ENSC283 INTRODUCTION TO FLUID MECHANICS

27 February 2009
Midterm Examination
M. Bahrami

- This is a 2-1/2 hours, closed-book and notes examination.
- You are permitted to use one $8.5 \mathrm{in} . \times 11 \mathrm{in}$. crib sheet (double-sided) and the property tables.
- There are 5 questions to be answered. Read the questions very carefully.
- Clearly state all assumptions.
- It is your responsibility to write clearly and legibly.

Problem 1: (20 marks)

A stream of water of diameter $d=0.1 \mathrm{~m}$ flows steadily from a tank of diameter $D=1 \mathrm{~m}$ as shown in the figure. Determine the flow rate, Q, needed from the inflow pipe if the water depth remains constant, $(h=2 m)$.

Problem 1: (Solution)

For steady, incompressible flow, the Bernoulli equation applied between points 1 and 2

$$
p_{1}+\frac{1}{2} \rho V_{1}^{2}+\gamma z_{1}=p_{2}+\frac{1}{2} \rho V_{2}^{2}+\gamma z_{2}
$$

With the assumptions that $p_{1}=p_{2}=0, z_{1}=h$ and $z_{2}=0$,

$$
\begin{equation*}
\frac{1}{2} V_{1}^{2}+g h=\frac{1}{2} V_{2}^{2} \tag{I}
\end{equation*}
$$

Although the water level remains constant, there is an average velocity, V_{1}, across section 1 because of the flow from the tank. For steady incompressible flow, conservation of mass requires $Q_{1}=Q_{2}$, where $Q=A V$. Thus, $A_{1} V_{1}=A_{2} V_{2}$ or

$$
D^{2} V_{1}=d^{2} V_{2}
$$

Hence,

$$
V_{1}=\left(\frac{d}{D}\right)^{2} V_{2} \text { (II) }
$$

Combining equations (I) and (II)

$$
V_{2}=\sqrt{\frac{2 g h}{1-\left(\frac{d}{D}\right)^{4}}}=\sqrt{\frac{2\left(9.81\left[\frac{m}{s^{2}}\right]\right)(2[\mathrm{~m}])}{1-\left(\frac{0.1[\mathrm{~m}]}{1[m]}\right)^{4}}}=6.26\left[\frac{m}{s}\right]
$$

Thus,

$$
Q=A_{1} V_{1}=\frac{\pi(0.1[\mathrm{~m}])^{2}}{4} \times 6.26\left[\frac{m}{s}\right]=0.0492\left[\frac{m^{3}}{s}\right]
$$

Problem 2: (20 marks)

A uniform block of steel ($\mathrm{SG}=7.85$) will float at a mercury-water interface as shown in the figure. What is the ratio of the distance a and b.

mercury: $\mathrm{SG}=13.36$

Problem 2: (Solution)

Let L be the block length into the paper, W is the block width and let γ be the water specific weight. Then the vertical force balance on the block is

$$
7.85 \gamma(a+b) L W=1 \gamma a L W+13.56 \gamma b L W
$$

Canceling W, L and γ from both sides of this equation and rearranging,

$$
7.85 a+7.85 b=a+13.56 b \rightarrow \frac{a}{b}=\frac{13.56-7.85}{7.85-1}=0.834
$$

Problem 3: (20 marks)

Kerosene at $20^{\circ} \mathrm{C}$ flows through the pump shown in figure at $0.065 \mathrm{~m}^{3} / \mathrm{s}$. Head losses between 1 and 2 are 2.4 m , and the pump delivers 6 kW to the flow. What should the mercury-manometer reading h be? $\left(\gamma_{\text {kerosene }}=8016.2 \mathrm{~N} / \mathrm{m}^{3}\right.$ and $\gamma_{\text {mercury }}=$ $133210 \mathrm{~N} / \mathrm{m}^{3}$)

Problem 3: (Solution)

First establish two velocities, i.e. V_{1} and V_{2},

$$
\begin{aligned}
& V_{1}=\frac{Q}{A_{1}}=\frac{0.065\left[\frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right]}{\left(\frac{\pi}{4}\right)(7.5 \times 0.01[\mathrm{~m}])^{2}}=14.7\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right] \\
& \frac{V_{2}}{V_{1}}=\frac{A_{1}}{A_{2}}=\left(\frac{D_{1}}{D_{2}}\right)^{2} \rightarrow V_{2}=\frac{1}{4} V_{1}=3.675\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right]
\end{aligned}
$$

To apply a manometer analysis to determine the pressure difference between points 1 and 2 ,

$$
\begin{aligned}
& p_{2}-p_{1}=\left(\gamma_{m}-\gamma_{k}\right) h-\gamma_{k} \Delta z=\left(133210\left[\frac{N}{m^{3}}\right]-8016.2\left[\frac{N}{m^{3}}\right]\right) h-\left(8016.2\left[\frac{N}{m^{3}}\right]\right) \times \\
& 1.5[m]=125193.8 h-12024.3\left[\frac{N}{m^{2}}\right]
\end{aligned}
$$

Now apply the steady flow energy equation between points 1 and 2

$$
\frac{p_{1}}{\gamma_{k}}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{p_{2}}{\gamma_{k}}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{f}-h_{p}
$$

where

$$
h_{p}=\frac{P}{\gamma_{k} Q}=\frac{6000[\mathrm{~W}]}{8016.2\left[\frac{\mathrm{~N}}{\mathrm{~m}^{3}}\right] \times 0.068\left[\frac{\mathrm{~m}^{3}}{\mathrm{~s}}\right]}=11[\mathrm{~m}]
$$

Thus,

$$
\frac{p_{1}}{8016.2\left[\frac{N}{m^{3}}\right]}+\frac{\left(14.7\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right]\right)^{2}}{2(9.81)}+0
$$

$$
\begin{aligned}
& =\frac{p_{2}}{8016.2\left[\frac{N}{\mathrm{~m}^{3}}\right]}+\frac{\left(3.675\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right]\right)^{2}}{2(9.81)}+1.5[\mathrm{~m}]+2.4[\mathrm{~m}]-11[\mathrm{~m}] \\
\rightarrow p_{2} & -p_{1}=139685\left[\frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right]=125193.8 \mathrm{~h}-12024.3\left[\frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right]
\end{aligned}
$$

or

$$
h=1.211[m]
$$

Problem 4: (20 marks)

Circular-arc gate ABC pivots about point O. For the position shown, determine (a) the hydrostatic force on the gate (per meter of width into the paper); and (b) its line of action.

The horizontal hydrostatic force is based on the vertical projection:

$$
F_{H}=\gamma_{w} h_{C G} A_{v e r}=\frac{\gamma_{w} H^{2}}{2}
$$

and the point of action for the horizontal force is $2 \mathrm{H} / 3$ below point C .
The vertical force is upward and equal to the weight of the missing water in the segment $A B C$ shown hatched in the following figure.

The segment ABC area can be calculated from

$$
A_{\text {seg }}=\alpha R^{2}-\frac{R H \cos \alpha}{2}
$$

This area gives the volume of water in segment $A B C$ per unit width into the paper. Hence the water weight is,

$$
F_{V}=\gamma_{w} A_{s e g}=\gamma_{w}\left(\alpha R^{2}-\frac{R H \cos \alpha}{2}\right)
$$

To calculate the point of action, center of weight for segment ABC should be calculated. To do so, momentum balance around point O should be applied,

$$
\begin{gathered}
-\frac{H R \cos \alpha}{2} \times \frac{2 R \cos \alpha}{3}+\alpha R^{2} \times \frac{2 R \sin \alpha}{3 \alpha}=\left(\alpha R^{2}-\frac{R H \cos \alpha}{2}\right) l \\
\rightarrow l=\frac{2 R}{3}\left(\frac{2 R \sin \alpha-H \cos ^{2} \alpha}{2 \alpha R-H \cos \alpha}\right)
\end{gathered}
$$

The net force is thus

$$
F=\sqrt{F_{V}^{2}+F_{H}^{2}}
$$

Per meter of width. This force is acting upward to the right at an angle of β where

$$
\beta=\tan ^{-1}\left(\frac{H^{2}}{2 \alpha R^{2}-H R \cos \alpha}\right)
$$

Problem 5: (20 mark)

A rigid tank of volume $V=1 \mathrm{~m}^{3}$ is initially filled with air at $20^{\circ} \mathrm{C}$ and $p_{0}=100 \mathrm{kpa}$. At time $t=0$, a vacuum pump is turned on and evacuates air at a constant volume flow rate of $Q=80 \mathrm{~L} / \mathrm{min}$ (regardless of pressure). Assume an ideal gas and isothermal process.
(a) Set up a differential equation for this flow.
(b) Solve this equation for t as a function of $\left(V, Q, p, p_{0}\right)$.
(c) Compute the time in minutes to pump the tank down to $p=20 \mathrm{kpa}$.

Problem 5: (Solution)

The control volume encloses the tank, as shown is selected.

Continuity equation for the control volume becomes

$$
\frac{d}{d t}\left(\int \rho d v\right)+\sum \dot{m}_{o u t}-\sum \dot{m}_{i n}=0
$$

Since no mass enters the control volume $\sum \dot{\mathrm{m}}_{\mathrm{in}}=0$. Assuming that the gas density is uniform throughout the tank $\int \rho d v=\rho v$. Hence

$$
v \frac{d \rho}{d t}+\rho Q=0
$$

or

$$
\int \frac{d \rho}{\rho}=-\frac{Q}{v} \int d t \quad \text { (part a) }
$$

This differential equation can be easily solved yielding

$$
\ln \left(\frac{\rho}{\rho_{0}}\right)=-\frac{Q t}{v}
$$

where ρ_{0} is the gas initial density. For an isothermal ideal gas, $\rho / \rho_{0}=p / p_{0}$, therefore

$$
t=-\frac{v}{Q} \ln \left(\frac{p}{p_{0}}\right)(\text { part b) }
$$

For given values of $Q=80 \mathrm{~L} / \mathrm{min}=0.08 \mathrm{~m}^{3} / \mathrm{min}$, the time to pump a $1 \mathrm{~m}^{3}$ tank down from 100 to 20 kpa is

$$
t=-\frac{1\left[\mathrm{~m}^{3}\right]}{0.08\left[\frac{\mathrm{~m}^{3}}{\mathrm{~min}}\right]} \ln \left(\frac{20}{100}\right)=20.1[\mathrm{~min}]
$$

