2.158* It is desired to make a 3-mdiameter parabolic telescope mirror by rotating molten glass in rigid-body motion until the desired shape is achieved and then cooling the glass to a solid. The focus of the mirror is to be 4 m from the mirror, measured along the centerline. What is the proper mirror rotation rate, in rev/min?

Solution: We have to review our math book, or Mark's Manual, to recall that the focus F of a parabola is the point for which all points on the parabola are equidistant from both the focus and a so-called "directrix" line (which is one focal length below the mirror).
For the focal length h and the $z-r$ axes shown in the figure, the equation of the parabola is given by $\mathbf{r}^{2}=\mathbf{4 h z}$, with $h=4 \mathrm{~m}$ for our example.
Meanwhile the equation of the free-surface of the liquid is given by $\mathbf{z}=\mathbf{r}^{\mathbf{2}} \Omega^{\mathbf{2}} /(\mathbf{2 g})$.
Set these two equal to find the proper rotation rate:

$$
\begin{aligned}
& z=\frac{r^{2} \Omega^{2}}{2 g}=\frac{r^{2}}{4 h}, \quad \text { or: } \quad \Omega^{2}=\frac{g}{2 h}=\frac{9.81}{2(4)}=1.226 \\
& \text { Thus } \Omega=1.107 \frac{\mathrm{rad}}{\mathrm{~s}}\left(\frac{60}{2 \pi}\right)=\mathbf{1 0 . 6} \mathbf{r e v} / \mathrm{min} \quad \text { Ans. }
\end{aligned}
$$

The focal point F is far above the mirror itself. If we put in $r=1.5 \mathrm{~m}$ and calculate the mirror depth "L" shown in the figure, we get $\mathrm{L} \approx 14$ centimeters.
2.159 The three-legged manometer in Fig. P2.159 is filled with water to a depth of 20 cm . All tubes are long and have equal small diameters. If the system spins at angular velocity Ω about the central tube, (a) derive a formula to find the change of height in the tubes; (b) find the height in cm in each tube if $\Omega=120 \mathrm{rev} / \mathrm{min}$. [HINT: The central tube must supply water to both

Fig. P2.159 the outer legs.]

Solution: (a) The free-surface during rotation is visualized as the red dashed line in Fig. P2.159. The outer right and left legs experience an increase which is one-half that of the central leg, or $\Delta \mathrm{hO}=\Delta \mathrm{hC} / 2$. The total displacement between outer and center menisci is, from Eq. (2.64) and Fig. 2.23, equal to $\Omega^{2} R^{2} /(2 g)$. The center meniscus
falls two-thirds of this amount and feeds the outer tubes, which each rise one-third of this amount above the rest position:

$$
\Delta h_{\text {outer }}=\frac{1}{3} \Delta h_{\text {total }}=\frac{\Omega^{2} R^{2}}{6 g} \quad \Delta h_{\text {center }}=-\frac{2}{3} \Delta h_{\text {total }}=-\frac{\Omega^{2} R^{2}}{3 g} \quad \text { Ans. (a) }
$$

For the particular case $R=10 \mathrm{~cm}$ and $\Omega=120 \mathrm{r} / \mathrm{min}=(120)(2 \pi / 60)=12.57 \mathrm{rad} / \mathrm{s}$, we obtain

$$
\begin{gathered}
\frac{\Omega^{2} R^{2}}{2 g}=\frac{(12.57 \mathrm{rad} / \mathrm{s})^{2}(0.1 \mathrm{~m})^{2}}{2\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}=0.0805 \mathrm{~m} \\
\Delta h_{O} \approx \mathbf{0 . 0 2 7} \mathbf{~ m}(u p) \quad \Delta h_{C} \approx-\mathbf{0 . 0 5 4} \mathbf{~ m}(\text { down }) \quad \text { Ans. (b) }
\end{gathered}
$$

