ENSC-283

Assignment \#1

Assignment date: Monday Jan. 12, 2009
Due date: Monday Jan. 19, 2009

Problem: (Newtonian fluid shear stress)
The velocity distribution for the flow of a Newtonian fluid between two wide, parallel plates (see Figure) is given by the equation

$$
u=\frac{3 U_{m}}{2}\left[1-\left(\frac{y}{h}\right)^{2}\right]
$$

where U_{m} is the mean velocity. The fluid has the viscosity of $0.04 \mathrm{lb} . \mathrm{s} / \mathrm{ft}^{2}$. If $U_{m}=2 \mathrm{ft} / \mathrm{s}$ and $h=0.2$ in, determine:
(a) The shearing stress acting on the bottom wall.
(b)The shearing stress acting on a plane parallel to the walls and passing through the centerline (midplane).

Solution

For this type of parallel flow the shearing stress is obtained from

$$
\begin{equation*}
\tau=\mu \frac{d u}{d y} \tag{1}
\end{equation*}
$$

Thus, if the velocity distribution $u=u(y)$ is known, the shearing stress can be determined at all points by evaluating the velocity gradient, $d u / d y$. For the distribution given

$$
\begin{equation*}
\frac{d u}{d y}=-\frac{3 U y}{h^{2}} \tag{2}
\end{equation*}
$$

(a) The bottom wally $=-h$ so that

$$
\begin{equation*}
\frac{d u}{d y}=\frac{3 U}{h} \tag{3}
\end{equation*}
$$

And therefore the shearing stress is

Always use units in your calculations

This stress creates a drag on the wall. Since the velocity distribution is symmetrical, the shearing stress along the upper wall would have the same magnitude and direction.
(b) Along the midplane where $y=0$ it follows from Eq. (2) that

$$
\begin{equation*}
\frac{d u}{d y}=0 \tag{4}
\end{equation*}
$$

And thus the shearing stress is

$$
\tau_{\text {midplane }}=0
$$

Note (1):

In this problem, we calculated the shearing stress acting on the walls. Same shearing stress but in the opposite direction is acting on the fluid. Why?

Note (2):

From Eq. (2) we see that the velocity gradient is a linear function of y i.e. $\tau=\alpha y$ with $\alpha=-3 U / h^{2}$. Hence, the shearing stress (see Eq. (1)) varies linearly with y and in this particular problem varies from 0 at the center of the channel to $14.4 \mathrm{lb} / \mathrm{ft}^{2}$ at the walls. For the more general case, the actual variation will depend on the nature of the velocity distribution.

