Problem: (Newtonian fluid shear stress)

The velocity distribution for the flow of a Newtonian fluid between two wide, parallel plates (see Figure) is given by the equation

\[u = \frac{3U_m}{2} \left[1 - \left(\frac{y}{h} \right)^2 \right] \]

where \(U_m \) is the mean velocity. The fluid has the viscosity of 0.04 \(\text{lb.s/ft}^2 \). If \(U_m = 2 \text{ ft/s} \) and \(h = 0.2 \text{ in} \), determine:

(a) The shearing stress acting on the bottom wall.
(b) The shearing stress acting on a plane parallel to the walls and passing through the centerline (midplane).
Solution

For this type of parallel flow the shearing stress is obtained from

\[\tau = \mu \frac{du}{dy} \] \hspace{1cm} (1)

Thus, if the velocity distribution \(u = u(y) \) is known, the shearing stress can be determined at all points by evaluating the velocity gradient, \(du/dy \). For the distribution given

\[\frac{du}{dy} = -\frac{3Uy}{h^2} \] \hspace{1cm} (2)

(a) The bottom wall \(y = -h \) so that

\[\frac{du}{dy} = \frac{3U}{h} \] \hspace{1cm} (3)

And therefore the shearing stress is

\[\tau_{\text{bottom wall}} = \mu \left(\frac{3U}{h} \right) \quad \text{in direction of flow} \]

Always use units in your calculations

This stress creates a drag on the wall. Since the velocity distribution is symmetrical, the shearing stress along the upper wall would have the same magnitude and direction.

(b) Along the midplane where \(y = 0 \) it follows from Eq. (2) that

\[\frac{du}{dy} = 0 \] \hspace{1cm} (4)
And thus the shearing stress is

\[\tau_{midplane} = 0 \]

Note (1):
In this problem, we calculated the shearing stress acting on the walls. Same shearing stress but in the opposite direction is acting on the fluid. Why?

Note (2):
From Eq. (2) we see that the velocity gradient is a linear function of \(y \) i.e. \(\tau = \alpha y \) with \(\alpha = -3U/h^2 \). Hence, the shearing stress (see Eq. (1)) varies linearly with \(y \) and in this particular problem varies from 0 at the center of the channel to 14.4 lb/ft\(^2\) at the walls. For the more general case, the actual variation will depend on the nature of the velocity distribution.