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Abstract 

There has come to exist within the psychometric literature a generalized belief to the effect that a 

determination of the level of factorial invariance that holds over a set of k populations Δj, j = 

1..s, is central to ascertaining whether or not the common factor random variables ξj, j = 1..s, are 

equivalent.  In the current manuscript, a technical examination of this belief is undertaken.  The 

chief conclusion of the work is that, as long as technical, statistical senses of random variable 

equivalence are adhered to, the belief is unfounded.   
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1. Introduction 

 Consider the research context in which random p-vectors, Xj, j = 1..s, are distributed over 

each of k populations Δj of objects.  Define the p by p covariance matrices  

Σj = E(Xj – μj)(Xj – μj)’ and mean vectors μj = E(Xj), j = 1..s.  Although, of course, there is no 

necessity that it be so, let it be the case that each Xj  happens to be representable by the 

unidimensional, linear factor model
i
; i.e.,   

,  1.. ,j j j j j j s   X τ Λ δ  (1) 

wherein ξj is a common factor random variable and δj is a p-vector of random uniquenesses.  The 

parameters of the representation are Λj, a p-vector of regression coefficients (factor loadings), τj, 

a p-vector of intercepts, Θδj, the p by p, diagonal, positive definite, covariance matrix of δj, and 

κj, the mean of ξj.  It is fundamental to linear factor analytic representations that E(δj) = 0 and 

C(ξj,δj) = 0, j = 1..s.  A first identification constraint is that V(ξj) = 1, j = 1..s.
ii
  

 If each Xj is representable as in (1), then the following factor- and mean structures hold 

in the populations Δj, j = 1..s:   

' ;j j j j  δΣ Λ Λ Θ  (2) 

.j j j j μ τ Λ  (3) 

With Meredith’s (1964) and Joreskog’s (1971) invention of Multigroup Confirmatory Factor 

Analysis (MGCFA) and the extensions made by Sorbom (1974), researchers were provided 

easily implementable statistical tools that could be employed to test hypotheses pertaining to 

the cross-population invariance of one or more of the parameters Λj, τj, Θδj, and κj.  Various 

levels of factorial invariance were defined, perhaps the most oft-tested forming the following 

nested hierarchy: i) configural invariance. Λj, j = 1..s, have their null elements in the same 
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locations (Thurstone, 1947); ii) weak or pattern invariance. Λj = Λ, j = 1..s (Thurstone, 1947); 

iii) strong factorial invariance. τj= τ, Λj=Λ, j = 1..s;  iv) strict factorial invariance. τj= τ, Λj=Λ, 

Θδj= Θδ, j = 1..s.
 
  For the sake of clarity, it should be noted that strong and strict factorial 

invariance were subsequently considered by Meredith (1993) using a structural equation 

approach due to both Joreskog (1971) and Sorbom (1974). 

A survey of the literature suggests the existence of two classes of beliefs about why the 

issue of factorial invariance is empirically important.  Class 1 explanations cite an extensive 

literature (cf. Dolan, Roorda, and Wicherts, 2004; Horn and McArdle, 1992; Meredith and 

Teresi, 2006; Millsap, 1997; Millsap and Kwok, 2004; Millsap and Yun-Tein, 2004; Vandenberg 

and Lance, 2000; Wicherts, Dolan, and Hessen, 2004;  Wu, Li, and Zumbo, 2007) that seems to 

establish that cross-population quantitative comparisons of particular of the parameters of the 

distributions of the Xj, j = 1..s, can be coherently undertaken only given the realization of 

particular levels of factorial invariance.  Thus, for example, it is taken as established that 

coherent quantitative comparisons of the mean vectors μj,  j = 1..s, can only be undertaken when 

a level iv invariance holds (Byrne and Watkins, 2003; Lubke, Dolan, Kelderman, and 

Mellenbergh, 2003; Meredith, 1993; Meredith and Teresi, 2006).  Class 2 explanations, on the 

other hand, rest on the belief that cross-population invariances in {Λj, τj, Θδj, κj} bear on the 

issue of whether the common factor random variables ξj, j = 1..s, are equivalent, and, in 

particular, that a level iv invariance establishes the equivalence of the ξj, j = 1..s.   

However, a moment’s consideration reveals that Class 1 and Class 2 beliefs are 

intimately related.  For example, it is not true, statistically speaking, that a level iv invariance, or 

any other level of invariance for that matter, is required in order that perfectly coherent 
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comparisons of the mean vectors μj,  j = 1..s, can be made.  Level iv invariance is seen, here, as a 

necessity because it implies that 

 ( ) (  )–  – , j k j k j k       μ μ τ Λ τ Λ Λ  (4) 

and researchers wish to employ inferential knowledge about differences in the μj,  j = 1..s, to 

make decisions about differences in the common factor means κj, j = 1..s.  But differences in the 

κj, j = 1..s, are of interest to researchers just because they believe that the κj can be interpreted as 

means of the same variable (or, as many phrase it (e.g., Wu, Li and Zumbo, 2007), the same 

construct) distributed in s distinct populations.   

Given that both turn out to rest on a concern for the equivalence of the common factor 

random variables ξj, j  = 1..s, it is, perhaps, not then surprising to encounter, in the literature, 

blendings of Class 1 and Class 2 beliefs: 

"For if one did not know that such measurement invariance obtained, then any 

differences between means could just as well be interpreted as indicating that 

different things were measured…" (Horn and McArdle, 1992, p.117)  

"…the statement of McArdle (1996) that equality of factor loadings should be 

established before other group comparisons (e.g., mean differences) were considered 

is worth noting. If not, the psychological constructs being measured may be 

qualitatively different for the groups being compared" (Colom, Juan-Espinosa, Abad, 

and Garcia, 2000, p.58). 

"…the tests are unbiased with respect to group. This implies that the same constructs 

are measured in the groups" (Dolan, Roorda, and Wicherts, 2003, p.156). 
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"…support for the equality in the last three elements may suggest that the two groups 

may, in fact, belong to the same population regarding the construct of interest" (Wu, 

Li, and Zumbo, 2007, p.3) 

 We are interested in the issue of the implications of factorial invariance for the 

equivalence of the common factor random variables ξj, j = 1..s; in particular, the truth value of 

the proposition that a level iv invariance establishes the equivalence of the ξj, j = 1..s.  It should 

be a straightforward matter to address this issue, for it requires only that we: a) note various 

extant senses of random variable equivalence; b) provide a technical characterization of the 

random variables the equivalence of which is at issue, i.e., ξj, j = 1..s; and c) deduce implications 

of the levels of factorial invariance for the equivalence- in the senses thus identified- of these 

variables. 

 The historical strangeness of treatments of the issue is, however, evident in failures in 

respect (a)- wherein, one encounters endemic equivocation over the term equivalent, as it should 

be applied to random variables that happen to be latent, this equivocation frequently 

accompanied by a reluctance to invoke standard technical definitions- and in respect (b)- 

wherein, rather than careful mathematical characterization, one is confronted with a widely 

accepted, nontechnical account of common factor variables (latent variables, more generally) 

that stretches back into the infancy of the linear factor model (latent variable modeling 

technologies, more generally), and has since caught hold within, and spread throughout, applied 

statistics.  The nontechnical characterization to which we refer is, in fact, a metaphysics, wherein 

the common factor variables are portrayed as being unobservable, and the analyzed variables 

contained within the vectors Xj, as observable.
iii
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 Our approach will be to return the problem to the technical domain by setting aside the 

metaphysics in favour of a proper, mathematical, clarification of the ξj.  This yields not only a 

straightforward adjudication of our original issue in terms of standard, technical, senses of 

random variable equivalence, but, we believe, interesting insights into random variables that 

happen to be latent, including a technical basis of differentiation between latent and manifest 

random variables.  We begin by providing a brief review of the concepts variable, random 

variable, and equivalent random variables.  

2. Variables and random variables 

A variable X is a contrast-class TX of properties {γ1,γ2,…,γt} “…that are mutually 

exclusive and jointly exhaustive…” (Rozeboom, 1988, p.212) over a population of objects Δ.  A 

numerical variable Y over Δ is a pair {TY,gY} in which gY: TY→maps each γk TY  into a 

number; hence, maps each i  (which belongs to one and only one γk) into a number that 

represents i’s property in TY  (scales i in respect the properties contained in TY) (Rozeboom, 

1988).  Consider an infinite sequence MY of the act of drawing from population Δ an i and 

assigning it to an element of TY.  MY yields, then,  an infinite sequence of mappings of the i  

into numbers.  Let Ii(k)=1 when i is assigned to γk, and Ii(k)=0 otherwise.  In the classical 

terminology of probability theory, MY is called a random system if and only if, for k=1..t, 
























k

n

i

ki

n
p

n

I
1

)(

lim  (Fraser, 1976).  In the event that MY is a random system: a) Y is called a 

(numerical) random variable; b) the numbers pk, k=1..t, are probabilities, over Δ, and in respect 
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to random system MY; equivalently, probabilities of random variable Y.  To clarify the nature of a 

numerical random variable is to describe, in detail, the elements of the triple {TY,gY,MY}.   

Aspects of the triple {TY,gY,MY} are referred to in the highly compressed formalisms of 

probability theory.  Thus, we have the general, textbook definition of the concept random 

variable.   

Definition: random variable. Let (Ω,A,PA) be a probability space and let (Ω',A') be a measurable 

space. Then every A-A'-measurable mapping Y: Ω→Ω' is called a random variable (with values 

in Ω') (Bauer, 1972). 

In the above definition, Ω, called the sample space, is simply a contrast class TY, A is a σ-

algebra in Ω [i.e., the subset of the power set of Ω that is closed under countable unions, 

intersections and complementation], and PA is a probability measure (informally, the set 

{p1,p2,…,pt}) generated under some random system MY, the nature of which is not specified by 

(Ω,A,PA).   

 If it happens to be the case that Ω' ≡  , then A' ≡ B is a Borel algebra, the A-A'-

measurable mapping is gY, and Y is a numerical random variable.  The induced distribution of 

numerical random variable Y is the triple ( ,B,PB), in which B is the induced Borel algebra of Y 

(B ≡ {W  |gY
-1

(W)A}), and PB is the induced probability measure PB: B→[0,1] (PB(W) ≡ 

PA(gY
-1

(W)), WB).  Finally, letting the set Zy  stand for the closed half space (-∞,y], the 

distribution function FY of Y is induced as follows: FY(y)=P(Y≤y) ≡ PB(Zy) = PA(gY
-1

(Zy))  y 

. Though useful for their compactness of expression of certain key notions, the formalisms 

of probability theory are semantically empty and, hence, insufficient in respect to a clarification 

of the nature of a numerical random variable.  For although they refer to aspects of the triple 
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{TY,gY,MY}, they are mute on the details.  In particular, they are egregiously silent on the issues 

of: (a) the semantic natures of the elements {γ1,γ2,…,γt} of TY (Ω in the notation of probability 

theory); (b) the identity of the mapping gY: TY→  (i.e., measurable mapping Y: Ω→ ); and (c) 

the details of the random system under which the probability measure PA (hence, PB, hence, FY) 

was generated. 

 We raise these points because our concern is with the issue of the equivalence of the 

random variables ξj, j = 1..s, random variables that happen to be common factors, hence, latent 

variables, and where one encounters latent variables, characterization is standardly supplanted by 

empty formalisms that are “explained”- somewhat surprisingly- with reference to an 

unchallenged, extra-mathematical, metaphysics; or, just as commonly, the metaphysics is cited in 

defense of the view that, because the random variables in question happen to be latent variables, 

these variables must elude characterization of the usual, technical, form.  A technical issue of 

random variable equivalence cannot be resolved when set upon such shaky foundations, and our 

remedy will be precisely to eliminate the metaphysics by insisting upon a specification of 

{Tξj,gξj}, j=1..s.   

3. The concept equivalent random variables 

 There have been invented a number of senses of the concept equivalent random 

variables, arguably the most important given below, and ordered from strongest to weakest in the 

sense of material implication (Pfeiffer, 1978; Randles and Wolfe, 1979): 

Identical random variables. Let numerical random variables Yl, l = 1..p, be measurable mappings 

gYl: Ω→Ω' from the same measurable space (Ω,A). Then the Yl are identical iff for every Ω, 

gY1() = gY2()  = ... = gYp(). 
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wp1 equivalence. Let numerical random variables Yl, l = 1..p, be measurable mappings gYl: 

Ω→Ω' from the same measurable space (Ω,A). Then the Yl are wp1 equivalent iff for l = 1..p-1, l' 

= l+1..p, P(Yl = Yl') = 1. 

Equal in distribution. Numerical random variables Yl, l = 1..p, are equal in distribution iff FY1(y) 

= FY2(y) =...= FYp(y),  y  . 

Partial Moment Sequence Equivalence.  Numerical random variables Yl, l = 1..p, are partially 

moment sequence equivalent iff, for at least one value of r={1,2,3,...}, E(Yl
r
) = E(Y2

r
) =...= 

E(Yp
r
). 

 We note that: (a) the strongest two senses of equivalence, but not the weakest two, 

require that the random variables be defined on the same measurable space; (b) the condition of 

wp1 equivalence is equivalent to the condition on the pairwise joint distributions of the random 

variables that, for l = 1..p-1, l' = l+1..p, P(Yl = yl Yl' = yl') ≠ 0 only when yl = yl'; (c) The 

condition of complete moment sequence equivalence is identical to the condition of equal in 

distribution.      

4. An obscuring metaphysics 

 Now, to apply these senses of equivalent random variables to the ξj, j = 1..s, we require a 

technical characterization of common factor random variables.  It is here that we encounter, 

instead, a metaphysical picture- traceable to the mid-twentieth century influence of empirical 

realist philosophy on the foundational work on latent variable modeling of, among others, L.L. 

Thurstone (1947), Paul Lazarsfeld (1959), Frederic Lord and Melvin Novick (1968), and now 

ubiquitous throughout empirical science and applied statistics- in which the numerical random 

variables contained within the Xj (manifest variables, in general) are said to be observable, and 
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the numerical random variable ξj (latent variables, in general), unobservable.  This is a 

metaphysical picture because it is neither an empirical or scientific claim, nor a conceptual claim, 

nor a mathematical claim.  It is a claim that has neither been supported by evidence, nor by 

proof.  Most tellingly, it is a claim that could neither be supported by evidence or proof. 

 It is "supported", instead, by: (a) endemic, illegitimate equatings of concepts, e.g., the 

concepts random variable, concept, construct, measured property and variants thereof; (b) the 

drawing of ungrounded and illegitimate analogies with the problems attendant to the perceptual 

unobservability of material entities that standardly arise within the natural sciences; and (c) 

loose, figurative language, including the language derived from the resource extraction metaphor 

that portrays the elements of X as "tapping into" the latent realms in which the ξ  "reside".  

 The standard yield of a metaphysical picture is incoherence, and this particular picture 

asserts a category error: being as they are constituted of contrast classes paired with (mapping) 

functions, numerical variables can be neither observable, nor unobservable.  Unlike material 

entities, contrast classes and mapping functions, hence, numerical variables, are not the right 

kinds of thing to lie on the continuum whose poles are observable and unobservable.   

 We need to move beyond this obscuring metaphysics, and derive a clarification of the 

random variables ξj, j = 1..s, this clarification involving specifications of the {Tξj,gξj}.  This aim, 

it turns out, benefits greatly from an initial setting down of a technical standard of differentiation 

between latent and manifest random variables, a task to which we now turn. 

5. A technical standard of differentiation between manifest and latent variables 

 Let it be the case that, within a population Δ of objects under study, X is representable by 

the unidimensional, linear factor model; i.e., X = τ + Λξ +δ, in which E(δ) = 0, C(δ) = Θδ,  
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E(ξ) = 0, V(ξ) = 1, and C(ξ,δ) = 0.  We require a technical (non-metaphysical) standard of 

differentiation between the manifest variables contained in X and the latent variable ξ.  Note, 

first, that for each element of X, but not for ξ, the pair {T,g} must be specified prior to carrying 

out a factor analysis.  That the pairs {Tl,gl}, l=1..p, but not the pair {Tξ,gξ}, must be specified 

antecedently is manifested in the fact that the data that is factor analyzed in a factor analysis is a 

sample drawn from Δ on X, but not on ξ .   

 Thus, a researcher specifies prior to analysis that the elements {γ1l,γ2l,…,γtl} of Tl  are, for 

example, the tl response options of item l of some particular test, that these options will be 

“coded” as specified by the functions gl: Tl→ , l=1..p, and that X will be made random under 

the idealization of repeated, in vaccuo, (random) sampling from a particular population Δ  of 

entities under study (see Holland, 1990).  The underlying space of X is, then, (ΩX,AX,PX) in 

which ΩX≡ l

p

l
T

1
  and in which PX is generated under repeated, in vaccuo, sampling from 

particular population Δ.  The induced distribution of X, i.e., under measurable mapping g: ΩX→


p
, is (

p
,Bg,Pg).  Letting zl  stand for the closed half space (-∞,x] and Zg= l

p

l
z

1
 , the induced 

distribution function FX (X)=P(X ≤X) ≡ Pg(Zg) = PX (g
-1

(Zg)) X 
p
.  In testing hypotheses 

bearing on the parameters {Λ, τ, Θδ, κ}, FX (X), which is determined by Pg, is commonly taken 

as being adequately represented by some continuous p-dimensional distribution function F
~

. 

 What, then, of the numerical random variable ξ?  How is its nature settled, or, in other 

words, on what basis is {Tξ,gξ} specified?  In contradistinction to the elements of X, the nature of 

ξ is determined, post-hoc (i.e., under the condition that the unidimensional, linear factor model 

happens to represent X in a population Δ), by the totality of constraints placed upon it by the 
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unidimensional, linear factor model.  Let these constraints be the elements of set Culf.  Then: a) 

Culf  can be thought of as a generating recipe or construction formula; b) the symbol ξ  stands for 

any random variable that satisfies Culf, hence, for those random variables generated in 

conformity to Culf ; c) the label “common factor to X” can be legitimately ascribed to just those 

random variables generated in conformity to Culf.   

 The latent variables referred to in the defining equations of any and all latent variable 

models are simply generated random variables.  Let: M be any t-dimensional latent variable 

model; X be the p "manifest" random, and ξ, the t "latent" random, variables, referred to in the 

defining equations of M; and CM≡{c1,c2,…} be the totality of M-specific constraints that ξ must 

satisfy when M represents X.  Then ξ is a vector of t generated random variables, or, in other 

words, random variables for which {Tξl,gξl}, l=1..t, are fixed post-hoc (i.e., under the condition 

that M happens to represent X in a population Δ) by CM. 

 Because the traditional manifest variable and latent variable terminology is, now, 

inextricably linked to the insidious metaphysical picture under which X and ξ are misrepresented 

as being observable and unobservable, respectively, we recommend replacing these terms with 

the, more technical, and explanatory, terms input- (for each of the elements of X; those random 

variables realizations on which constitute the data of a latent variable analysis) and generated 

(for each of the elements of ξ; those random variables the natures of which are fixed by model 

specific constraints) random variable.
iv
 

 Generated random variables are, of course, commonplace within statistics.  Let V be any 

statistical model; X be the set of p input random variables (variables on which realizations are 

taken prior to analysis), and η, t generated random variables (variables for which {Tηl,gηl}, l=1..t, 
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are fixed post-hoc by a set of V-specific constraints CV, under condition that V represents X in a 

population Δ), referred to in the defining equations of V.  Then, it is useful to distinguish between 

models V for which η is a function of X (e.g., component models, canonical correlation models, 

linear and nonlinear regression models of various sorts) and those for which η is not a function 

of X (the latent variable models).   

 In respect to a generated random variable η that appears in the defining equations of a 

statistical model V, be it either a function of X, or not (examples of this latter type, the variables 

ξj, j = 1..s, the equivalence of which is the central question of this paper), certain fundamental 

issues arise.  Existence. Does there (always/never/only given satisfaction of certain conditions) 

exist a η that satisfies model specified constraints CV?  If only given the satisfaction of certain 

conditions on the distribution of X, what are these conditions?  Cardinality. If, for a given X, 

there does exist one or more η, each of which satisfies CV, how many such η do in fact exist?  

Deduction of {Tη ,gη}.  A numerical random variable is one part contrast class and one part 

mapping function. If, for a given X, distributed over a given population Δ, there exists one or 

more η, each of which satisfies CV, what are the elements of contrast class(es) Tη and the identity 

of the function(s) gη that maps ji onto  .  Can (the) gη  be deduced on the basis of CV? 

Contingent properties of η.  If, for a given X, there exists one or more η, each of which satisfies 

CV, the most fundamental issue here is the issue of the induced distribution(s) of η.   

Example (First principal component variable).  Let X = η1 + ε, in which X is a p-vector of input 

random variables and η1 is the first principal component variable to X.  Then η1 is a generated 

random variable, and the generating recipe is Cpc1≡{c1,c2 }, in which c1 -> “η1 = t'X (i.e., η1 is a 

linear function of X)” and c2 -> “V(η1) = t'Σt > 0 is a maximum over all normed (t't =1) p-
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vectors of real constants”.  Existence.  Because Σ is gramian, η1 always exists. Cardinality.  η1 is 

unique if and only if λ1>λr, r=2..p, in which λs is the sth in the ordered (from largest to smallest) 

set of p eigenvalues of Σ.  Deduction of  gη1.  As is well known (e.g., Mardia, Kent, and Bibby, 

1979), η1 satisfies Cpc1 if and only if t is the eigenvector of Σ, say, v1, associated with the largest 

eigenvalue of Σ, say, λ1, from which it follows that gη1(X) = v1'X (with V(η1) = V(v1'Σ v1) = λ1). 

6. The nature of the common factor random variable 

The generating recipe of the unidimensional, linear factor model is as follows: 

ξ is a common factor to input random p-vector X if and only if:   

ulf1) E(ξ) = 0;  

ulf2) E(ξ
2
) = 1;  

ulf3) the vector of residuals of the linear regression of X on ξ, X-τ-Λξ, has a 

covariance matrix C(X-τ-Λξ) that is diagonal and positive definite. 

In other words, Culf ≡{ulf1,ulf2,ulf3} and we have the following, well known, answers to the 

questions of existence, cardinality, and the like.   

Existence. Let input random p-vector X be distributed over a population Δ.  As is well known 

(Guttman, 1955; Wilson, 1928), there exists at least one random variable ξ that satisfies Culf  if 

and only if there exists a vector Λ of real numbers and a diagonal and positive definite matrix Θδ 

such that C(X) = Σ = ΛΛ’+ Θδ.      

Deduction of gξ. Given satisfaction of the condition of existence, gξ = gξ (X) = Λ'Σ
-1

X+w
1/2

s*, in 

which w = (1-Λ'Σ
-1
Λ) and s* is any random variable for which C(s*,X) = 0, E(s*) = 0,  

and V(s*) = 1 (Guttman, 1955; Kestelman, 1952; Piaggio, 1931).
v
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Cardinality. Let set Lulf contain all random variables ξ that satisfy Culf.  Because there can be 

constructed an infinity of distinct random variables s*
(m)

, m={1,2,...}, for which C(s*
(m)

,X) = 0, 

E(s*
(m)

) = 0, and V(s*
(m)

) = 1, it follows that, given satisfaction of the condition of existence, there 

exists a countable infinity of random variables ξ that satisfy Culf; i.e., Card(Lulf) = ∞ (Guttman, 

1955; Piaggio, 1931; Wilson, 1928).  Each element of Lulf  is designated by the particular s*
(m)

 to 

which it is tied.  Thus, ξm  is just that element of Lulf for which gξm(X) = Λ'Σ
-1

X+w
1/2

s*
(m)

.   

Contingent Properties. The symbol ξ stands for the countable infinity of elements ξm  of Lulf.  To 

consider contingent properties of ξ is, therefore, to consider contingent properties of the ξm Lulf. 

 Induced Distributions. The underlying space of ξm, (ΩX,s*(m),BX,s*(m),P X,s*(m)), is generated 

by a compound experiment consisting of two component experiments.  In particular, under 

repeated, in vaccuo, sampling from a population Δ  of objects under study, to each i  sampled 

assign: i) p scores in accordance with g: ΩX → 
P
; ii) a (p+1)th score that is a realization on a 

random variable s*
(m)

  chosen so as to have the properties C(s*
(m)

,X) = 0, E(s*
(m)

) = 0, and V(s*
(m)

) 

= 1. Thus: ΩX,s*(m) ≡ 
P
  Ωs*(m), in which Ωs*(m) is the sample space of s*

(m)
; BX,s*(m) is the Borel 

algebra; and P X,s*(m) is the probability measure (which determines the joint distribution function 

of X and s*
(m)

).   

 The induced distribution of ξm  is, then, the triple ( ,Bξm, Pξm), in which Bξm is the 

induced Borel algebra (Bξm ≡ {W  | gξm
 -1

(W)  BX,s*(m)}) and Pξm is the induced probability 

measure Pξm: Bξm→[0,1] (Pξm(W) = P X,s*(m)( gξm
 -1

(W)), W  Bξm).  The induced distribution 

function, Fξm(y)=P(ξm ≤y) ≡ Pξm (Z) = P X,s*(m) (gξ m
 -1

(Z))  y  .    

 Question of equivalence of ξm Lulf.  A sample space is simply a contrast class, and any 

i  has one and only one property in a contrast class.  Each s*
(m) 

assigns each i  to a 
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different property.  Thus, it follows that there is a distinct sample space Ωs*(m) for each s*
(m)

.  

Consequently, each element ξm of Lulf  is defined on a distinct measurable space, and it is 

concluded that the elements of Lulf  are neither identical, nor wp1-equivalent random variables.  

Moreover, because the s*
(m) 

are restricted by only weak, second-order, moments constraints, there 

is no necessity that the P X,s*(m) (hence, the Pξm, hence, the Fξm) be identical over the elements ξm 

of Lulf.  Consequently, there is no necessity that the ξm Lulf  be equal in distribution.  In fact, the 

only sense of random variable equivalence that the elements ξm of Lulf  satisfy is that of partial 

moment sequence equivalence, this a consequence of the generating recipe of linear factor 

analysis, which requires that each ξm satisfies (ulf1) and (ulf2).   

 Issues of mean square similarity of ξm Lulf. Although elements ξm of Lulf  are equivalent 

only in the virtually trivial sense of partial moment sequence equivalence, it may still be asked, 

more generally, how similar they are in a mean-squared difference sense.  This issue may be 

thought of as the issue of the similarity of the infinity of distinct mappings gξ m(i) contained 

within Lulf  of the i  into numbers that represent the properties of the i in the Tξm.  The 

following results provide some insight in respect this issue.  For {ξm,ξm'}Lulf  (Guttman, 1955) :  

   1

'   * * ',   , .m m m mw s s    ΛΣ Λ  (5) 

 1 1

'    ,    2 1m m     ΛΣ Λ ΛΣ Λ  (6) 

That is to say, even though the elements of Lulf  are all common factors to X, their exist pairs  

{ξm, ξm'} whose Pearson Product Moment Correlations are as low as 2ΛΣ
-1
Λ – 1, a quantity that 

is negative when ΛΣ
-1
Λ<.5.  For arbitrary external random variable Y and ξmLulf  (Steiger, 

1979)
vi
:  
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  1 1/2

,   * ,,  ;m Y s m YY w    XΛΣ  (7) 

     
1/2 1/2

1 2 1/2 1 2 1/2

,   . ,   . 1     ,      1Y Y m Y YR w Y R w         
X X X X

ΛΣ ΛΣ  (8) 

That is to say, even though the elements of Lulf  are all common factor to X, they will not 

have identical Pearson Product Moment Correlations with an arbitrary variable Y; the range of 

the correlations with Y over Lulf  is equal to 2(1-R
2

X.Y)
1/2

w
1/2

.  It may be concluded, then, that even 

in the much weaker sense of mean-square similarity, the elements of Lulf  need have little 

resemblance to each other.   

Asymptotic equivalence of ξm Lulf  and first principal component variable, η1.  Both any 

of the elements ξm of Lulf  and the first principal component variable to X, η1, are generated 

random variables.  The former exists if and only if, for a given population Δ, it happens to be the 

case that there exists a vector Λ of real numbers and a diagonal and positive definite matrix Θδ 

such that Σ = ΛΛ’+ Θδ.  The latter always exists.  The former, if it exists, is not, for finite p, a 

function of X; the latter is.   

However, under certain conditions, ξm and η1 are asymptotically, as p  , equivalent 

(Schneeweiss, 1989; Bentler and Kano, 1990); this suggesting, once again, the absurdity of 

putting forth observability and unobservability as the basis for distinguishing between ξm and η1; 

more generally, the absurdity of ascribing to latent variables the property of unobservability.  

The two generated variables ξm and η1 are variables, hence, are neither observable, nor 

unobservable.  They are, instead, characterized, and distinguishable, on the basis of their 

generating recipes and contingent properties. 

  Let there be a large population of variables D, and a sequence of sets of variables 

{S3,S4,...,Sk}, S3 formed by drawing a random sample of 3 variables from D, S4 formed by 
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augmenting S3 with a randomly sampled fourth variable, and so on.  Let it be the case that each 

set Sj is representable by the unidimensional, linear factor model; i.e., X(j)=(j) ξ(j)+(j)
1/2
(j), j=3..

 , in which (j) is diagonal and positive definite, V(ξ(j))=1, C((j))=I, and C(ξ(j),(j))=0, in 

consequence of which, Σ(j)= (j)(j)'+(j), j=3.. .  The idea is that the sets Sj remain 

representable by the unidimensional linear factor model as j becomes progressively larger.   

Consider, also, the sequence Σ(j)v1(j)= λ1(j)v1(j), v1(j)'v1(j)=1, in which v1(j) and λ1(j) are the 

first eigenvector and eigenvalue, respectively, of Σ(j).  The variable η1(j)= v1(j)'X(j) is the first 

principal component of the distribution of Sj.   

If, as j→∞, (j)'(j)→∞ and there exists a real number ζo>0 such that, for all j and k,  

ζo> ζkk(j), in which ζkk(j) is the kkth element of (j), then ρ(η1(j), ξ(j))→1.  Proof.  Because ξ(j)m = 

(j)' Σ(j)
-1

X(j)+w(j)
1/2

s*
(j,m)

 are the elements of set Lulf(j), i.e., are the common factors to X(j), it 

follows that ρ(η1(j), ξ(j))=ρ(v1(j)'X(j),(j)' Σ(j)
-1

X(j)+w(j)
1/2

s*
(j,m)

)=
(j)

(j)(j)

1

1

λ

)'( Λv
.  Now,  

Σ(j)v1(j)=( (j)(j)'+(j)) v1(j), from which it follows that v1(j)'Σ(j)v1(j) = (v1(j)'(j))
2
+ v1(j)'(j)v1(j).  

Thus, λ1(j)- v1(j)'(j)v1(j) = (v1(j)'(j))
2 
= λ1(j)ρ(η1(j), ξ(j))

2
.  Under condition that there exists a real 

number ζo>0 such that, for all j and k, ζo> ζkk(j), and the fact that v1(j)'v1(j)=1, it follows, finally, 

that ρ(η1(j), ξ(j))
2 
> (1-

(j)1

o

λ

ζ
).  Because, as j→∞, λ1(j)→∞, it follows that ρ(η1(j), ξ(j))

2
→1. 

7. Implications of factorial invariance for equivalence of the ξj 

 Consider, once again, the situation in which each of Xj, j = 1..s, is representable by the 

unidimensional, linear factor model, i.e., for each, representation (1) holds.  What, then, does the 

level of factorial invariance that holds over Δj, j = 1..s, imply about the equivalence of the ξj, j = 
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1..s?  We note, immediately, that, when purged of metaphysical accompaniment, the issue turns 

out to be more complicated than it initially appeared, for the reason that the symbols ξj, j = 1..s, 

actually stand for the countable infinities of elements ξm(j) of the sets Lulf(j), j = 1..s.  The issue 

must, then, be rephrased as follows: What does the level of factorial invariance that holds over 

Δj, j = 1..s, imply about the equivalence of any pair of elements {ξm(j), ξm'(j')}, j≠j', i.e., random 

variables belonging to distinct Lulf(j)? 

 To come to a conclusion, we need only consider the most restrictive case, level iv 

or strict factorial invariance.  Level iv invariance implies that, for j = 1..s: 

1 11    1 ;j j j jw w     Λ Σ Λ ΛΣ Λ  (9) 

  1 1/2 1 1/2

*

( )

( *) ( ) ' ' .
m m

m j j j j j j j j jg w s w s

    X Λ Σ X Λ Σ X  (10) 

We see, then, that, under level iv invariance, the functions that map each  ji into a 

number are identical over all of the random variables contained in 
s

j

julfL
1

)(



.  Hence, under level 

iv invariance, precisely the same conclusions in respect to the issue of random variable 

equivalence hold for any pair of elements {ξm(j), ξm'(j')} belonging to distinct Lulf(j), as were shown 

to hold for any pair belonging to the same Lulf(j).  

 Thus, we may conclude as follows: (a) because ξm(j) and ξm'(j') are defined on 

distinct measurable spaces, they are neither identical, nor wp1-equivalent random variables; (b) 

because they are induced by PXj,sj*(m) and P Xj',sj'*(m'), respectively- which, being the joint 

distributions of Xj defined over different populations and distinct s*
(m)

, need not be equivalent- 

Fξm(j) and Fξm'(j') need not  be identical, and, consequently, ξm(j) and ξm'(j') need not be equal in 
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distribution; (c) because they must all satisfy (ulf1) and (ulf2), the elements of 
s

j

julfL
1

)(



are 

partially moment sequence equivalent.  This trivial sense of equivalence is not, however, brought 

about by level iv factorial invariance, but, rather, by Culf  itself.  

8. Tacit nontechnical senses of equivalence admitted under the metaphysics 

What is the explanation for the existence of the false belief that a determination of the 

level of factorial invariance that holds over a set of k populations Δj, j = 1..s, is central to 

ascertaining whether or not the common factor random variables ξj, j = 1..s, are equivalent?  A 

candidate explanation, one suggested originally by Guttman (1977), is that individuals who hold 

this belief are simply guilty of the (minor) cognitive error of conflating the parameters of 

representation (1) with the common factor random variables that are symbolized in these 

representations (see Heene, 2008, for an illustration of this parameter/random variable 

conflation).   

Though there may be something to this, it seems to us- especially, in light of the number 

of otherwise quantitatively sophisticated individuals who subscribe to this view- that there is 

something else, here, at work.  We suggest that what we are seeing is yet another manifestation 

of the powerful, insidious, influence of metaphysics upon technical, statistical, work, and believe 

the illogic in play to be describable as follows: a) under the illegitimate ascription of the property 

of unobservability to common factor random variables, these variables tacitly come to be treated 

as entities, processes, and other natural phenomena (those things to which predication of 

unobservability is legitimate); b) under the identification of common factor random variables 

with entities, processes, and other natural phenomena, technical senses of random variable 
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equivalence are tacitly replaced by (nontechnical) notions of identical or equivalent or similar 

phenomena; c) finally, the levels of factorial invariance are seen, tacitly, and in an unspecified, 

nontechnical, fashion, as constituting different degrees of evidence that these phenomena are 

identical or equivalent or similar.   
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i
 The problem that we will be discussing is logically equivalent regardless of the dimensionality of factor 

representation.  We will, therefore, restrict our attention throughout the manuscript to the unidimensional case, 

thereby effectively eliminating the weakest level of invariance, configural invariance, from consideration. 
ii In the absence of additional constraints, certain parameters cannot be recovered.  The details, however, are not 

central to the issues under consideration. 
iii For a detailed history, see Maraun (2003). 

iv We are well aware that there are those who will be wont to claim that, especially in the context of a technical 

discipline such as statistics, "mere language", notably, terminological choice, is of little consequence.  We suggest 

that both the histories of the natural and mathematical sciences have shown this view to be naive.  Mach (1960) 

allocates roughly forty pages to the task of demonstrating that Newton’s concept of mass contains a circularity, 

explaining why such poorly engineered concepts cannot provide a reasonable basis for scientific investigation within 

physics, and offering an alternative definition that removes the circularity.  One of  Einstein's many  contributions to 

physics was to point out the confusion that existed in regard the physicist's employment of the concept simultaneity.  

Essentially, he pointed out that the standard employment of the concept was unproblematic for events occurring at 

close proximity, but breaks down in the case of events occurring at a great distance from each other (Waismann, 

1965). 
v
 It is not uncommon to encounter claims to the effect that Λ'Σ-1

X is the common factor to X, or, alternatively, that it 

is essentially the common factor to X.  But this is a fallacy.  No random variable that satisfies Culf, hence, no random 

variable that is a common factor to X, can be a linear transformation of X.  That is, there does not exist a vector t 

such that t'X satisfies Culf  (that a common factor is a latent variable means, simply, that it is not a function of X). 

Proof  Let δ=X-τ-Λξ .  By model requirement (ulf3), C(δ) = Σ-ΛΛ’ = Θδ, Θδ diagonal and positive definite, hence, 

of rank p.  Now, if, for some t, ξ = t'X, then Λ = Σt and C(δ) = Σ-Σtt'Σ = Σ-Σt(t'Σt)-1
t'Σ = 

Σ
1/2(I-Σ1/2

t(t'Σt)-1
t'Σ1/2)Σ1/2.  But I-Σ1/2

t(t'Σt)-1
t'Σ1/2 is idempotent and of rank (p-1).  Hence, C(δ) is of rank (p-1), 

which contradicts (ulf3) (McDonald, 1977). 
vi By “external variable” we mean simply a variable that is not contained in X. 
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