2.120 A uniform wooden beam $(\mathrm{SG}=\mathrm{H} / 2$ from the lower end. Sum moments 0.65) is 10 cm by 10 cm by 3 m and hinged about point A : at A. At what angle will the beam float in $20^{\circ} \mathrm{C}$ water?

Solution: The total beam volume is $3(.1)^{2}=0.03 \mathrm{~m}^{3}$, and therefore its weight is $\mathrm{W}=(0.65)(9790)(0.03)=190.9 \mathrm{~N}$, acting at the centroid, 1.5 m down from point A. Meanwhile, if the submerged length is H , the buoyancy is $\mathrm{B}=$ $(9790)(0.1)^{2} \mathrm{H}=97.9 \mathrm{H}$ newtons, acting at

Fig. P2.120

$$
\begin{gathered}
\sum \mathrm{M}_{\mathrm{A}}=0=(97.9 \mathrm{H})(3.0-\mathrm{H} / 2) \cos \theta-190.9(1.5 \cos \theta), \\
\text { or. } \mathrm{H}(3-\mathrm{H} / 2)=2.925, \text { solve for } \mathrm{H} \approx 1.225 \mathrm{~m}
\end{gathered}
$$

Geometry: $3-\mathrm{H}=1.775 \mathrm{~m}$ is out of the water, or: $\sin \theta=1.0 / 1.775$, or $\theta \approx 34.3^{\circ}$ Ans.
2.121 The uniform beam in the figure is of size L by h by b, with $b, h \ll L$. A uniform heavy sphere tied to the left corner causes the beam to float exactly on its diagonal. Show that this condition requires (a) $\gamma \mathrm{b}=$ $\gamma / 3$; and (b) $\mathrm{D}=[\mathrm{Lhb} /\{\pi(\mathrm{SG}-1)\}]^{1 / 3}$.

Solution: The beam weight $\mathrm{W}=\gamma \mathrm{bLhb}$ and acts in the center, at $\mathrm{L} / 2$ from the left corner, while the buoyancy, being a perfect

Fig. P2. 121 triangle of displaced water, equals $\mathrm{B}=$ $\gamma \mathrm{Lhb} / 2$ and acts at $\mathrm{L} / 3$ from the left corner. Sum moments about the left corner, point C:

$$
\sum \mathrm{M}_{\mathrm{C}}=0=\left(\gamma_{\mathrm{b}} \mathrm{Lhb}\right)(\mathrm{L} / 2)-(\gamma \operatorname{Lhb} / 2)(\mathrm{L} / 3), \quad \text { or: } \quad \gamma_{\mathrm{b}}=\gamma / \mathbf{3} \quad \text { Ans. (a) }
$$

Then summing vertical forces gives the required string tension T on the left corner:

$$
\sum \mathrm{F}_{\mathrm{z}}=0=\gamma \mathrm{Lbh} / 2-\gamma_{\mathrm{b}} \mathrm{Lbh}-\mathrm{T}, \quad \text { or } \mathrm{T}=\gamma \mathrm{Lbh} / 6 \text { since } \quad \gamma_{\mathrm{b}}=\gamma / 3
$$

But also $\quad \mathrm{T}=(\mathrm{W}-\mathrm{B})_{\text {sphere }}=(\mathrm{SG}-1) \gamma \frac{\pi}{6} \mathrm{D}^{3}, \quad$ so that $\mathrm{D}=\left[\frac{\mathbf{L h b}}{\boldsymbol{\pi (\mathbf { S G } - \mathbf { 1 })}}\right]^{1 / 3}$ Ans. (b)

