis, and the key to dismantling the mythology that is the 
received account, will be an excavation of Galton’s definition of the concept regression 
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towards the mean from the talk of bivariate normality and linearity of regression under 
which it has long been buried. The organization of the paper is as follows: (a) the scien-
tific and statistical setting in which a consideration of RTM is embedded will be described 
in detail; (b) Galton’s discussion of RTM will be given a modern statistical translation; 
(c) a definition of the concept regression towards the mean will be excavated from 
Galton’s discussion of RTM; and (d) with the excavated definition as the primary tool, 
the key components of the mythology that is the received account will be dismantled. 

The embedding context of RTM

For the sake of economy of exposition throughout the remainder of the paper, it will be 
useful at this point to introduce a set of statistical notation and to review a small number 
of scientific concepts. Following this, Galton’s 1885 work will be reviewed, and his 
claims cast in this language and notation.

Statistical notation and language 

Let P
T
 denote a population of N individual entities (such as the set of all humans, or all 

Canadian women under 40, or all gold nuggets weighing more than one ounce). There 
can be defined, for the purposes of scientific investigation, countless distinct populations 
P

T
. Let (X,Y) denote a pair of variates defined on some population P

T
, the scores on each 

of X and Y being measurements of the standings of individual entities with respect to two 
types of phenomena under study. This simply means that each i PT∈  yields a score-pair 
(x

i
,y

i
). A particular choice of P

T
 and (X,Y) thus constitutes a population/phenomenon 

pairing (henceforth, P
T
/phenomenon pairing).

We will say that X and Y have a bivariate empirical distribution in P
T
 and symbolize 

this distribution as F
x,y

. We call this an empirical distribution function because it is a lit-
eral reporting of the proportions of joint occurrences P X t Y s≤ ≤( ),   of the values 
assumed by X and Y within P

T
. The empirical moments of F

x,y
 are functions of the joint 

proportions P X t Y s≤ ≤( ),   and include the population means µ
x
 and µ

y
 variances σ x

2  
and σ y

2 ,  Pearson product– moment correlation ρxy ,  all higher-order association param-
eters, and so on. The empirical moments of F

x,y
 are simply aggregate properties of the set 

of score pairs (x
i
,y

i
) yielded by the N entities contained in P

T
. Hence, they are aggregate 

properties produced under a particular P
T
/phenomenon pairing. Finally, we will denote 

the class of all F
x,y

—that is,
 
bivariate distributions produced under P

T
/phenomenon pair-

ings—as F. 
In contrast to the class F of empirical distribution functions, let T stand for the class 

of theoretical or mathematical bivariate distributions. Unlike the elements of F, the ele-
ments T

x,y
 of T are specified by mathematical functions of the form z f x y= ( , ).  Some 

familiar elements of T include the bivariate normal, bivariate gamma, and bivariate uni-
form distributions. Because theoretical distributions are simply mathematical functions, 
they have no necessary link to empirical reality. If a scientist wishes to use some T Tx y, ∈  
to represent a particular F Fx y, ,∈  the onus is on the scientist to choose an element of T 
that is a satisfactory representation of Fx y, .  A failure to make a satisfactory choice can 
very easily result in the scientist making erroneous empirical claims. 
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For any observed score-pair (x
i
,y

i
) yielded by an i PT∈ , difference and change 

phenomena are captured quantitatively as functions defined on (x
i
,y

i
), examples being 

the raw difference y xi i− , the absolute difference y xi i− , and the ratio 
y

x
i

i

.  Thus, a 

quantitative study of difference or change phenomena at the level of the individual entity 
is carried out through a study of functions defined on score pairs (x

i
,y

i
). If it is observed 

that, for a particular function of (x
i
,y

i
), all elements of P

T
 are such-and-such, then nomo-

thetic knowledge (Lamiell, 1998) has been derived, and it is the job of the scientist to 
explain why the entities in P

T
 are as they are. Traditionally, nomothetic explanations are 

expressed as individual-level laws, which are typically represented in the following form:

  (1) 

This symbolic statement can be interpreted as the claim that “for all elements i con-
tained in population P

T
, y

i
 is causally determined by x

i 
in conjunction with a vector of 

ancillary factors ω. ” A law of this sort is typically accompanied by supporting sen-
tences that explain the law’s workings and the meanings of the symbols that appear in 
its representation. 

One way to quantify the degree of exceptionality or extremity of an entity’s score 
within the distribution of a variate is to compute the number of standard deviations of the 
score from the mean of the distribution. Thus, the extremity of a score x

i
 with respect to 

the distribution of X is quantifiable as z
x

x
i x

x
i

=
−( )µ
σ

 and the extremity of a score y
i
 

with respect to the distribution of Y , as z
y

y

i y

y
i

=
−( )µ

σ
.  These quantities may be 

referred to as the standardized scores on X and Y, respectively. A z zx yi i
,( ) pair equal to 

(3,1.5), for example, indicates that the score of entity i on X is three standard deviations 
from the mean of X, while its score on Y is 1.5 standard deviations from the mean of Y. 
Alternatively, we might say that the X-score in this example is twice as extreme as the 
Y-score. 

Galton’s 1885 work

In his 1885 article “Regression Towards Mediocrity in Hereditary Stature,” Galton 
describes the analysis of his human adult parent/offspring height data set—which he 
referred to as “the Records”—as follows: 

[I]t supplies me with the class of facts I wanted to investigate—the degrees of family likeness 
in different degrees of kinship, and the steps through which special family peculiarities become 
merged into the typical characteristics of the race at large. (p. 247)

His analyses of “family likeness” in height were based on data that “consisted of the 
heights of 930 adult children and of their respective parentages, 205 in number” (p. 247). 

∀ ∈ = ( )i P y f xT i i, , ω
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In particular, the individual entities i PT∈  that were the targets of his investigation were 
adult, British, human parent/offspring pairs. As a preliminary step in his analysis, Galton 
equated male and female measurements by multiplying the latter by a factor of 1.08, and 
calculated the average (arithmetic mean) height of the parents of each adult offspring. 

Galton (1885) claimed that “the stature of the children depends closely on the average 
stature of the two parents” (p. 249). This claim suggests that his aim was to discover a 
law that would describe, for any i PT∈ ,  the causal dependency of offspring height (z

yi
) 

on parental height (z
xi
).1 Galton seems to have believed that his “discovery” of RTM 

represented the fulfillment of this aim, for he concluded that “[t]his law tells heavily 
against the full hereditary transmission of any gift, as only a few of many children would 
resemble their mid-parentage” (p. 253), a suggestion that agrees with Galton’s frequent 
references to the law of RTM. While his written work suggests that the essence of RTM, 
to his mind, was that “the structure of adult offspring must on the whole be more medio-
cre than the structure of their parents,” he translated (for reasons that we will later dis-
cuss) the notion of “on the whole” into the mathematical expression “on average.” Thus, 
with respect to height, Galton expressed his RTM claim as follows: “[W]e can define the 
law of regression very briefly. It is that the height-deviate of the offspring is, on the aver-
age [emphasis added], two-thirds of the height deviate of its mid-parentage” (p. 252). 
This claim can be represented symbolically as 

  (2)

in which E Z Zy x| =( )δ  is the mean of Z
y
 given that Z

x
 is equal to δ . 

Because we will, shortly, provide both a general definition of the concept of RTM, 
and argue that the phenomenon of RTM has been mythologized, it is essential to distin-
guish the empirical components of Galton’s claim 2 from what follows necessarily from 
the claim itself. An examination of equation 2 itself and a consideration of Galton’s 
claims (“the experiments showed further that the mean filial regression towards medioc-
rity was directly proportional to the parental deviation from it”; 1885, p. 246) make it 
clear that the most fundamental empirical claim embodied in equation 2 is that the con-
ditional mean E Z Zy x| =( )δ  of Z

y
 on Z

x
 (equivalently, Y on X) is linear, or, in other 

words, has the functional form 

  (3)

The coefficient β y x.  in equation 3 is the slope of the linear regression function, and is 
equal to the number of standard deviations change in the average of Y associated with a 
one standard deviation increase in X. Let us point out two important facts related to the 
claim that E Z Zy x| =( )δ  is linear:

1. For any F Fx y, ,∈  E Z Zy x| =( )δ  is determined by F
x,y

, and, hence, its functional 
form is a property of the set of N score-pairs ( , )x yi i  yielded by the entities 
i PT∈ .  In particular, E Z Zy x| =( )δ  can be flatline (when Z

x
 and Z

y
 are unre-

lated), linear, or one of an infinity of nonlinear forms. Thus, for a particular P
T
/

E Z Zy x| ,=( ) =δ δ
2

3

E Z Zy x y x| ..=( ) =δ β δ
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phenomenon pairing, the claim of linearity of E Z Zy x| =( )δ  need not be true. 
It is a testable, empirical assertion about F

x,y
, or, equivalently, about the N score 

pairs yielded by the individual entities under a particular P
T
/phenomenon pairing. 

Whether or not Galton was correct in his claim about the form of E Z Zy x| =( )δ  
remains open for debate: a recent reanalysis by Wachsmuth, Wilkinson, and 
Dallal (2003), for example, raises the possibility that Galton misanalyzed his 
data, and that his conditional mean functions were, in reality, nonlinear. 

2. If equation 3 were true for a particular P
T
/phenomenon pairing, then the linearity 

of E Z Zy x| =( )δ  would be a discovered property of the F
x,y

 generated under the 
particular P

T
/phenomenon pairing (equivalently, a discovered property of the 

population of score-pairs yielded by the entities i PT∈ ) . That is to say, when it 
arises in nature, the linearity of E Z Zy x| =( )δ  is an aggregate, or population-
level property of a set of score-pairs. Discovered aggregate properties must be 
explained, and it is the job of the scientist to formulate plausible explanations for 
the discovered properties of things. However, for a particular P

T
/phenomenon 

pairing, the state of nature described by equation 3 is not equivalent to the discov-
ery of a law that explains phenomena arising at the level of the individual entity. 
On the contrary, when it arises in nature, the linearity of E Z Zy x| =( )δ  has no 
implications for the characteristics of any particular individual entity i PT∈ . 

Let us now consider what follows necessarily when equation 3 obtains. If it were true, 
for a particular P

T
/phenomenon pairing, that E Z Zy x| =( )δ  was a linear function, 

then, because Z
x
 and Z

y
 are standardized variates, the slope of E Z Zy x| =( )δ  would 

necessarily be equal to the Pearson product–moment correlation coefficient (PPMC): 
that is, it would be the case that 

  (4) 

Because ρxy  is restricted by its very construction to lie in the interval [-1,1], it would 
then follow from equation 4 that

  (5)

Thus, if, for a particular P
T
/phenomenon pairing, E Z Zy x| =( )δ  happened to be a linear 

function, it would then follow that E Z Zy x| =( )δ  would have to lie within the shaded, 
bow-tie shaped, region of Figure 1. In other words, with respect to Galton’s height data, 
linearity of E Z Zy x| =( )δ  implies that the average extremity of offspring height is no 
greater than the extremity of parent height. 

Because ρxy  will assume the value of unity only under manufactured conditions 
(as when calculated on a data set containing but two observations), practically speak-
ing, if, for a particular P

T
/phenomenon pairing, E Z Zy x| =( )δ  happens to be linear, it 

would then follow that the average extremity of offspring height would have to be less 
than the extremity of parent height. Finally, because the magnitude of the difference 
between parent and average offspring extremity is, under linearity of E Z Zy x| ,=( )δ  
equal to 

β ρy x xy. .=

− ≤ ≤1 1β yx .
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 (6) 

if it did happen to be the case for a particular P
T
/phenomenon pairing that E Z Zy x| =( )δ  

was linear, then the magnitude given in equation 6 would necessarily be a linear, increas-
ing function of |δ |, the extremity of parent height.

For the general case of two continuous variates X and Y defined under a particular 
P

T
/phenomenon pairing, the analytic results above can be summarized as two 

conclusions:

 Conclusion 1: If it happens to be the case that X and Y have a linear relation-
ship (and there is no necessity that they do), then it follows that for any 
particular degree of extremity |δ | of X, the average extremity of Y will be 
less than |δ |.

 Conclusion 2: If it happens to be the case that X and Y have a linear relationship 
(and there is no necessity that they do), then it follows that the magnitude of the 
difference between |δ | and the average extremity of Y will be a linearly increas-
ing function of |δ |.

Figure 1. A graphical definition of RTM-E.1

δ δ δ β δ

δ ρ

− =( ) = −

= − −( )
E Z Zy x y x

xy

|

,

.

1=
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Excavating Galton’s intended definition of RTM

Notably absent from the literature on RTM, and, in particular, the received account of 
RTM, is a definition of the concept regression towards the mean. In a largely unspecified 
fashion, conclusions (1) and (2) are seen as having something to do with RTM, and this 
has meant that the phenomenon of RTM has been conceptualized as inextricably tied to 
the linearity of conditional mean functions (cf. Chesher, 1997).2 As we will shortly dis-
cuss, this unwarranted tying of RTM to the linearity of conditional mean functions likely 
arose because Galton chose to employ the bivariate normal distribution as his chief 
representational tool, and in the case of the bivariate normal, both conditional mean 
functions are linear. However, the assignment to linearity and bivariate normality of a 
fundamental role in the study of RTM represents a fundamental distortion of what Galton 
had originally meant by regression towards the mean. Buried under the misguided preoc-
cupation with bivariate normality and linearity lies Galton’s true (linearity/bivariate 
normality-free) proto-concept regression towards the mean. We will now turn to an exca-
vation of this concept.

As is clear from his many writings on the topic, Galton’s proto-concept regression 
towards the mean rested on two distinct components: (a) for any particular degree of 
extremity | |δ  of X, the average extremity of Y is less than | |δ  and (b) the magnitude of 
the difference between | |δ  and the average extremity of Y is an increasing function 
of | | .δ  These components can be expressed symbolically as

 RTM-E.1:  − ≤ =( ) ≤δ δ δ    E Z Zy x|

  Equivalently, E Z Zy x| =( ) ≤δ δ  

 RTM-E.2:  δ δ -  E Z Zy x| =( ) is an increasing function of δ .

Thus, Galton’s excavated definition can be stated as follows:

Definition: regression towards the mean. The state of affairs in which the conditional mean 
function E Z Zy x| =( )δ  of one standardized variate Z

y
, given a second standardized variate 

Z
x
, satisfies both RTM-E.1 and RTM-E.2. 

Geometrically, RTM-E.1 is the condition that E Z Zy x| =( )δ  is contained within the 
shaded, bow-tie shaped, region of Figure 1, while RTM-E.2 is the condition that the first 
derivative of E Z Zy x| =( )δ  is less than 1 in quadrants 1 and 3, and greater than -1 in 
quadrants 2 and 4 of R2. We will continue to employ the notation RTM when speaking 
loosely about the phenomenon of regression towards the mean, but will, henceforth, 
employ the notation RTM-E to stand for Galton’s, now excavated, concept regression 
towards the mean. Specifically: (a) a conditional mean function E Z Zy x| =( )δ  will be 
said to be RTM-E consistent only if it satisfies both RTM-E.1 and RTM-E.2 and (b) a 
bivariate distribution will be said to be RTM-E consistent only if at least one of its con-
ditional mean functions, E Z Zy x| =( )δ  and E Z Zx y| ,=( )δ  is RTM-E consistent. Let 
T stand for the class of bivariate theoretical distribution functions and F for the class 

 at SIMON FRASER LIBRARY on January 25, 2016tap.sagepub.comDownloaded from 

http://tap.sagepub.com/


770  Theory & Psychology 21(6)

of bivariate empirical distribution functions. Partition T into the subclasses of RTM-
E-consistent and RTM-E-inconsistent distribution functions, denoted T

RTM
 and T

RTMI
, 

respectively. Analogously, partition F into the subclasses of RTM-E-consistent and 
RTM-E-inconsistent distribution functions, denoted F

RTM 
and F

RTMI
. We then have the 

following:

1. Because the elements of T are specified mathematically, the determination of 
whether a particular element T

x,y
∈T belongs to T

RTM 
or T

RTMI 
is made by mathe-

matical analysis. Specifically, on the basis of mathematical analysis, a decision 
must be made as to whether at least one of the conditional mean functions, 
E Z Zy x| =( )δ  and E Z Zx y| ,=( )δ  of T

x,y 
satisfies both RTM-E.1 and RTM-

E.2 (i.e., is RTM-E consistent).
2. Because the elements of F, one for each P

T
/phenomenon pairing, are not specified 

mathematically, the determination of whether a particular element F
x,y

∈F 
belongs to F

RTM 
or F

RTMI 
is a matter not for mathematical analysis, but, rather, for 

empirical investigation. The researcher must draw a sample of score-pairs from 
F

x,y 
and make an inferential decision about whether at least one of the conditional 

mean functions, E Z Zy x| =( )δ  and E Z Zx y| ,=( )δ  of F
x,y 

satisfies both RTM-
E.1 and RTM-E.2 (i.e., is RTM-E consistent).

3. For a T
x,y

∈T (F
x,y

∈F) for which at least one of E Z Zy x| =( )δ  and E Z Zx y| =( )δ  
is linear, Conclusions 1 and 2 establish that T

x,y
∈T

RTM
 (F

x,y
∈F

RTM
). We denote 

as T
LRTM

 (F
LRTM

) the subclass of T
RTM

 (F
RTM

) containing T
x,y

 (F
x,y

) that are 
RTM-E consistent by virtue of the fact that at least one of E Z Zy x| =( )δ  and 
E Z Zx y| =( )δ  is linear and note that T T TLRTM RTM⊂ ⊂  ( F F FLRTM RTM⊂ ⊂ ).

4. Let T
BVN

 be the subclass of T containing the bivariate normal distributions. Then, 
because for a T

x,y
∈T

BVN
, both E Z Zy x| =( )δ  and E Z Zx y| =( )δ  are linear, it 

follows that T
x,y

∈T
RTM

. We conclude that T T T TBVN LRTM RTM⊂ ⊂ ⊂ .

In the absence of a definition of the concept regression towards the mean, neither a 
determination of whether a T

x,y
∈T

 
is a member of T

RTM 
or T

RTMI
, nor a determination of 

whether a F
x,y

∈F
 
is a member of F

RTM 
or F

RTMI
, can be made. Given the, until now, glar-

ing absence of a definition of this concept, it is hardly surprising that little is known 
about the contents and relative sizes of T

RTM 
and T

RTMI
, on the one hand, and the contents 

and relative sizes of F
RTM 

and F
RTMI

, on the other. As we have observed, it is known that 
T

LRTM
, hence, T

BVN
, are subclasses of T

RTM
. We are unaware of any other analytic work on 

this topic. In our brief consideration of T
RTMI

, we had little difficulty in finding example 
members of this subclass, the two distributions depicted in Figure 2 being examples.3 We 
are unaware of any empirical studies in which legitimate assignments to F

RTM 
and F

RTMI 
were made of the F

x,y 
produced under particular P

T
/phenomenon pairings.

The mythologization of regression towards the mean

The received account of RTM is a paradigm case of a phenomenon having been 
mythologized. On the received account, RTM is, variably, portrayed as a ubiquitous, 
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unobservable property of individual-level difference and change phenomena, a force that 
impacts upon the characteristics of individual entities, an explanation for difference and 
change phenomena, and a profound threat to the drawing of correct conclusions in exper-
iments. Shortly, we will turn to the task of dismantling this mythology, but before doing 
so, will describe the manner in which Galton inadvertently sowed the seeds of its growth.

Galton’s initial regression towards mythologization

While Galton was indisputably a heavy-weight of science, we do not believe that the 
conclusions he drew on the topic of “reversion towards mediocrity” represent, as Stigler 
has claimed, one of the grand triumphs of the history of science. Quite to the contrary, 
Galton’s conclusions were in good part mythology. There are two primary routes by 
which he built mythological elements into his study of eminence. First, his correlational 
approach to the investigation of phenomena that arose at the level of the individual entity 
generated a levels of analysis dilemma that ultimately blurred the boundary between 
individual- and population-level phenomena. The blurring of this boundary subsequently 
led him to misinterpret his results. Secondly, in employing the bivariate normal distribu-
tion to represent his findings, he lost sight of the boundary between mathematical repre-
sentation and empirical reality, and this ultimately led him to project mathematical 
necessities onto reality. We will consider each of these routes in turn.

Recall that, as Stigler (1997) notes, Galton collected data which suggested “that there 
was a marked tendency for a steady decrease in eminence the further down or up the 
family tree one went from the great man” (p. 107). With respect to the phenomenon of 
height, Galton believed that he had established that offspring were more mediocre (less 
extreme) than their parents. Thus, family lines, or, in the case of the height data, parent/
offspring pairs, were the individual entities to which Galton’s observations referred. 
Because Galton’s observations were made at the level of the individual entity, scientific 

Figure 2. Examples of bivariate distributions belonging to T
RTMI
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explanations of these observations would have to have taken the form of individual-level 
laws—that is, laws that held for all i PT∈ . If Galton had succeeded in discovering even 
one such law, he would have made a contribution to nomothetic knowledge: that is, 
knowledge of properties or relations that hold for all members in a class of objects under 
study. Such properties or relations can be considered, in a certain sense, to be universal.

While Galton portrayed RTM as a “law” that explained his observations, this des-
ignation was, in fact, a misnomer. Neither RTM-E, nor the sub-species of it, LRTM, 
that is brought about by the linearity of a conditional mean function is an individual-
level law that holds over the class of entities on which Galton’s observations were 
made. They are neither characteristics that hold for the individual entities i PT∈  
under study, nor do they explain anything about hereditary transmission down family 
lines, nor do they explain why it is that an offspring is more mediocre (or less medio-
cre or equally mediocre) than its parents when it is so. To our knowledge, science has 
thus far failed to formulate a law that describes the causal story that underlies the 
determination of the extremity of a human’s height. If, however, such a law had been 
formulated, this law would undoubtedly have involved biological factors such as diet, 
the presence or absence of various environmental stressors, and parental genes. 
Because a parent’s primary contribution to the extremity of the height of its offspring 
is made via genetics, the discovery of a law that explained hereditary transmission 
would have spelled an end to the relevance of the variate “observed extremity of par-
ent height” that featured so very prominently in Galton’s research: the parent’s genes 
could simply have been observed.

Even allowing that the science of Galton’s time was not sufficiently advanced to 
afford him the opportunity to discover relevant hereditary laws, his commitment to the 
correlational approach to science, of which he and Pearson were originators (Danziger, 
1990), itself militated against his proper handling of the empirical questions that he had 
set out to answer. The correlational approach involves the calculation of quantities that 
are defined only when the quantity known as the variance—that is, E (x – µ)2

 —is non-
zero. The variance is always equal to zero when calculated on the basis of a single score 
yielded by an individual entity. Thus, in order for the correlational approach to be opera-
tional, the individual entity had to give way to the population as the target of investiga-
tion. While Galton set out to make observations on, and provide explanations with 
respect to, individual entities (such as the family line or the parent/offspring pair), his 
approach to the problem necessitated that his analyses had as their targets an entirely 
different type of entity: the population. Thus, for example, the notion of “on the whole,” 
which should properly have played the role of a rider to an individual-level law, was 
instead interpreted by Galton as “on average,” thus invoking an aggregate property of a 
population of scores. All told, Galton sowed the seeds of a levels of analysis dilemma 
that has grown into one of the key components of the mythology that is the modern-day 
received account of RTM.

Giving birth to this levels of analysis problem was not Galton’s only foray into the 
domain of myth generation. With the aid of mathematician J.H. Dickson, he formulated 
a representation of his findings in terms of the bivariate normal distribution, and, in so 
doing, seems to have lost track of the boundary between mathematics (in particular, 
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mathematical necessities arising from the structure of the bivariate normal distribution) 
and empirical reality. As Wachsmuth et al. (2003) put it, “Galton derived his theory [of 
natural inheritance] by looking at data, but the lens he used profoundly shaped what he 
saw” (p. 190). The unquestioned employment of this very same lens by the generation of 
methodologists who have followed in Galton’s footsteps has, we suggest, played a sig-
nificant role in their distorting the phenomenon of RTM and in their creating, out of these 
distortions, a full-blown mythology (cf. Freedman, 1985). 

According to Galton (1889), “However paradoxical it may appear at first sight, it is 
theoretically a necessary fact, and one that is clearly confirmed by observation, that the 
structure of adult offspring must on the whole be more mediocre than the structure of their 
parents” (p. 95). In fact, there is nothing at all paradoxical about large decrements in 
extremity within a family line. Nature is the way it is, and while it never ceases to amaze, 
it is not paradoxical. When the issue is “hereditary transmission,” large decrements are 
neither more shocking nor more important than small decrements, or increments, or 
instances of no change at all. Regardless of the particulars of the change or difference 
phenomena observed, what is required is a scientific explanation of these phenomena, and 
it is the job of the scientist to formulate scientific explanations. Moreover, when it is 
observed to be the case, it is not by theoretical necessity that “adult offspring are on the 
whole more mediocre than their parents.” Theoretical necessities arise within axiomatized 
logical systems such as mathematics and statistics, and are established by proof. Thus, it 
is a “theoretical necessity” that LRTM obtains when E Z Zy x| =( )δ  is linear and the 
absolute value of the Pearson–product moment correlation is less than unity. It is a theo-
retical necessity that bivariate normal distributions have linear conditional expectations 
and, hence, are both LRTM- and RTM-E consistent. It is, however, neither a theoretical 
necessity that a particular element of F has linear conditional mean functions, nor that it 
is satisfactorily represented by the bivariate normal distribution. Thus, contra Galton’s 
assertion, it is not a necessity that “the structure of adult offspring must on the whole be 
more mediocre than the structure of their parents.” Determinations of whether or not 
potential properties hold for elements of F must be made on a case-by-case basis, and take 
the form of data-based inferential decisions. Galton supplanted the making of case-by-
case determinations on the basis of empirical evidence with the making of mathematical 
deductions on the basis of the bivariate normal distribution, a mathematical function 
whose adequacy as a representer of bivariate phenomena is always open to question, and 
this can hardly be seen as scientific progress. 

What is not what in RTM

From the seeds sown by Galton’s initial confusions has grown a complex, ramifying 
mythology of RTM that we call the received account. We will turn now to an elucidation 
of a number of its most salient characteristics. The style of exposition is to state what 
RTM is not, the argumentation resting chiefly on simple comparisons to the excavated 
definition RTM-E. 4

RTM is not a necessity. Contrary to the message of many discussions of RTM, there is no 
tendency for, and certainly no necessity that, bivariate distribution functions, be they 
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either elements of T or F, be RTM-E consistent. A determination must be made for each 
distribution function. As we indicated earlier on in the paper, elements of T are assigned 
to either T

RTM 
or T

RTMI 
on the basis of mathematical analysis and elements of F are 

assigned to either F
RTM 

or F
RTMI

 on the basis of empirical investigation. And while the 
concept necessity can, at least, be applied coherently in the case of T (e.g., as we earlier 
summarized, if, for T Tx y, ,∈  at least one of E Z Zy x| =( )δ  and E Z Zx y| =( )δ  is linear, 
then T T Tx y LRTM RTM, ;∈ ⊂  i.e., it can be shown in mathematics that membership of T

x,y
 in 

T
RTM

 is a necessary condition of T
x,y 

having at least one linear conditional mean function), 
it cannot be applied coherently in the case of F. This is because the members of F, they 
being empirical distribution functions, are not specified by mathematical functions. 
Hence, properties of the members of F cannot be deduced, nor can propositions pertain-
ing to them be proven, on the basis of mathematics. 

There exists no evidence that RTM is a ubiquitous phenomenon. Regardless of whether the 
focus is on members of T or F, the determination of whether distribution functions are 
RTM-E consistent must be made on a case-by-case basis. Each distribution function of 
interest must be assessed for conformity to RTM-E.1 and RTM-E.2. For class T, the 
determination of whether or not a given member is an element of T

RTM 
or T

RTMI
 is made 

via mathematical analysis. It follows, then, that a determination of the relative sizes of 
the subclasses T

RTM 
and T

RTMI
 must be made via mathematical analysis. For class F, on 

the other hand, the determination of whether or not a given member is an element of 
F

RTM 
or F

RTMI
 is made via empirical investigation. Accordingly, a determination of the 

relative sizes of the subclasses F
RTM 

and F
RTMI

 must be made via empirical investigation 
(i.e., by inferential investigations of the F

x,y
 produced under many different P

T
/phenom-

enon pairings). 
As we indicated earlier in the paper, to our knowledge, there have not been carried out 

any studies in which determinations have been made about whether particular bivariate 
distributions are RTM-E consistent. We cannot see how there could have been, given 
that, until now, Galton’s definition of the concept regression towards the mean has been 
buried, and that without a definition it is not possible to judge whether a distribution has 
the RTM property. Consequently, virtually nothing is known about the relative sizes of 
the subclasses T

RTM 
and T

RTMI
, on the one hand, and the relative sizes of the subclasses 

F
RTM 

and F
RTMI

, on the other (hence, whether or not it is true that RTM-E-consistent dis-
tributions are ubiquitous). In the absence of evidence relevant to a resolution of these 
issues, it is simply unscientific to presume, as many seem to do, that RTM is a ubiquitous 
phenomenon.5 The investigative work, either mathematical (in the case of class T) or 
empirical (in the case of class F) in nature, has yet to be carried out. A possible explana-
tion for the existence of the unfounded view that RTM is a ubiquitous phenomenon is 
that, for some time now, researchers have been unquestioningly (and wrongly) taking 
bivariate normality and linearity of conditional mean functions, both of which imply 
RTM-E consistency, to be ubiquitous states of nature.

RTM is not a consequence of selecting on a variate. It has become commonplace for experts 
in methodology to claim that RTM is “a problem of selection” (see, e.g., Copas, 1997; 
Lin & Hughes, 1997). Consider any bivariate distribution: that is, any element of T or F. 
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The concept of selecting on X is a synonym for conditioning on X (Kotz, Balakrishnan, 
& Johnson, 2000). The distribution of Y for a sub-population selected on X (e.g., the sub-
population for which X ≤ 200, or 30 ≤ X ≤ 70, or X = -2, etc.) is simply the conditional 
distribution of Y given that X satisfies the conditions ω that define the sub-population. It 
is uncontroversial that, unless X and Y are statistically independent, the conditional dis-
tribution of Y given that X ∈ω will not be equivalent to the unconditional distribution of Y. 
Thus, a study of Y carried out on a sub-population selected on X (i.e., on a conditional 
distribution) will likely yield very different quantitative results than an analogous study 
carried out on the full population (i.e., on the unconditional distribution of Y). 

There have been documented many examples in which a researcher’s failure to 
acknowledge the level of conditioning on which his or her results were based led to him 
or her making erroneous claims about the phenomena under study. A classical concern of 
statisticians has been the derivation of mathematical results linking conditional and 
unconditional features of distributions under particular sets of assumptions, and, in par-
ticular, the problem of estimating parameters of an unconditional distribution (say, an 
unconditional treatment effect) on the basis of knowledge of parameters of a conditional 
distribution (e.g., the treatment effect observed on a selected sub-population; see, e.g., 
Chuang-Stein & Tong, 1997; Mee & Chua, 1991; Ostermann, Willich, & Ludtke, 2008). 
While the possibility of differences in results generated under a selection on X, on the 
one hand, and on the full population, on the other, is a serious scientific and statistical 
problem, it has nothing to do with RTM. In particular, selecting on a variate is neither 
equivalent to, nor a cause of, RTM. 

For a given element of either T or F, consider the conditional distributions of Y(X) 
defined under the finest level of selection on X(Y) possible. These distributions are sim-
ply the conditional distributions of Y(X) given that X(Y) assumes a particular value x(y), 
and are determined, as with any conditional distribution, by the bivariate distribution of 
X and Y. Each conditional distribution Y|X=x [X|Y=y] has an associated conditional mean 
function E(Z

y
|Z

x 
= δ) [E(Z

x
|Z

y 
= δ)]. If either one or both of E(Z

y
|Z

x 
= δ) and E(Z

x
|Z

y 
= δ) 

satisfies both RTM-E.1 and RTM-E.2, then the bivariate distribution in question is 
RTM-E consistent. Otherwise, it is not. 

Selecting on X(Y)—conditioning on X(Y)—could not possibly give rise to the prop-
erty of RTM, because RTM is the condition that at least one of E(Z

y
|Z

x 
= δ) and E(Z

x
|Z

y 
= 

δ) satisfies both RTM-E.1 and RTM-E.2, and selecting on X(Y) has no impact on the 
conditional mean functions E(Z

y
|Z

x 
= δ) and E(Z

x
|Z

y 
= δ). The conditional mean functions 

E(Z
y
|Z

x 
= δ) and E(Z

x
|Z

y 
= δ) are determined by the bivariate distribution of Z

y 
and Z

x
. 

Hence, whether or not at least one of the conditional mean functions E(Z
y
|Z

x 
= δ) and 

E(Z
x
|Z

y 
= δ) satisfies both RTM-E.1 and RTM-E.2, thereby having the RTM property, is 

determined by the bivariate distribution of Z
y 
and Z

x
 itself. Some bivariate distributions 

have the RTM property and others do not. Selecting on X(Y), on the other hand, is an 
operation that can be carried out on any bivariate distribution, regardless of whether or 
not the distribution has the RTM property (one simply specifies the condition ω on X that 
defines the sub-population on which conditioning will occur).

Individual-level change and difference phenomena are not instances of RTM. As sug-
gested earlier in the paper, Galton introduced into research a levels of analysis 
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dilemma. This dilemma has now grown into an endemic misportrayal of difference 
and change phenomena—phenomena defined on individual score-pairs (x

i
, y

i
)—as 

instances of RTM. For example, Campbell and Kenny (1999) claim that “[i]t is 
indeed possible for the same score to regress both up and down, depending on how 
the sample is defined” (pp. 29–30 ) and that “Galton eventually realized that regres-
sion was not a biological force but an inherent feature of change” (pp. 2–3). According 
to Reichardt, “Galton even demonstrated convincingly that individual [italics added] 
height regresses to the mean across generations” (as cited in Campbell & Kenny, 
1999, p. ix).

Consider the F
x,y 

produced under a particular P
T
/phenomenon pairing. For any entity 

i ∈P
T
, difference and change phenomena are captured by taking functions f(.) on the 

score-pair (x
i
,y

i
). The score v f x yi i i= ( , )  that particular entity i yields on an appropri-

ately chosen function is an instance of individual-level change or difference phenomena. 
Entity i’s yielding of the score v

i
 on function f(.) is the outcome of the joint action of a 

set of currently unknown causes, and it is the job of the scientist to reveal the identities 
of these causes. However, individual-level difference and change phenomena—that is, 
phenomena captured by an appropriately chosen function defined on the score-pairs 
(x

i
,y

i
)—are not instances of RTM. They are simply individual-level difference and change 

phenomena whose causal stories are in need of elucidation. Consider the notorious spe-
cial case in which f(.) is taken to be the difference in extremity λ

 i
=|z

xi
|-|z

yi
|. For individual 

entity i, λ
 i 
will be either positive, negative, or zero. A positive value of λ

 i
 would indicate 

that entity i had been less extreme on Y than on X. It would not, however, be an instance 
of RTM, but, rather, of individual-level difference or change phenomena that is in need 
of an explanation. 

RTM is a potential property of a bivariate distribution. Specifically, it signifies the 
special case in which both RTM-E1 and RTM-E2 are satisfied for at least one of E(Z

y
|Z

x 
= δ) and E(Z

x
|Z

y 
= δ). Because RTM is a potential property of a bivariate distribution, it 

clearly cannot be a potential property of an individual-level change or difference phe-
nomenon: bivariate distributions are populations (aggregations) constituted of such indi-
vidual-level phenomena.

RTM is not a basis for making predictions about temporally sequenced observations. Stigler 
(1997) makes the following claim: “Suppose the first score is exceptionally high—near 
the top of the class. How well do we expect the individual to do on the second test? The 
answer, regression teaches us, is ‘less well,’ relative to the class’s performance” (p. 104). 
According to Dallal (2000), “The regression effect causes an individual’s expected post-
test measurement to fall somewhere between her pre-test measurement and the mean 
pre-test measurement” (p. 1). Finally, the description provided by Wikipedia runs as fol-
lows: “[R]egression toward the mean refers to the phenomenon that a variable that is 
extreme on its first measurement will tend to be closer to the centre of the distribution on 
a later measurement” (Regression Toward the Mean n.d.). The idea captured in these 
quotes is the following: at time 1, individual entity i PT∈  yields score x

i 
and this score 

reflects its position with respect to a particular phenomenon; it is known that RTM, while 
unobservable, will impact upon entity i’s expression of the phenomenon in such a man-
ner as to make it less extreme; a subsequent measurement y

i
 of entity i’s position with 
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respect to the phenomenon will therefore be closer to the population mean than it other-
wise would have been; knowing that this is the manner in which RTM operates, it is only 
reasonable to predict that an initial measurement x

i 
will be more extreme than a subse-

quent one y
i
. 

There are many features of this portrayal of RTM that are confused. In the first place, 
it rests on the tacit assertion that bivariate distribution functions are standardly RTM-E 
consistent. In fact, the proportion of distribution functions that have the RTM property is 
currently unknown. More fundamentally, a predictive case is set with respect to a par-
ticular bivariate distribution, and each particular bivariate distribution either is or is not 
RTM-E consistent. Assessments of RTM-E consistency must be made on a case-by-case 
basis. Thus, generalities of the type offered up in the above quotes amount to method-
ological dogma. 

In the second place, RTM is a property of a bivariate state of affairs that has already 
happened. A distribution is RTM-E consistent only if at least one of E(Z

y
|Z

x 
= δ) and 

E(Z
x
|Z

y 
= δ) satisfies both RTM-E.1 and RTM-E.2, and these conditional mean functions 

are not even defined unless there is already in existence a population of N score-pairs 
(x

i
,y

i
). Thus, it is nonsensical to envision RTM as existing contemporaneously with X, 

but not Y, and as exerting causal influence
 
so as to produce y

i
 that are less extreme than 

were the corresponding x
i
. Thirdly, even if it were the case that RTM could exist contem-

poraneously with X, but not Y, RTM is a static potential property of a conditional mean 
function. As such, it possesses no causal force, and so cannot bring about change, pre-
dictable or otherwise. 

If it had been established (rather than presumed) that an F
x,y

∈F was RTM-E consis-
tent, then certain kinds of non-temporal prediction-like claims could be justifiably made. 
For example, if it were known that the score on Z

x
 for a particular entity i ∈P

T
 was equal 

to δ*, the minimum mean square error prediction of entity i’s score on Z
y
 would be equal 

to E(Z
y
|Z

x 
= δ*). Because, from RTM-E.1, |E(Z

y
|Z

x 
= δ*)|≤|δ*|, an assertion to the effect 

that “entity i ∈P
T
 is less extreme on Z

y 
than it is on Z

x
” would be in keeping with the mini-

mum mean square error prediction. However: (a) there would be no necessity that entity 
i ∈P

T
 was less extreme on Z

y 
than it was on Z

x
 and (b) it is not clear why this brand of 

prediction would be of any importance, for to establish that F
x,y

 is RTM-E consistent 
would require that one knew the values on Z

x
 and Z

y
 yielded by all entities i ∈P

T
. Thus, 

for entity i ∈P
T
, with Z

x 
= δ*, one would not need to predict anything, but, rather, would 

know entity i’s score on Z
y
, hence could determine whether or not entity i was less 

extreme on Z
y 
than it was on Z

x
. 

RTM is not an explanation of anything. Equal in popularity to the misportrayal of individ-
ual-level change and difference phenomena as instances of RTM is the misportrayal of 
RTM as an explanation of such phenomena. Campbell and Kenny (1999) list many 
examples of individual-level change and difference phenomena that, according to them, 
can be explained by RTM, including the phenomenon of movie sequels being less out-
standing than the originals that spawned them and that of high school students who have 
performed poorly on an aptitude test improving after taking an SAT course. A sporting 
example of theirs reads as follows:
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Baseball pundits have given several explanations of the sophomore jinx [the phenomenon by 
which professional baseball players awarded Rookie honours in their first year fail to perform 
similarly well in subsequent seasons]. One is that in the second year the pressure has been 
increased by winning the award and that creates performance anxiety. A second explanation is 
that the motivation to play well declines in the second year. . . . However, the strongest and most 
plausible account of the jinx is regression toward the mean. (pp. 42–44)

On the received account, 

Regression toward the mean is only one of several plausible rival hypotheses of change over 
time. History, maturation, instrumentation, and testing are potentially plausible explanations of 
“change.” However, regression toward the mean is perhaps the most pernicious plausible rival 
hypothesis because it is universal. (Campbell & Kenny, 1999, p. 51)

Along similar lines, RTM is said to be a compelling candidate explanation for a person’s 
movement from an extreme position in a group to a less extreme position (Fitzmaurice, 
2000).

If individual i ∈P
T 
happened to have had a rookie batting average of .314, and to have 

dropped to an average of .214 in his sophomore season, then his performance would have 
declined by (x

i
-y

i
) = .100 raw units. If his performance happened to have declined in rela-

tive terms as well, then z
xi
-z

yi
 would also be positive. Any time that change has been 

observed to occur, it has occurred because a constellation of (at least initially) unknown 
causal factors brought it about. An intensive scientific effort might eventually result in 
the formulation of an individual-level explanatory law that describes the joint action of 
these causes in bringing about the change. As with human performance phenomena in 
general, the causal story underlying a decline in batting average is undoubtedly a com-
plicated one. However, contra Campbell and Kenny (1999), it is precisely factors such as 
performance anxiety, motivational elements, and physiological characteristics, and cer-
tainly not RTM, that are candidates for inclusion in a law that explains the decline in the 
batting averages of those baseball players who experience such a decline. It is confused 
to offer up RTM as “the most plausible account of the jinx” because RTM is that property 
of an element of T or F that obtains when at least one of E(Z

y
|Z

x 
= δ) and E(Z

x
|Z

y 
= δ) 

satisfies both RTM-E.1 and RTM-E.2, and conditional mean functions do not impact 
upon the performances of baseball players any more than do modes, medians, and partial 
correlation coefficients. 

The fact that commentators have misportrayed RTM as an explanatory device does 
not mean that explanations have no place in the science of RTM. If RTM has been estab-
lished to be a property of an element of F, then it is the job of the scientist to explain why 
this state of affairs came to be. It must be noted, however, that to formulate an explana-
tion as to why RTM is a property of the distribution function in question will be an even 
greater challenge than to formulate an individual-level law. This is because RTM is a 
population-level phenomenon and, as such, its explanation requires (a) knowledge of the 
individual level law z f zy xi i

= ( ),ω  relating zyi  to zxi  and (b) knowledge of a law that 
explains the particular distribution of zxi  that, through the individual-level law, yields 
the RTM-E-consistent proportions P a Z b P Z a f Z bx y x xi i i i

Z ≤ ≤( ) = ≤ ( ) ≤( ), , ,ω  that 
constitute the RTM-E-consistent F

x,y
. In other words, an explanation of the existence (or 

 at SIMON FRASER LIBRARY on January 25, 2016tap.sagepub.comDownloaded from 

http://tap.sagepub.com/


Maraun et al. 779

absence) of RTM-E in P
T
 would be roughly equivalent to an explanation of why the joint 

empirical distribution F
x,y

 arises under the individual-level law z f zy xi i
= ( ), .ω  

RTM is neither a force, nor a causal mechanism. A sub-species of the “RTM as explanation” 
mythology misportrays RTM as a force or causal agent that affects the scores yielded by 
individual entities. Consider, for example, the following quotes: 

The primary effect of this is to affect scores on retesting so that they are closer to the population 
mean. (Streiner, 2001, p. 72)

By virtue of RTM, we can expect to see a mean reduction from pretreatment to posttreatment, 
regardless of the efficacy of the treatment. (Fitzmaurice, 2000, p. 81)

[T]he net effect of regression toward the mean is to shift a selected group’s average (either high 
or low) closer to the mean of the entire population. (Streiner, 2001, p. 75) 

Galton initially viewed RTM as a biological fact. It is true that biology needs to overcome 
RTM. . . . [The form of inheritance that humans have, whereby a child receives half of her 
chromosomes from each parent,] prevents species from regressing toward the mean and so 
promotes biodiversity. (Campbell & Kenny, 1999, pp. 17–18) 

The idea manifested in these quotes is that RTM is a constituent of reality, a force, that 
exists independently of the entities i ∈P

T 
and the score-pairs (x

i
,y

i
) that they yield, and 

that inexorably draws the y
i
s closer to the population mean than were the x

i
s. We will 

simply remind the reader that RTM is a static, potential property of a bivariate distribu-
tion, and, hence, is no more a force or causal mechanism than is a mode, median, or 
Pearson product–moment correlation. It does not affect anything. It has no effects.

The final quote exemplifies the depths of confusion to which science can sink when 
under the sway of a mythology. When a particular entity i ∈P

T 
happens to be a living 

entity, the score-pair (x
i
,y

i
) it yields, and, hence, the value it yields on the function |z

xi
|-

|z
yi
|, is brought about, in part, by particular of its anatomical and physiological character-

istics (i.e., its biology). By this it is meant that features of the biology of individual entity 
i are causally responsible, to some unknown degree, for entity i’s having yielded the 
particular value on the score-pair (x

i
,y

i
) that it did, in fact, yield. Now, imagine pooling 

all of the individual-level score-pairs (x
i
,y

i
), one pair for each entity i ∈P

T
, each score-

pair having been determined to some degree by the biology of the entity that yielded it. 
It is this collection of score-pairs that either is or is not RTM-E consistent. 

Thus, while biology stands for a set of processes operating at the level of the indi-
vidual, RTM, when it arises, is a static, aggregate property of a collection of score-pairs. 
As such, it possesses no causal force. Clearly, then, it is incoherent to envision biology 
(causally operative at the level of the individual entity) as having to overcome RTM (a 
potential static property of a population of score-pairs). Biology and RTM are not causal 
competitors, but, rather, completely different kinds of things. 

RTM is not a statistical artifact (it is a property of a conditional mean function). The reader 
frequently reads comments to the effect that “RTM is an artifact that as easily fools 
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statistical experts as lay people” (Campbell & Kenny, 1999, p. xiii) or that “[a]ll too often 
the statistical fact of RTM is given a substantive meaning that is unwarranted” (Campbell 
& Kenny, 1999, p. 19) or that “[r]egression toward the mean is . . . not a true process 
working through time but a methodological artifact” (Campbell & Kenny, 1999, p. 18). 
All of this flies on the wings provided by the misportrayal of RTM as a rival hypothesis 
or competitor for the role of causal explanation of some phenomenon. In fact, there is 
one set of conditions under which RTM could sensibly be said to be artifactual, and the 
components of this set are: (a) a particular T Tx y, ∈  is RTM-E consistent; (b) T

x,y 
is 

employed by a researcher as a formal representation of the F
x,y

 yielded under a particular 
P

T
/phenomenon pairing; and (c) T

x,y 
is, in fact, an inadequate representation of F

x,y
. In 

such a case, the claim that RTM is a discovered property would follow not from the state 
of reality, but, rather, from the choice of T

x,y 
as a representation of F

x,y
. Under this set of 

conditions, the tool of representation can be said to have cast shadows upon reality.
Inappropriate representational practices notwithstanding, there is nothing whatso-

ever artifactual about RTM. A bivariate distribution, either an element of T or an ele-
ment of F, is or is not RTM-E consistent. When mathematical proof establishes an 
element of T, or empirical investigation establishes an element of F, to be RTM-E con-
sistent, then a discovery has been made about the aggregate behavior of a particular 
population of score-pairs, and, in particular, the forms of the conditional mean functions 
of this population. 

RTM is not a threat to the making of valid causal ascriptions. Of all of the components of the 
modern mythologization of RTM, perhaps the most commonly expressed is that RTM 
plays havoc with the making of the causal ascriptions that are the standard products of 
experimentation. An entire book, Campbell and Kenny’s A Primer on Regression 
Artifacts (1999), has been written on the subject of the dangers posed by the ever-present 
rival hypothesis that is RTM. On the received account, “the regression fallacy is the most 
common fallacy in the statistical analysis of . . . data” (Friedman, 1992, p. 2131). Streiner 
(2001) provides an example of this fallacy that, with respect to its tone and message, is 
standard fare:

In another study, patients with schizophrenia are selected if their scores on a measure of social 
functioning are below some criterion. They are entered into a program emphasizing social skills 
training, work-appropriate behavior, and independent living. At the end of 6 months, most of the 
patients have significantly higher scores on the scale, and the investigators conclude that this 
intervention is highly successful with these people…Are the researchers justified in their 
enthusiasm for these treatments? The answer is a resounding “No,” for a multitude of reasons . . . 
a . . . possible explanation for the results [is] “regression toward the mean.” (p. 73)

On the received account, even the employment of a sound experimental design cannot 
overcome the corruptive influence of RTM. As Campbell and Kenny (1999) explain: 

Even if the sample is randomly selected from the population, there is still regression toward the 
mean. Random samples have the desirable feature of their means being relatively near the 
population mean and so there is less regression toward the mean—but there is still some 
regression. (p. 51)
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Even with a control group, regression toward the mean still creates major interpretive problems. 
(p. 52)

This component of the received account is confused: RTM can neither interfere with 
the making of causal ascriptions, nor threaten the correctness of conclusions, causal or 
otherwise, that are made on the basis of experiments. Entity i ∈P

T
 can be said to have 

changed just when (x
i
-y

i
) does not equal zero. When |z

xi
|-|z

yi
|>0, entity i can be said to 

have a less extreme position within the distribution of variate Y than it does within the 
distribution of variate X. As noted previously, any particular instance of change is brought 
about by a constellation of causes whose joint operation is largely unobservable. It is the 
job of the scientist to discover the processes, forces, and entities that were jointly respon-
sible for bringing about this change. Because the action of the constellation of causes is 
not observable, it is always a risky business to nominate particular constituents of reality 
as belonging to this constellation. 

The researcher’s ally in this dangerous game of causal ascription is sound experimen-
tal design. In fact, the degree of confidence assignable to a particular ascription is largely 
determined by the particulars of the experimental design under which the score-pairs 
(x

i
,y

i
) were produced. Sound experimental designs are those designs that enable the 

researcher to eliminate many candidate causes, leaving only a few that remain plausible. 
Weak designs are those that eliminate very few candidates, thus rendering the research-
er’s ascription of causal status to particular factors arbitrary, if not simply fatuous. 

Let us return to Streiner’s (2001) example, which can be unpacked as follows: (a) the 
population under study is selected to be those individuals possessing social functioning 
scores beneath some criterion; (b) during a 6-month period, these individuals receive an 
intervention; (c) at the end of the 6-month period, the individuals are scored a second 
time with respect to their level of social functioning; and (d) for most of the individuals, 
(y

i
-x

i
) > 0. In the first place, regardless of the fact that the individual entities under study 

were initially low with respect to the distribution of social functioning, there did not exist 
any necessity that they improve. They simply did. For each entity i, the scores y

i 
and x

i 
were brought about by a constellation of causes, the elements of which are unknown. If, 
as in Streiner’s example, most of the entities yielded (y

i
-x

i
)>0, then it was the joint causal 

action of the elements of this constellation that brought this condition about, and the 
scientist’s task is to discover the identities of these elements. 

As indicated by Streiner, it would, indeed, be a serious mistake to ascribe causal status 
to the intervention, but not because of anything to do with RTM. The problem with 
ascribing causal status to the intervention described in Streiner’s example is that the 
research design he describes is a weak one, and does not provide a basis for eliminating 
rival candidate causes such as mortality and age, among countless others. RTM, how-
ever, is not the right kind of thing to be a candidate rival hypothesis. To correctly claim 
that RTM has arisen under a particular P

T
/phenomenon pairing is to claim that one or 

both of E(Z
y
|Z

x 
= δ) and E(Z

x
|Z

y 
= δ) are a certain way, namely that at least one of these 

conditional mean functions satisfies both RTM-E.1 and RTM-E.2. That is to say, it is to 
claim that a very particular state of affairs has come into existence, namely that: (RTM-
E.1) for any particular degree of extremity | |δ  of X, the average extremity of Y is less 
than | |;δ  and (RTM-E.2) the magnitude of the difference between | |δ  and the average 
extremity of Y is an increasing function of | |δ . 
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States of affairs such as the values of the medians of a bivariate distribution happening 
to be equal to 11.5 and 2.3, or the value of the Pearson product–moment correlation hap-
pening to be equal to .45, or RTM happening to be a property of a particular bivariate 
distribution, have no causal powers whatsoever, and, hence, can have no impact upon the 
individual entities i ∈P

T
. The particular state of affairs that is RTM does not explain 

anything about individual-level difference and change phenomena, but is, rather, the 
kind of thing that, itself, is in need of an explanation (as would be a Pearson product–
moment correlation that turned out to be .45). 

Nothing necessitates that RTM, the state of affairs in which at least one of E(Z
y
|Z

x 
= δ) 

and E(Z
x
|Z

y 
= δ) satisfies both RTM-E.1 and RTM-E.2, be a property of the bivariate 

distribution produced under a particular P
T
/phenomenon pairing. When RTM happens to 

be a property of the bivariate distribution produced under a particular P
T
/phenomenon 

pairing, it happens to be so by virtue of the fact that the entities i ∈P
T 

yielded an RTM-
consistent population of score-pairs. And the entities i ∈P

T 
yielded an RTM-consistent 

population of score-pairs as a result of the joint action of a constellation of causal factors. 
To ask why it is that RTM obtains under a particular P

T
/phenomenon pairing is to inquire 

as to the identities of these causal factors. RTM does not make anything happen; it is a 
state of affairs that happens (or doesn’t). Thus, it is deeply confused to view RTM as a 
rival hypothesis, something that could, unbeknownst to the researcher, have brought 
about observed change phenomena, the cause of which was then wrongly identified to be 
an intervention. 

Conclusion

Within the domain of quantitative methodologies, mythologies flourish under a particu-
lar set of ingredients that include, but are not limited to, conceptual equivocation (or, in 
the worst cases, the total failure to pin down key concepts with definitions), the misiden-
tification of related concepts, the dogmatic adherence to favored statistical props, the 
failure to clarify relationships between statistical tools of representation and the compo-
nents of empirical settings that they were designed to represent, and the projection onto 
empirical reality of mathematical necessities that follow from the distribution theory in 
play when distribution functions are employed. 

While the mythology that is the received account of regression towards the mean 
features all of these ingredients, the most damaging of all is the fact that, while Galton 
provided the necessary ingredients, no definition of the concept regression towards the 
mean was ever laid down. This meant that contributors to the literature on regression 
towards the mean could each form their own loose feelings about what they meant by the 
notion. Some took RTM to be the empirical (non-necessary) proposition that the second 
of two ordered scores will be less extreme than the first, while others took it to be a law 
to the same effect. Still others took RTM to be a mathematical necessity that followed 
from linearity, or bivariate normality, or under selection. The ultimate consequence of 
this conceptual equivocation was that a claim made about the phenomenon of regression 
towards the mean could not be adjudicated for its correctness. Hence, along with claims 
that would turn out to be correct, claims that are incorrect or even incoherent have lin-
gered, and, through frequent repetition, have come to attain the status of unquestioned 
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soundbites. Long-term allegiance to the dogma that bivariate normality and linearity are 
descriptions of nature led to a blurring of the boundary between mathematical necessity 
and empirical fact, thereby providing additional nutrients for the growth of mythology. 
And the production and maintenance of a mythology such as the received account of 
regression towards the mean undermines the doing of sound science. 

Funding

This research received no specific grant from any funding agency in the public, commercial, or 
not-for-profit sectors.

Notes

1. When the topic of discussion is the causal relation between parent and offspring height, the 
parameterization of height measurements is arbitrary. That is to say, a causal law expressed 
in terms of raw scores x and y and one expressed in terms of standard scores z

x
 and z

y
 pro-

vide equivalent characterizations of the causal relationship between the two phenomena of 
interest. 

2. For example, virtually all of the papers in the 1997 special edition of Statistical Methods in 
Medical Research dedicated to the issue of regression towards the mean took linearity (or 
bivariate normality, which implies linearity) as a starting point. And while linearity or bivariate 
normality are mathematically convenient, there is neither any necessity that bivariate empiri-
cal phenomena be normally distributed, nor that they have linear conditional mean functions. 

3. For the sake of brevity, mathematical details have been omitted. Please contact the correspond-
ing author for an appendix in which a detailed description of these distributions is provided.

4. This section’s title is a nod to Louis Guttman’s 1977 paper “What Is Not What in Statistics.” 
5. “RTM is as inevitable as death and taxes” (Reichardt, 1999, p. ix); “Regression is ubiquitous 

in medical research and can very easily lead the unwary researcher astray” (Fitzmaurice, 2000, 
p. 81); “Over-time correlations are less than perfect because people change, and these changes 
imply that regression toward the mean is an omnipresent phenomenon” (Campbell & Kenny, 
1999, p. 19).
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