Jan. 27, 2009
Name: \qquad Student ID: \qquad
Time: 45 minutes or less. Develop answers on available place. The quiz has 5\% (bonus) of the total mark. Closed books \& closed notes.

Problem 1 (50\%):

A square, side dimension $a(m)$, has its top edge $H(m)$ below the water surface. It is on angle θ and its bottom is hinged as shown in the figure below. Develop a relationship for the force F needed to just open the gate.

Hint: start with drawing a free-body-diagram of the gate. Also:

$$
\begin{gathered}
y_{C P}=-\gamma \sin \theta \frac{I_{x x}}{p_{C G} A} \\
I_{x x}=\frac{a^{4}}{12} \quad A=a^{2}
\end{gathered}
$$

Solution:

The first step is to sketch a free-body diagram of the gate so the forces and distances are clearly identified. It is done in the following figure.

The force F_{R} is calculated to be

$$
\begin{equation*}
F_{R}=\gamma h_{C G} A=\gamma\left(H+\frac{a \sin \theta}{2}\right) a^{2} \tag{Eq.1}
\end{equation*}
$$

We will take moments about the hinge so that it will not be necessary to calculate the forces F_{x} and F_{y}.

$$
\begin{equation*}
F_{R} \times\left[\frac{a}{2}-\left|y_{C P}\right|\right]=F \times a \tag{Eq.2}
\end{equation*}
$$

where, $\left|y_{C P}\right|$ is the distance between the center of pressure (CP) and the center of gravity (CG). $\left|y_{C P}\right|$ can be written as:

$$
\begin{equation*}
\left|y_{C P}\right|=\gamma \sin \theta \frac{I_{x x}}{p_{C G} A}=\frac{I_{x x} \sin \theta}{h_{C G} A}=\frac{a^{4}}{12} \frac{\sin \theta}{\left(H+\frac{a \sin \theta}{2}\right) a^{2}}=\frac{a^{2} \sin \theta}{12\left(H+\frac{a \sin \theta}{2}\right)} \tag{Eq.3}
\end{equation*}
$$

Substituting $\left|y_{C P}\right|$ into Eq.2, the force \mathbf{F} is found.

$$
\begin{equation*}
F=\frac{F_{R} \times\left[\frac{a}{2}-\left|y_{C P}\right|\right]}{a}=\frac{\gamma\left(H+\frac{a \sin \theta}{2}\right) a^{2}\left[\frac{a}{2}-\left|y_{C P}\right|\right]}{a} \tag{Eq.4}
\end{equation*}
$$

Simplifying the above equation, we get:

$$
\begin{equation*}
F=\frac{\gamma a^{2}(3 H+a \sin \theta)}{6} \tag{Eq.5}
\end{equation*}
$$

Problem 2 (50\%):

It is said that Archimedes discovered the buoyancy laws when asked by King Hiero of Syracuse to determine whether his new crown was pure gold (SG = 19.3). Archimedes measured the weight of the crown in air to be 11.8 N and its weight in water to be 10.9 N . Was it pure gold?

Hint: the buoyancy is the difference between air weight and underwater weight.

$$
F_{B}=\gamma V
$$

Solution:

The buoyancy is the difference between air weight and underwater weight:

$$
\begin{equation*}
F_{B}=W_{\text {in air }}-W_{\text {in water }}=\gamma_{\text {water }} V_{\text {crown }}=11.8 \mathrm{~N}-10.9 \mathrm{~N}=0.9 \mathrm{~N} \tag{Eq.1}
\end{equation*}
$$

where, $W_{\text {in air }}$ and $W_{\text {in water }}$ are the weight of the crown in air and water, respectively. The weight of the crown in air can be expressed as:

$$
\begin{equation*}
W_{\text {in air }}=(S G) \gamma_{\text {water }} V_{\text {crown }} \tag{Eq.2}
\end{equation*}
$$

Substituting Eq. 2 into Eq.1, we get:

$$
\begin{equation*}
W_{\text {in water }}=\gamma_{\text {water }} V_{\text {crown }}(S G-1)=F_{B}(S G-1) \tag{Eq.3}
\end{equation*}
$$

Thus, the specific gravity of the crown can be written as:

$$
\begin{equation*}
S G=1+\frac{W_{\text {in water }}}{F_{B}}=1+\frac{10.9}{0.9}=\mathbf{1 3 . 1 1}(\text { not pure gold }) \tag{Eq.4}
\end{equation*}
$$

