Differential Relations for Fluid Flow

In this approach, we apply our four basic conservation laws to an infinitesimally small control volume.
The differential approach provides point-by-point details of a flow pattern as oppose to control volume
technique that provide gross-average information about the flow.

Acceleration field of a fluid
The Cartesian vector form of a velocity filed can be written as:
V@) =Tulxy,zt) +v(xy,20) + kw(x,y,z1t)

The flow filed is the most important variable in the fluid mechanics, i.e., knowledge of the velocity
vector filed is equivalent to solving a fluid flow problem.
The acceleration vector field can be calculated:
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With a similar approach, we obtain the total acceleration vector:
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The term @V /dt is called the local acceleration and vanishes if the flow is steady. The three terms in the

parentheses are called the convective acceleration and rises when the particles move through regions of

spatially varying velocity, e.g. nozzle.

The total time derivative (d/dt) is sometimes called the substantial or material derivative can be applied

any variable such as pressure. This operator sometimes assigned a special symbol D/Dt.

The differential equation of mass conservation

All basic equations can be derived by considering an elemental system. Figure 1 shows the control
volume (dx, dy, dz) in which flow through each side of the element is approximately one-dimensional.
Since the size of the element is so small, we can assume that all the fluid properties are uniform and
constant within the element.



Control volume

pPudydz— — o ——— [,Orr + E(P{r) d.\':l dy dz

dx

————_—_— | —— ——

dx

Fig.1: Fixed Cartesian element showing inlet and outlet flows on the x-direction.

The conservation of mass for the element can be written as:
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After dividing by the volume of the element:

dp Odpu 6pv+6pw
at  Ox dy 0z

_0p
"9

S V(v =0

Typical point (r, 8, z) Typical
infinitesimal
element

Fig. 2: Cylindrical polar coordinate.

The continuity equation for the cylindrical polar coordinates is:
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where velocity vector V = (v, vg, ;).
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For steady compressible flow, continuity equation simplifies to:
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For_incompressible flow, continuity equation can be further simplified since density changes are

negligible:
V.V =0
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A flow can be considered incompressible when Ma < 0.3.

Note: the continuity equation is always important and must always be satisfied for a rational analysis of
a flow pattern.

The differential equation of linear momentum
In a Cartesian coordinates, the momentum equation can be written as:

There are types of forces: body forces and surface forces.

Body forces are due to external fields such as gravity and magnetism fields. We only consider gravity
forces:

-

dFyqy = pgdx dy dz where g = —gk

The surface forces are due to the stresses on the sides of the control surface. These stresses are the sum
of hydrostatic pressure plus viscous stresses 7;; which arise from the motion of the fluid:

D+ Txx Tyx Tzx
oij = Txy P+ Tyy Tzy
Txz Tyz Pt Ty

Unlike velocity, stresses and strains are nine-component tensors and require two subscripts to define
each component.

The net surface force due to stresses in the x-direction can be found as:

a d d
de,surf = B (0xx) + @ (Jyx) + 37 (O'Zx)] dx dy dz
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Fig.2: stress tensor.

Similarly we can find the net surface force in y and z direction. After summing them up and dividing
through by the volume, we get:

( dF ) _ l_(arxx N 0Ty N arzx> i <arxy N 0Ty N arzy> ik (arxz N 07y, N a‘[zz>
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=V.Tij

Note: the surface force is the sum of the pressure gradient and the divergence of the viscous stress

tensor.

Therefore the linear momentum equation for an infinitesimal element becomes:
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This is a vector equation, and can be written as:
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Special cases of momentum equation:

Inviscid flow: Euler’s equation
When the viscous terms are negligible, i.e. 7;; = 0

o AV
pg—p =p_

Euler’s equation can be integrated along a streamline to yield the frictionless Bernoulli equation.

Newtonian fluid: Navier-Stokes equation

For a Newtonian fluid, the viscous stresses are proportional to the element strain rates and the
coefficient of viscosity.
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where  is the viscosity coefficient. Substituting shear stresses in the momentum equation, for a
Newtonian fluid with constant density and viscosity, we get:
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These are the incompressible flow Navier-stokes equations.

Note: Navier-Stokes equations have four unknowns: p, u, v, and w. They should be combined with the
continuity equation to form four equations for theses unknowns.

Navier-Stokes equations have a limited number of analytical solutions; these equations typically are
solved numerically using computational fluid dynamics (CFD) software and techniques.

The differential equation of angular momentum

Application of the integral theorem to a differential element gives that the shear stresses are
symmetric:

Tij = Tji
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Fig. 3: Fixed Cartesian element showing shear stresses that may cause a net angular acceleration about
0.

Therefore, there is no differential angular momentum equation.

The boundary conditions for the basic equations

We have 3 differential equations to solve: i) continuity equation, ii) momentum, and iii) energy.
Typically, the density is variable, so the three equations contain 5 unknowns:p,V,p,fiandT.
Therefore, we need 2 additional relations to complete the system of equations. These are provided by
data or algebraic expressions for state relations of thermodynamic properties such as ideal gas equation
of state:

p=p®T) and da=1a(pT)

For ideal gas, we have: p = p/RT and il = c,T. So, we need to set proper, initial and boundary
conditions for each variable.

Some important boundary conditions:

e Atsolid wall: Vsyig = Vwan (no-slip condition) Thuid = Twan (NO-temperature jump)

e Atinlet or outlet section of the flow: V, p, T are known

e At a liquid-gas interface: equality of vertical velocity across the interface (kinematic boundary
condition).

e Mechanical equilibrium at liquid-gas interface, (7)1 = (Tzx) gas and (sz)liq = (sz)gas

e Ataliquid-gas interface: heat transfer must be the same, (q,).iq = (q2) gas, OF

(k 6T> _ (k BT)
0z /1iq 02/ gas
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Incompressible flow with constant properties
Flow with constant p, u, and k is a basic simplification that is very common in engineering problem that

leads to:
Continuity V.VI=20

av 2
Momentum pz—pg—Vp+uV vV

For frictionless or inviscid flows in which ¢ = 0. The momentum equation reduces to Euler’s equation:

a@v_
p=r=pg—Vp

Some illustrative incompressible viscous flows
Couette flow between a fixed and a moving plate

Consider two-dimensional incompressible plane viscous flow between parallel plates, Pyl 0, a distance

2h apart, as shown in Fig. 4. We assume that the plates are very wide and very long and that the flow is
essentially axial.

v=w=0andu #0

_—V Fixed

y=+h

-
!

i max

Y >
. R
2" u(y)
y=-h
Fixed Fixed

(a) (b)

Fig. 4: Incompressible viscous flow between parallel plates, a) no pressure gradient; b) pressure gradient
with both plates fixed.

From continuity equation, we learn:

6u+6v+6w du 0 (y)onl
JE— FR— _— _— = =
dx 0dy 0z d0x oru=ulyjonty

We neglect gravity effects and assume fully-developed flow. Substitute u = u(y) in the Navier-Stokes

equation for x-direction:
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After simplifications, it reduces to:

d?u

?=O oru=Cy+C,
We need two boundary conditions to find the constants C; and C,.
Aty=+h,u=V=C;h +C,
Aty=-h,u=0=C,(-h) +C,

Therefore, the solution for flow between plates with a moving upper wall is:

AN 4 h<y<+h
Y=oRY T2 =rVs

This is called Couette flow due to a moving wall: a linear velocity profile with no slip at each wall.

Couette flow due to pressure gradient between two fixed plates

Let’s consider case (b) in Fig. 4, where both plates are fixed but pressure varies in the x-direction. If

v = w = 0, the continuity equation lead to the same result, namely:

u = u(y)

The x-momentum equation changes because the pressure is variable:

6p+ 62u+62u+62u 3 (6u+ 6u+ 6u+ 6u>
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d*u 0dp
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Also, since v = w = 0 and gravity is neglected, the y and z momentum equations lead to:

i) 0
_p=0 and—p—

3y 5, = 0 2 p=p&)only

Thus, the pressure gradient in x-direction is the only and total gradient:

d*u dp
,ud—yz=a=Const<0

The solution is accomplished by double integration:
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dp

The constants can be found from the no-slip boundary condition at the walls:

2
aty =4h: u=0Thus,Cl=0and C, = —%Z—M.

The velocity distribution in a channel due to pressure gradient is:

h? dp N y?
u=———»\1-=
2udx h?
The flow forms a Poiseuille parabola of constant negative curvature, where the maximum velocity occurs
at the center.

Fully-developed laminar pipe flow

This is one of the most useful exact solutions to the Navier-Stokes equation: fully-developed
incompressible flow in straight circular pipe of radius R.

Fully-developed flow: refers to the flow in a region far enough from the entrance that the flow is purely

axial. As a result, the velocity distribution in the tube is fixed (not changing along the tube).

Neglecting gravity effects and assuming axial symmetry, i.e., = 0 and vg = 0, the continuity

equation in cylindrical coordinates, reduces to:

10 0
;E( T) +——( 9) + (UZ) =0- v, = vz(r)

It means that the flow proceeds straight down the pipe without radial motion. The r-momentum
equation in cylindrical coordinates, simplifies to a—f = 0 or p = p(z) only. The z-momentum equation in

cylindrical coordinates, reduces to:

or az T Hlrar\"ar) Trzaez T o2 | T PYz
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This equation is linear and can be integrated twice:

2

dpr
+ C;In(r) + C,

V2 = Uz ap

Applying, the no-slip boundary condition at the wall and finite velocity at the centerline, gives us:
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dp R?

No-slipatr=R:v, =0 = o + C; In(R) + C,

Finite velocity atr=0: v, = finite =0+ C;In(0) + C, » C; =0

The final solution for fully-developed Hagen-Poiseuille flow is:

The velocity profile is a paraboloid with a maximum at the centerline.

Flow between long concentric cylinders
Consider an incompressible flow between two concentric cylinders, as shown in Fig. 5. There is no axial
motion or end effect, v, = d/0dz = 0.

Fig. 5: Incompressible viscous flow between long cylinders.
The continuity, with v, = 0, reduces:

10
Tor (rvy) + ;%(Ue) + PP (v,) = 0 > rv, = const.

Note that vy does not vary with 6. Also since v,. = 0 at both the inner and outer cylinders, it follows
that v,, = 0 everywhere, as a result, the motion will be purely circumferential, vg = vg(r). The
momentum equation in @ direction is:

pvgvy  10p Vg

= 739 T PYe +H(V2V9 _r_z)

p(V.V)vy +

In cylindrical coordinates, we have:
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As a result, the momentum equation becomes:

0= u(VZve —:—Z) - V2, =

This is a linear 2™ order ordinary differential equation:

2
vy = Cir + —
6 1 r

The constants can be found by applying boundary conditions:

Atr=r01179 =0= Clro +C2/r0

Atr=r,-: Vg = .QT'L' = Cl’r‘i + Cz/Ti

The final solution for the velocity distribution is:

T T
Y )
Vo = Mlirg 7
i To

Vo
T2
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